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Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmit-
ter in vertebrates. In this review, we discuss the major and diverse roles  GABAA receptors play in the regulation of neuronal 
communication and the functioning of the brain.  GABAA receptors have complex electrophysiological properties that enable 
them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by 
membrane voltage, phosphorylation and several ions.  GABAA receptors are pentameric and are assembled from a diverse 
set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and 
electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure 
and molecular activity between subtypes. Therefore, the diversity of  GABAA receptors widens the neuronal repertoire of 
responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.

Keywords Synaptic receptor · GABAA subtypes · Neurotransmitter · Neuronal inhibition · Phasic currents · Tonic activity

Introduction

γ-Aminobutyric acid (GABA) is one of the main neurotrans-
mitters in virtually all Metazoans. It is the most widely dis-
tributed inhibitory neurotransmitter in the central nervous 
system of mature vertebrates, being present in around 30% 
of the synapses [1, 2].

GABA-mediated signals can be transduced in receiving 
cells through metabotropic or ionotropic receptors located at 
the plasma membrane.  GABAB receptors are heterodimeric 
metabotropic receptors coupled to potassium and calcium 

channels through G proteins. On the other hand,  GABAA 
receptors are GABAergic pentameric chloride channels [3], 
i.e. ionotropic GABA receptors, belonging to the cys-loop 
family of ion channels [4]. Certain ionotropic GABA recep-
tors were initially termed  GABAC receptors [5], but they are 
now classified as a subset of  GABAA receptors [6].

GABAA receptors are found in all major taxa of bilateral 
metazoans [7] and are among the most abundant neurotrans-
mitter receptors [8]. They are mainly found in neurons in 
synaptic, perisynaptic, and extrasynaptic locations. They can 
also be found in non-neuronal cells as well as outside of the 
nervous system.

The monomers constituting  GABAA pentameric receptors 
are drawn out of a large set of different subunits. Conse-
quently,  GABAA receptors can be made of different combi-
nations of subunits and are subdivided into subtypes: each 
subtype corresponds to a combination of subunits. Subtypes 
can differ in their electrophysiology and their pharmacology. 
The total number of functional subtypes existing in vivo may 
reach several hundreds [9], although most receptors belong 
to one or two dozens of major subtypes [10].

The conductance and current time-course of GABAergic 
receptor-channels depend on their subunits composition, 
the ionic conditions of their environment and the patterns 
of GABA exposure they face. In particular, the differential 
regulation, abundance and localization of  GABAA receptor 
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subtypes enable a very precise modulation and a great diver-
sity of responses to GABA signals across the brain and the 
organism, facilitating the numerous biological processes in 
which  GABAA receptors are involved.

Despite the complexity and biological significance of 
 GABAA receptors, recent reviews on their electrophysiol-
ogy are missing. In this review, we summarize the current 
knowledge on the electrophysiology of the different  GABAA 
receptor subtypes and show how their properties explain the 
role they play in cellular and cerebral activity. We mainly 
focus on mammals and on neuronal  GABAA receptors. 
Related subjects such as  GABAA receptor pharmacology or 
pathology will not be covered in this review; other reviews 
have already been published about pharmacology [11–20], 
the regulation of subunits gene expression [21–23], subu-
nit intracellular trafficking [24, 25], non-neuronal  GABAA 
receptors [26–29], and pathology [30–32].

Diversity and structure of  GABAA receptors

GABAA receptor subunits diversity

Mammals have 19 genes coding for a  GABAA receptor subu-
nit, classified in classes (α, β, γ, ρ, θ, ε, π and δ) and iso-
forms (α1–6, β1–3, γ1–3 and ρ1–3) [33, 34]. The diversity 
of subunits is further increased by alternative splicing, to 
which 9 out of 19 subunits are submitted [34, 35]. Alterna-
tive splicing enables the β2, γ2, γ3 and ρ1 subunit genes 
to produce at least two mature proteins, but differences in 
receptor activity depending on alternative splicing have been 
reported only between the γ2L and γ2S isoforms of the γ2 
subunit; the main function of alternative splicing is believed 
to be the regulation of subunit expression [34].

Hundreds of millions of years ago, duplications of an 
ancestral gene led to the emergence of the different classes 
of subunits, and later to the different isoforms of a same 
class. The amino acid identity rate between isoforms of the 
same class ranges between 70 and 80%, whereas it typically 
lies between 30 and 40% for subunits of different classes 
[36].

