Skip to main content

Advertisement

Log in

Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cortical bone structure is a crucial determinant of bone strength, yet for many years studies of novel genes and cell signalling pathways regulating bone strength have focused on the control of trabecular bone mass. Here we focus on mechanisms responsible for cortical bone development, growth, and degeneration, and describe some recently described genetic-driven modifications in humans and mice that reveal how these processes may be controlled. We start with embryonic osteogenesis of preliminary bone structures preceding the cortex and describe how this structure consolidates then matures to a dense, vascularised cortex containing an increasing proportion of lamellar bone. These processes include modelling-induced, and load-dependent, asymmetric cortical expansion, which enables the cortex’s transition from a highly porous woven structure to a consolidated and thickened highly mineralised lamellar bone structure, infiltrated by vascular channels. Sex-specific differences emerge during this process. With aging, the process of consolidation reverses: cortical pores enlarge, leading to greater cortical porosity, trabecularisation and loss of bone strength. Each process requires co-ordination between bone formation, bone mineralisation, vascularisation, and bone resorption, with a need for locational-, spatial- and cell-specific signalling pathways to mediate this co-ordination. We will discuss these processes, and a number of cell-signalling pathways identified in both murine and human genetic studies to regulate cortical bone mass, including signalling through gp130, STAT3, PTHR1, WNT16, NOTCH, NOTUM and sFRP4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42(3):167–180

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto T, Hasegawa T, Sasaki M, Hongo H, Tabata C, Liu Z et al (2012) Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone. J Electron Microsc 61(2):113–121

    CAS  Google Scholar 

  4. Kronenberg HM (2007) The role of the perichondrium in fetal bone development. Ann NY Acad Sci 1116(1):59–64

    Article  CAS  PubMed  Google Scholar 

  5. Sharir A, Stern T, Rot C, Shahar R, Zelzer E (2011) Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138(15):3247–3259

    Article  CAS  PubMed  Google Scholar 

  6. Zimmermann EA, Riedel C, Schmidt FN, Stockhausen KE, Chushkin Y, Schaible E et al (2019) Mechanical competence and bone quality develop during skeletal growth. J Bone Miner Res 34(8):1461–1472

    Article  CAS  PubMed  Google Scholar 

  7. Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM (1999) Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 104(4):399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu JY, Aarnisalo P, Bastepe M, Sinha P, Fulzele K, Selig MK et al (2011) Gsalpha enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest 121(9):3492–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702

    Article  CAS  PubMed  Google Scholar 

  11. Li CY, Jepsen KJ, Majeska RJ, Zhang J, Ni R, Gelb BD et al (2006) Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res 21(6):865–875

    Article  CAS  PubMed  Google Scholar 

  12. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D et al (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111(1–2):61–73

    Article  CAS  PubMed  Google Scholar 

  13. Rot-Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrímsson B, Hall BK et al (2006) Myf5−/−:MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol 216(1):1–9

    Article  PubMed  Google Scholar 

  14. Ansari N, Isojima T, Crimeen-Irwin B, Poulton IJ, McGregor NE, Ho PWM et al (2021) Dmp1Cre-directed knockdown of PTHrP in murine decidua is associated with increased bone width and a life-long increase in strength specific to male progeny. J Bone Miner Res. https://doi.org/10.1002/jbmr.4388

    Article  PubMed  Google Scholar 

  15. Nistala H, Makitie O, Juppner H (2014) Caffey disease: new perspectives on old questions. Bone 60:246–251

    Article  CAS  PubMed  Google Scholar 

  16. Enlow DH (1962) A study of the post-natal growth and remodeling of bone. Am J Anat 110:79–101

    Article  CAS  PubMed  Google Scholar 

  17. Cadet ER, Gafni RI, McCarthy EF, McCray DR, Bacher JD, Barnes KM et al (2003) Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Jt Surg Am 85-A(9):1739–1748

    Article  Google Scholar 

  18. Bala Y, Bui QM, Wang XF, Iuliano S, Wang Q, Ghasem-Zadeh A et al (2015) Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res 30(4):621–629

    Article  PubMed  Google Scholar 

  19. Wang Q, Ghasem-Zadeh A, Wang X-F, Iuliano-Burns S, Seeman E (2011) Trabecular bone of growth plate origin influences both trabecular and cortical morphology in adulthood. J Bone Miner Res 26(7):1577–1583