Most subunits have remained very stable in the last tens 
of millions of years of vertebrate evolution. For example, the 
amino acid identity rate between mouse and human ortholog 
subunits is above 90% (except ρ3, with 84% identity). The 
conservation is not only structural but also functional: crus-
tacean β subunits have been shown to functionally replace 
human β subunits in chimeric receptors [7, 37]. Likewise, 
deletion of a single  GABAA receptor subunit often results 
only in a mild pathology or no phenotype at all [38–42], 
showing that different subunits can substitute each other. 
These facts highlight the strong selective pressures applied 

on  GABAA receptors, and suggest it has a substantial bio-
logical importance.

Subunits assemble into receptors whose structure 
is finely regulated

Mature subunits are integral plasma membrane proteins. 
Human subunits are 420–632 amino acid long and weigh 
between 52 and 59 kDa [34, 36]. They contain an extracel-
lular N-terminal segment of 220–250 residues, which can 
be glycosylated; 4 transmembrane domains termed M1, M2, 
M3 and M4; and a short extracellular C-terminal segment 
(Fig. 1a).

A functional receptor contains five subunits (Fig. 1a), 
assembled in a circle around a chloride-permeable pore 
delineated by the M2 transmembrane domain of all five 
subunits [8]. Each monomer is thus in contact with two other 
subunits, respectively at its “principle”, or + , and “comple-
mentary”, or −, faces.

The study of structure–function relationships of  GABAA 
receptors has long been hindered by the substantial diversity 
of conformations, making it difficult to stabilize a receptor 
population in a single state [43], and cryo-EM structures of 
 GABAA receptors were only recently resolved (reviewed in 
[44]). GABA-binding sites are located at interfaces between 
subunits on the surface of the extracellular part of the recep-
tor. GABA binding induces a conformation change, typically 
when all binding sites are occupied, through a concerted 
rotation of the extracellular domains of the five mono-
mers [45]. This rotation is translated to the transmembrane 
domains and results in variations of the opening of the cen-
tral pore (Fig. 1b). Based on models of  GABAA receptor 
structure, Rossokhin predicted that the diameter of the chan-
nel pore is mainly controlled by residues—2′, 9′ and 20′ of 
the M2 transmembrane domain [46]. The ring formed by 
the 9′ M2 residues of the five subunits is termed activation 
gate. In the main closed conformation, the diameter of the 
ring is only 2.5–3.4 Å. GABA-induced conformation change 
prompts the side chains of the activation ring residues to 
shift away from the central pore, whose diameter increases 
up to 3.4–7.6 Å, allowing ions to flow through the channel.

The most frequent subunit composition of  GABAA recep-
tors is 2 α, 2 β and 1 γ subunit [47, 48]. In this case, the 2 
α and 2 β subunits in the receptor are most often, but not 
always, of the same isoform [48–53] and the receptor carries 
two GABA binding sites [54] located at the β+/α− subu-
nit interfaces [44]. However, other stoichiometries can be 
observed [55]: ε, π and δ subunits can replace a γ subunit, 
and a θ subunit can replace a β subunit [33]. In addition, 
binary receptors (receptors containing two different classes 
of subunits instead of three, such as the αβ subtypes) are able 
to assemble in vitro. They were also described in vivo, but 
the evidence of their existence often comes from indirect 
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methods [56] or study of γ2 or δ deficient mice [57, 58]: it 
is therefore possible that they are artefactual or accidental.

ρ subunits usually assemble in homopentamers or het-
eropentamers [59, 60], with five GABA binding sites per 
receptor [54], i.e. one at each subunit interface. However, in 
rare cases, ρ subunits assemble with α1 and/or γ2 subunits 
[61, 62].

GABAA receptors are classified into hundreds 
of subtypes

Due to the substantial subunit diversity, there are numerous 
subtypes of the  GABAA receptor, characterized by the com-
bination of subunits they contain (e.g. α1β2γ3) [6].

GABAA receptors are expressed in numerous cell types, 
most notably in neurons. The expression patterns of the dif-
ferent subunits determine which subtypes are assembled, as 
well as their cellular and subcellular location and their abun-
dance. Numerous cells coexpress multiple  GABAA subunits 
isoforms [48–53]. Consequently, a single cell can express 
several  GABAA receptor subtypes [56, 63, 64].