    Article  PubMed  Google Scholar 

  20. Pritchett JW (1992) Longitudinal growth and growth-plate activity in the lower extremity. Clin Orthop Relat Res 275:274–279

    Article  Google Scholar 

  21. Shipov A, Zaslansky P, Riesemeier H, Segev G, Atkins A, Shahar R (2013) Unremodeled endochondral bone is a major architectural component of the cortical bone of the rat (Rattus norvegicus). J Struct Biol 183(2):132–140

    Article  CAS  PubMed  Google Scholar 

  22. Maggiano IS, Maggiano CM, Tiesler VG, Chi-Keb JR, Stout SD (2015) Drifting diaphyses: asymmetry in diametric growth and adaptation along the humeral and femoral length. Anat Rec (Hoboken) 298(10):1689–1699

    Article  Google Scholar 

  23. Ferguson VL, Ayers RA, Bateman TA, Simske SJ (2003) Bone development and age-related bone loss in male C57BL/6J mice. Bone 33(3):387–398

    Article  PubMed  Google Scholar 

  24. Chan ASM, McGregor NE, Poulton IJ, Hardee JP, Cho EH, Martin TJ et al (2021) Bone geometry is altered by follistatin-induced muscle growth in young adult male mice. JBMR Plus 5(4):e10477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson RW, McGregor NE, Brennan HJ, Crimeen-Irwin B, Poulton IJ, Martin TJ et al (2015) Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone 81:343–351

    Article  CAS  PubMed  Google Scholar 

  26. Rauch F (2012) The dynamics of bone structure development during pubertal growth. J Musculoskelet Neuronal Interact 12(1):1–6

    CAS  PubMed  Google Scholar 

  27. Sims NA, Martin TJ (2020) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82:507–529

    Article  CAS  PubMed  Google Scholar 

  28. de Saint-Georges L, Miller SC (1992) The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones. Anat Rec 233(2):169–177

    Article  PubMed  Google Scholar 

  29. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S et al (2019) A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab 1(2):236–250

    Article  PubMed  PubMed Central  Google Scholar 

  30. Root SH, Wee NKY, Novak S, Rosen CJ, Baron R, Matthews BG et al (2020) Perivascular osteoprogenitors are associated with transcortical channels of long bones. STEM CELLS 38(6):769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walker EC, Truong K, McGregor NE, Poulton IJ, Isojima T, Gooi JH et al (2020) Cortical bone consolidation requires local SOCS3-dependent suppression of osteoclasts through gp130/STAT3 signalling in osteocytes. Elife 9:e56666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho DC, Brennan HJ, Johnson RW, Poulton IJ, Gooi JH, Tonkin BA et al (2017) Bone corticalization requires local SOCS3 activity and is promoted by androgen action via interleukin-6. Nat Commun 8(1):806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wong PK, Egan PJ, Croker BA, O’Donnell K, Sims NA, Drake S et al (2006) SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J Clin Invest 116(6):1571–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schipani E, Langman CB, Parfitt AM, Jensen GS, Kikuchi S, Kooh SW et al (1996) Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med 335(10):708–714

    Article  CAS  PubMed  Google Scholar 

  35. Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM et al (2001) Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 107(3):277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR et al (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 3(8):e2942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C et al (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res 26(5):1035–1046

    Article  CAS  PubMed  Google Scholar 

  38. Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S et al (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43(4):306–308

    Article  CAS  PubMed  Google Scholar 

  39. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV et al (2011) Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43(4):303–305

    Article  CAS  PubMed  Google Scholar 

  40. Canalis E, Zanotti S (2016) Hajdu–Cheney syndrome, a disease associated with NOTCH2 mutations. Curr Osteoporos Rep 14(4):126–131

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sakka S, Gafni RI, Davies JH, Clarke B, Tebben P, Samuels M et al (2017) Bone structural characteristics and response to bisphosphonate treatment in children with Hajdu–Cheney syndrome. J Clin Endocrinol Metab 102(11):4163–4172

    Article  PubMed  PubMed Central  Google Scholar 

  42. Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S (2016) Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis, and bone resorption. J Biol Chem 291(4):1538–1551