The most abundant subtype in the mammalian nerv-
ous system is α1β2γ2, possibly accounting for 60% of 
all  GABAA receptors [65]. The other major subtypes are 

α2β3γ2 and α3β3γ2 [66], while α4–6βγ2, α6β2–3δ, α4β2–3δ 
and ρ1–3 are less abundant. Minor subtypes whose physi-
ological existence in vivo is deemed likely include α1βδ, 
α2β1γ1, αβε, αβπ, αβθ, α1α6βγ2, α1α6βδ and αβγ3 [10, 
66]. Though it is unlikely that all possible subunit combina-
tions exist and assemble into functional receptors, the large 
number of possible combinations of subunits expressed by 
a given cell explains that the number of existing functional 
subtypes is estimated to be as high as 500 [9]. Most of these 
subtypes are expected be very rare compared to the most 
abundant ones [66] and to be limited to a specific tissue, 
brain area or developmental phase, but they may still exert 
non-neglectable effects on brain function because of the high 
abundance of  GABAA receptors compared to most neuronal 
receptors [9] and because rare subtypes can be selectively 
enriched in certain neurons or synapses [12].

GABAA receptor ion conductance selectivity

GABAA receptors are ion channels. Different ions can flow 
down their electrochemical gradient through the pore from 
one side of the membrane to the other, generating currents. 
The intensity, i.e. the net charge transfer per time unit, of a 

Fig. 1  GABAA receptor struc-
ture and gating. a Structure of 
an isolated  GABAA receptor 
subunit and of a mature recep-
tor. Five subunits, potentially 
belonging to different classes 
or isoforms, assemble into a 
channel permeable to chloride 
and bicarbonate ions. Ions flow 
through  GABAA receptors down 
their electrochemical gradient. 
b Control of  GABAA receptor 
conductance by the receptor 
conformation. The central pore 
can be either closed or open as 
a result of agonist fixation on 
the receptor. In this example, 
the receptor is viewed from the 
extracellular space and the sub-
units are ordered as in the most 
abundant subtypes, namely αβγ. 
The presence of two GABA 
binding sites corresponds to 
ternary receptors (composed 
of subunits from three different 
classes)
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transmembrane ion current is the product of the ionic elec-
trochemical gradient by the number and conductance of 
open channels.

Nopen is the number of open channels at the considered 
membrane; it depends on numerous parameters, notably 
GABA concentration. For each ion, ΔEion designates the 
cognate transmembrane electrochemical gradient and Gion 
the conductance of a single open  GABAA channel.

The conductance of  GABAA receptors varies widely for 
different ions: we will study in this paragraph how this selec-
tivity shapes the currents mediated by  GABAA receptors.

GABAA receptor chloride conductance

In most circumstances in the adult brain,  K+ coupled sec-
ondary active  Cl− transporters [67] generate an outwardly 
directed chloride electrochemical gradient at the neuron 
plasma membrane [68]. Consequently, GABA-induced 
opening of  GABAA receptors induces a chloride influx 
(Fig. 1a), thus a hyperpolarization of the plasma membrane 
and an inhibition of action potential generation. This is the 
most frequent mechanism of inhibitory neurotransmission, 
which occurs in a large proportion of brain synapses.

However, during development [69],  GABAA receptors 
mediate chloride efflux due to an inverted electrochemical 
gradient [70], and thus often activate the neuron [70–73]. 
Such a mechanism has also been observed in slices prepared 
from adult brains [74], but these findings have been ques-
tioned because neurons in slices seem to have a higher intra-
cellular chloride concentration than in vivo. This artifact 
may produce a non-physiological inversion of the chloride 
electrochemical gradient [75].