    Article  CAS  PubMed  Google Scholar 

  43. Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154(2):623–634

    Article  CAS  PubMed  Google Scholar 

  44. Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 11:1279–1288

    Article  CAS  Google Scholar 

  45. Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8(7):e1002745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohlsson C, Henning P, Nilsson KH, Wu J, Gustafsson KL, Sjogren K et al (2018) Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice. J Endocrinol 237(2):113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garcia-Ibarbia C, Perez-Nunez MI, Olmos JM, Valero C, Perez-Aguilar MD, Hernandez JL et al (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 24(9):2449–2454

    Article  CAS  PubMed  Google Scholar 

  48. Alam I, Alkhouli M, Gerard-O’Riley RL, Wright WB, Acton D, Gray AK et al (2016) Osteoblast-specific overexpression of human WNT16 increases both cortical and trabecular bone mass and structure in mice. Endocrinology 157(2):722–736

    Article  CAS  PubMed  Google Scholar 

  49. Maes C, Goossens S, Bartunkova S, Drogat B, Coenegrachts L, Stockmans I et al (2010) Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. Embo J 29(2):424–441

    Article  CAS  PubMed  Google Scholar 

  50. Tonna S, Takyar FM, Vrahnas C, Crimeen-Irwin B, Ho PW, Poulton IJ et al (2014) EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB J 28(10):4482–4496

    Article  CAS  PubMed  Google Scholar 

  51. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM et al (2008) In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol 27(1):34–41

    Article  CAS  PubMed  Google Scholar 

  52. Blank M, Sims NA (2019) Cellular processes by which osteoblasts and osteocytes control bone mineral deposition and maturation revealed by stage-specific EphrinB2 knockdown. Curr Osteoporos Rep 17(5):270–280

    Article  PubMed  Google Scholar 

  53. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49(4):701–705

    Article  CAS  PubMed  Google Scholar 

  54. Vrahnas C, Buenzli PR, Pearson TA, Pennypacker BL, Tobin MJ, Bambery KR et al (2018) Differing effects of parathyroid hormone, alendronate, and odanacatib on bone formation and on the mineralization process in intracortical and endocortical bone of ovariectomized rabbits. Calcif Tissue Int 103(6):625–637

    Article  CAS  PubMed  Google Scholar 

  55. Vrahnas C, Pearson TA, Brunt AR, Forwood MR, Bambery KR, Tobin MJ et al (2016) Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Bone 93:146–154

    Article  CAS  PubMed  Google Scholar 

  56. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43(2–3):535–537

    Article  CAS  PubMed  Google Scholar 

  57. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61(6):480–486

    Article  CAS  PubMed  Google Scholar 

  58. Vrahnas C, Blank M, Dite TA, Tatarczuch L, Ansari N, Crimeen-Irwin B et al (2019) Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun 10(1):3436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lespessailles E, Cortet B, Legrand E, Guggenbuhl P, Roux C (2017) Low-trauma fractures without osteoporosis. Osteoporos Int 28(6):1771–1778

    Article  CAS  PubMed  Google Scholar 

  60. Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K (2014) Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep 12(3):338–350

    Article  PubMed  Google Scholar 

  61. McCreadie BR, Morris MD, Chen TC, Sudhaker Rao D, Finney WF, Widjaja E et al (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39(6):1190–1195

    Article  CAS  PubMed  Google Scholar 

  62. Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E et al (2017) Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci USA 114(33):8722–8727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Farlay D, Rizzo S, Ste-Marie LG, Michou L, Morin SN, Qiu S et al (2021) Duration-dependent increase of human bone matrix mineralization in long-term bisphosphonate users with atypical femur fracture. J Bone Miner Res 36:1031–1041

    Article  PubMed  Google Scholar 

  64. Zhou W, van Rooij JGJ, Ebeling PR, Verkerk A, Zillikens MC (2021) The genetics of atypical femur fractures—a systematic review. Curr Osteoporos Rep 19(2):123–130

    Article  PubMed  PubMed Central  Google Scholar 

  65. Usami Y, Gunawardena AT, Francois NB, Otsuru S, Takano H, Hirose K et al (2019) Possible contribution of Wnt-responsive chondroprogenitors to the postnatal murine growth plate. J Bone Miner Res 34(5):964–974

    Article  CAS  PubMed  Google Scholar 

  66. Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol 39(4):319–323

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H et al (2012) In vivo fate mapping identifies mesenchymal progenitor cells. STEM CELLS 30(2):187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24(2):274–282

    Article  PubMed  Google Scholar 

  69. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N et al (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9(1):773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Salazar VS, Capelo LP, Cantu C, Zimmerli D, Gosalia N, Pregizer S et al (2019) Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. Elife 8:e42386

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y (2000) Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA 97(20):10905–10910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S et al (2009) Bone density, strength, and formation in adult cathepsin K(−/−) mice. Bone 44(2):199–207

    Article  CAS  PubMed  Google Scholar 

  73. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869

    Article  PubMed  Google Scholar 

  74. Sims NA, Jenkins BJ, Nakamura A, Quinn JM, Li R, Gillespie MT et al (2005) Interleukin-11 receptor signaling is required for normal bone remodeling. J Bone Miner Res 20(7):1093–1102

    Article  CAS  PubMed  Google Scholar 

  75. Walker EC, McGregor NE, Poulton IJ, Pompolo S, Allan EH, Quinn JM et al (2008) Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 23(12):2025–2032

    Article  CAS  PubMed  Google Scholar 

  76. Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ et al (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120(2):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ et al (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson RW, Brennan HJ, Vrahnas C, Poulton IJ, McGregor NE, Standal T et al (2014) The primary function of gp130 signaling in osteoblasts is to maintain bone formation and strength, rather than promote osteoclast formation. J Bone Miner Res 29(6):1492–1505

    Article  CAS  PubMed  Google Scholar 

  79. Johnson RW, White JD, Walker EC, Martin TJ, Sims NA (2014) Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone 64C:47–56

    Article  CAS  Google Scholar 

  80. Evans SF, Parent JB, Lasko CE, Zhen X, Knothe UR, Lemaire T et al (2013) Periosteum, bone’s “smart” bounding membrane, exhibits direction-dependent permeability. J Bone Miner Res 28(3):608–617

    Article  PubMed  Google Scholar 

  81. Corry KA, Zhou H, Brustovetsky T, Himes ER, Bivi N, Horn MR et al (2019) Stat3 in osteocytes mediates osteogenic response to loading. Bone Rep 11:100218

    Article  PubMed  PubMed Central  Google Scholar 

  82. Grimston SK, Brodt MD, Silva MJ, Civitelli R (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res 23(6):879–886

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bivi N, Nelson MT, Faillace ME, Li J, Miller LM, Plotkin LI (2012) Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif Tissue Int 91(3):215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E et al (2011) Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22(8):1240–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hammond MA, Berman AG, Pacheco-Costa R, Davis HM, Plotkin LI, Wallace JM (2016) Removing or truncating connexin 43 in murine osteocytes alters cortical geometry, nanoscale morphology, and tissue mechanics in the tibia. Bone 88:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H et al (2015) Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res 30(3):436–448

    Article  PubMed  CAS  Google Scholar 

  87. Pacheco-Costa R, Davis HM, Sorenson C, Hon MC, Hassan I, Reginato RD et al (2015) Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 81:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y et al (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519(7542):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nusse R (2015) Cell signalling: disarming Wnt. Nature 519(7542):163–164

    Article  CAS  PubMed  Google Scholar 

  90. Moverare-Skrtic S, Nilsson KH, Henning P, Funck-Brentano T, Nethander M, Rivadeneira F et al (2019) Osteoblast-derived NOTUM reduces cortical bone mass in mice and the NOTUM locus is associated with bone mineral density in humans. FASEB J 33(10):11163–11179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brommage R, Liu J, Vogel P, Mseeh F, Thompson AY, Potter DG et al (2019) NOTUM inhibition increases endocortical bone formation and bone strength. Bone Res 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McKenzie J, Smith C, Karuppaiah K, Langberg J, Silva MJ, Ornitz DM (2019) Osteocyte death and bone overgrowth in mice lacking fibroblast growth factor receptors 1 and 2 in mature osteoblasts and osteocytes. J Bone Miner Res 34(9):1660–1675

    Article  CAS  PubMed  Google Scholar 

  93. Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S et al (2006) Camurati–Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet 43(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M et al (2000) Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati–Engelmann disease. Nat Genet 26(3):273–275

    Article  CAS  PubMed  Google Scholar 

  95. Janssens K, ten Dijke P, Ralston SH, Bergmann C, Van Hul W (2003) Transforming growth factor-β1 mutations in Camurati–Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein*. J Biol Chem 278(9):7718–7724