Membrane resistivity (ρ) is equal to the transmembrane 
potential (ΔE) divided by the intensity (I) of the current 
passing through a unit of membrane surface: ρ = ΔE × S/I 
(where S is the area of the membrane domain). The lower 
the resistivity is, the more intense is the transmembrane 
current generated by a given voltage gradient. The open-
ing of channels, regardless if they mediate depolarizing or 
hyperpolarizing currents at the resting membrane potential, 
decreases membrane resistivity and promotes the dissipa-
tion of action potentials, a phenomenon termed shunting 
inhibition. Indeed, it enables ions to respond to the electro-
chemical gradient created by the action potential with local 
transmembrane flows instead of the expected longitudinal 
flows that are necessary for propagating the action potential 
to other membrane locations. Depolarizing currents medi-
ated by  GABAA receptors can interfere with action poten-
tials propagation through shunting [76] or inactivation 

(1)
dq

dt
= I = Nopen

∑

ions

ΔEionGion.

of voltage-dependent  Na+ channels [77], and can thus be 
inhibitory instead of excitatory [78, 79]. Conversely, hyper-
polarizations mediated by  GABAA receptors may result in 
neuronal activation through rebound spikes [80, 81].

The  GABAA receptor-mediated depolarizations observed 
during development can induce an influx of calcium through 
voltage-dependent channels [80, 82], favoring neurite out-
growth [83], synaptogenesis [84], neuron migration [85], 
and neuron survival [86].

Permeability of  GABAA receptors to ions other 
than chloride

Although chloride ions account for most of  GABAA receptor 
conductance in vivo [3],  GABAA receptors are also perme-
able to bicarbonate, formate, propionate, acetate, cyanide 
and halides [3, 4, 87]. Differences in  GABAA receptor con-
ductance and permeability to these anions are caused by 
a selectivity filter relying on recognition sites [3] and the 
limited pore diameter.

Because of  CO2 production and conversion in 
 HCO3

− inside the cell, bicarbonate flows mediated by 
 GABAA receptors are outwardly directed (Fig. 1a), and thus 
depolarize the cell membrane. In standard physiological con-
ditions, the ratio of  HCO3

− vs  Cl− permeability of  GABAA 
receptors is comprised between 0.2 and 0.3 [88], i.e. chloride 
currents have a greater amplitude than bicarbonate currents 
and the net effect is hyperpolarization. However, prolonged 
GABA exposure can occasionally turn hyperpolarizing cur-
rents into depolarizing ones [89], notably during epileptic 
seizures or in hypothalamic hamartoma neurons [90]. This 
phenomenon probably indicates a dissipation of the chloride 
gradient [91, 92] when the channel remains open for long 
periods. Under these conditions, the bicarbonate efflux may 
become larger than the chloride influx and  GABAA receptors 
may transiently become excitatory [72].

Intrinsic electrophysiological parameters 
of the different  GABAA receptor subtypes

The impact of  GABAA receptors on cellular electrophysiol-
ogy mostly depends on the time-course and amplitude of 
the chloride currents evoked by exposure to an agonist such 
as GABA. Typically, the current time-course following the 
introduction of an agonist in the receptor’s environment con-
sists of an initial current peak, followed by a decrease in 
amplitude (Fig. 2a). This decrease ends with a stabilization 
at lower amplitude or a complete closure of the receptors, 
depending on agonist concentration, duration of exposure 
to the agonist, and on the receptor subtype. The effects of 
 GABAA receptors on neuronal activity are determined pri-
marily by the charge transfer (the product of the current 
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intensity with its duration) [93], but also by its synchroniza-
tion with other electrical inputs, hence the importance of the 
shape of the current time-course [94, 95]. The current inten-
sity at a certain time point is the product of the conductance 
of a single channel by the chloride electrochemical gradient 
and the number of open receptors (Eq. 1), which depends 
on kinetic parameters governing channel gating as well as 
receptor and agonist concentrations. Indeed, the effects of 
an agonist are dose-dependent: for example, the proportion 
of open receptors as a function of the GABA concentra-
tion follows an allosteric pattern (Fig. 2b), characterized by 
a concentration threshold at which the proportion of open 
receptors sharply increases.

In most physiological situations, the cell response to a 
GABA input is driven by the joint action of dozens or hun-
dreds or receptors that perceive the signal. The macroscopic 
scale (receptor populations) therefore appears more suited 
than the microscopic scale (single channels) to understand 
the biological consequences of  GABAA receptor electro-
physiology and is easier to study, which explains that most 
available information on  GABAA receptor electrophysiol-
ogy covers macroscopic features. Nevertheless, macroscopic 
properties always emerge from the integration of single 
channel activity characteristics.