    Article  CAS  PubMed  Google Scholar 

  96. Parvari R, Hershkovitz E, Grossman N, Gorodischer R, Loeys B, Zecic A et al (2002) Mutation of TBCE causes hypoparathyroidism–retardation–dysmorphism and autosomal recessive Kenny–Caffey syndrome. Nat Genet 32(3):448–452

    Article  CAS  PubMed  Google Scholar 

  97. Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S et al (2013) FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet 92(6):990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Isojima T, Doi K, Mitsui J, Oda Y, Tokuhiro E, Yasoda A et al (2014) A recurrent de novo FAM111A mutation causes Kenny–Caffey syndrome type 2. J Bone Miner Res 29(4):992–998

    Article  CAS  PubMed  Google Scholar 

  99. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9(9):522–536

    Article  CAS  PubMed  Google Scholar 

  100. Faden MA, Krakow D, Ezgu F, Rimoin DL, Lachman RS (2009) The Erlenmeyer flask bone deformity in the skeletal dysplasias. Am J Med Genet A 149A(6):1334–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stein M, Barnea-Zohar M, Shalev M, Arman E, Brenner O, Winograd-Katz S et al (2020) Massive osteopetrosis caused by non-functional osteoclasts in R51Q SNX10 mutant mice. Bone 136:115360

    Article  CAS  PubMed  Google Scholar 

  102. Kiper POS, Saito H, Gori F, Unger S, Hesse E, Yamana K et al (2016) Cortical-bone fragility-insights from sFRP4 deficiency in Pyle’s disease. N Engl J Med 374(26):2553–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haraguchi R, Kitazawa R, Mori K, Tachibana R, Kiyonari H, Imai Y et al (2016) sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss. Sci Rep 6(1):25198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wergedal JE, Kesavan C, Brommage R, Das S, Mohan S (2015) Role of WNT16 in the regulation of periosteal bone formation in female mice. Endocrinology 156(3):1023–1032

    Article  CAS  PubMed  Google Scholar 

  105. Chen K, Ng PY, Chen R, Hu D, Berry S, Baron R et al (2019) Sfrp4 repression of the Ror2/Jnk cascade in osteoclasts protects cortical bone from excessive endosteal resorption. Proc Natl Acad Sci USA 116(28):14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang Q, Alen M, Lyytikainen A, Xu L, Tylavsky FA, Kujala UM et al (2010) Familial resemblance and diversity in bone mass and strength in the population are established during the first year of postnatal life. J Bone Miner Res 25(7):1512–1520

    Article  PubMed  Google Scholar 

  107. Iuliano-Burns S, Hopper J, Seeman E (2009) The age of puberty determines sexual dimorphism in bone structure: a male/female co-twin control study. J Clin Endocrinol Metab 94(5):1638–1643

    Article  CAS  PubMed  Google Scholar 

  108. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R et al (2017) Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 97(1):135–187

    Article  PubMed  Google Scholar 

  109. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954

    Article  PubMed  Google Scholar 

  110. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21(1):124–131

    Article  PubMed  Google Scholar 

  111. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L et al (2014) Sex steroid actions in male bone. Endocr Rev 35(6):906–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sontag W (1986) Quantitative measurements of periosteal and cortical-endosteal bone formation and resorption in the midshaft of male rat femur. Bone 7(1):63–70

    Article  CAS  PubMed  Google Scholar 

  113. Sontag W (1986) Quantitative measurement of periosteal and cortical-endosteal bone formation and resorption in the midshaft of female rat femur. Bone 7(1):55–62

    Article  CAS  PubMed  Google Scholar 

  114. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22(8):1197–1207

    Article  PubMed  Google Scholar 

  115. Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M et al (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30(1):18–25

    Article  CAS  PubMed  Google Scholar 

  116. Sims NA, Clement-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M et al (2003) A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest 111(9):1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV et al (2006) Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 21(4):576–585

    Article  CAS  PubMed  Google Scholar 

  118. Almeida M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E et al (2013) Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 123(1):394–404

    Article  CAS  PubMed  Google Scholar 

  119. Liu Z, Mohan S, Yakar S (2016) Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies. Growth Horm IGF Res 27:7–17

    Article  PubMed  CAS  Google Scholar 

  120. Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R et al (2000) Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106(9):1095–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Singhal V, Goh BC, Bouxsein ML, Faugere MC, DiGirolamo DJ (2013) Osteoblast-restricted disruption of the growth hormone receptor in mice results in sexually dimorphic skeletal phenotypes. Bone Res 1(1):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736

    Article  PubMed  Google Scholar 

  123. Feik SA, Thomas CD, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191(Pt 3):407–416

    Article  PubMed  PubMed Central  Google Scholar 

  124. Thomas CD, Feik SA, Clement JG (2005) Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences. J Anat 206(2):115–125

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sims NA, Martin TJ (2020) Chapter 10—coupling of bone formation and resorption. In: Bilezikian JP, Martin TJ, Clemens TL, Rosen CJ (eds) Principles of bone biology, 4th edn. Academic Press, pp 219–243

    Chapter  Google Scholar 

  126. Piemontese M, Almeida M, Robling AG, Kim HN, Xiong J, Thostenson JD et al (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2(17):e93771

    Article  PubMed Central  Google Scholar 

  127. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40(4):957–965

    Article  PubMed  Google Scholar 

  128. Jilka RL, O’Brien CA, Roberson PK, Bonewald LF, Weinstein RS, Manolagas SC (2014) Dysapoptosis of osteoblasts and osteocytes increases cancellous bone formation but exaggerates cortical porosity with age. J Bone Miner Res 29(1):103–117

    Article  CAS  PubMed  Google Scholar 

  129. Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA et al (2013) Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 28(8):1811–1820

    Article  CAS  PubMed  Google Scholar 

  130. Metzger CE, Swallow EA, Allen MR (2020) Elevations in cortical porosity occur prior to significant rise in serum parathyroid hormone in young female mice with adenine-induced CKD. Calcif Tissue Int 106(4):392–400

    Article  CAS  PubMed  Google Scholar 

  131. Martin TJ, Sims NA (2015) RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Disord 16(2):131–139

    Article  CAS  PubMed  Google Scholar 

  132. Chia LY, Walsh NC, Martin TJ, Sims NA (2015) Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone 72:34–42

    Article  CAS  PubMed  Google Scholar 

  133. McGregor NE, Murat M, Elango J, Poulton IJ, Walker EC, Crimeen-Irwin B et al (2019) IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem 294(19):7850–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dellinger MT, Garg N, Olsen BR (2014) Viewpoints on vessels and vanishing bones in Gorham–Stout disease. Bone 63:47–52

    Article  PubMed  Google Scholar 

  135. Hominick D, Silva A, Khurana N, Liu Y, Dechow PC, Feng JQ et al (2018) VEGF-C promotes the development of lymphatics in bone and bone loss. Elife 7:e34323

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lanske B, Divieti P, Kovacs CS, Pirro A, Landis WJ, Krane SM et al (1998) The parathyroid hormone (PTH)/PTH-related peptide receptor mediates actions of both ligands in murine bone. Endocrinology 139(12):5194–5204

    Article  CAS  PubMed  Google Scholar 

  137. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM et al (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8(3):277–289

    Article  CAS  PubMed  Google Scholar 

  138. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126(6):1611–1623

    Article  CAS  PubMed  Google Scholar 

  139. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M et al (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14(10):1654–1663

    Article  CAS  PubMed  Google Scholar 

  140. Nampoothiri S, Fernandez-Rebollo E, Yesodharan D, Gardella TJ, Rush ET, Langman CB et al (2016) Jansen metaphyseal chondrodysplasia due to heterozygous H223R-PTH1R mutations with or without overt hypercalcemia. J Clin Endocrinol Metab 101(11):4283–4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Emma C. Walker for assistance in preparing the figures and tables for this manuscript.

Funding

Tsuyoshi Isojima was supported by Travel Grants from Mochida Memorial Foundation for Medical and Pharmacological Research and The Foundation for Growth Science, Japan. Natalie Sims is supported by an NHMRC Senior Research Fellowship. St. Vincent’s Institute acknowledges the support of the Victorian State Government’s Operational Infrastructure Support program.

Author information

Authors and Affiliations

Authors

Contributions

NAS conceived of the article, TI performed the literature search, both NAS and TI drafted sections of the review, and both critically revised the work; both authors approve of the final submission.

Corresponding author

Correspondence to Natalie A. Sims.

Ethics declarations

Conflict of interest

The author(s) declare(s) that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isojima, T., Sims, N.A. Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell. Mol. Life Sci. 78, 5755–5773 (2021). https://doi.org/10.1007/s00018-021-03884-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03884-w

Keywords

Navigation