The electric activity of  GABAA receptors can be under-
stood with a series of parameters that describe and explain 
their responses to the various patterns of agonist exposure. 
In this section, we will describe the macroscopic electro-
physiological parameters that determine the activity of pop-
ulations of  GABAA receptors in response to GABA, and 
we will highlight the differences between subtypes in that 
regard.

Electrophysiological parameters can be subdivided into 
kinetic parameters (activation time, desensitization time, 
deactivation time…) and so-called functional parameters 
(conductance, EC50, Hill coefficient…), which describe 

respectively the current time-course and its dependence on 
agonist concentration. As will be exemplified below, some 
of these parameters are not independent.

Tools for the study of  GABAA receptor 
electrophysiology

Before detailing the electrophysiological parameters of 
 GABAA receptors, we will discuss two conceptual tools 
that were instrumental in the discovery and understanding 
of these parameters: modeling and the use of channel modu-
lating drugs.

Modeling

Numerous models have been used to interpret the growing 
amount of data on  GABAA receptor electrophysiology, pre-
dict receptor activity, and understand the microscopic origin 
of macroscopic parameters and large-scale behavior of chan-
nel populations.

Most of the models used are Markovian. Markovian mod-
els are discrete (time is discontinuous) and memory-free: the 
next step of evolution of a model depends only on its present 
state, and not on past states. Markovian models describe the 
activity of a channel with a series of states, each of them 
having its own conductance and being supposed to corre-
spond to a specific receptor conformation. Transition rates 
can be a function of environmental parameters such as trans-
membrane potential or agonist concentrations. Transition 
rates indicate the kinetics of channel activity as well as states 
occupancy at equilibrium. For example, in the model showed 
in Fig. 3a, if p is the proportion of receptors in the open 
state at a given time point, a proportion pkc of the receptor 
population transitions to the closed state before the next time 
point, while a proportion (1 − p)ko of receptor transitions to 

a b

Fig. 2  General characteristics of  GABAA receptor-mediated currents. a Typical  GABAA receptor current time-course and kinetic electrophysi-
ological parameters. b Dependence of  GABAA receptor-mediated current intensity on agonist concentration for different Hill coefficients
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the open state. At equilibrium, the net flux is null, meaning 
that pkc = (1 − p)ko, and therefore p = ko/(kc + ko).

Certain models specifically describe systems at equilib-
rium. This simplification allows the replacement of transi-
tion rates by equilibrium constants. In our example model, 
the equilibrium constant K would follow the equation 
K = peq/(1 − peq) = ko/kc (Fig. 3b).

The most classic model used to describe  GABAA recep-
tor activity is the Monod–Wyman–Changeux two-state 
concerted transition model (MWC) [96]. This equilibrium 
model takes into account one open and one closed confor-
mations, both of which can be bound to zero, one or two 
GABA molecules (Fig. 3c). The MWC model requires only 
four parameters to entirely describe the receptor response 
to an agonist, which explains its attractiveness. It accurately 
describes  GABAA activity at the macroscopic scale, and its 
activation by numerous agonists and combination of agonists 
[47, 96–98]. This model has confirmed the presence of two 
GABA binding sites on ternary receptors [97].

Other models (Table 1) complexify the MWC model to 
fit more accurately to certain experimental data, such as the 
flip model, which includes a transient pre-sensitized closed 

conformation with high agonist affinity [96, 99]. More com-
plex models [100–104] consider a greater number of states. 
Although generally more accurate than simpler models, 
complex models often lack predictive value since it is dif-
ficult to accurately estimate all the parameters of the model 
[96].

Complex models usually stem from the study of single 
channels, whose complex behavior requires several states to 
be accurately described, whereas fewer states are necessary 
to describe the properties of  GABAA receptors activity at 
the synaptic or cellular scale. Despite the likely existence of 
several conformations, the two-conformations MWC models 
provide accurate predictions at a macroscopic scale. This 
indicates that the receptor conformations can be separated 
into two groups with minor electrophysiological differences 
within each group [96, 105], or that some of them are occu-
pied only transiently and are not involved in the steady-state 
circumstances that the MWC model is used to describe.

Electrophysiological parameters can be calculated as a 
function of transition rates and state occupancies in certain 
models. Modeling also helps to understand the interde-
pendence between parameters, or to calculate parameters 
inaccessible to direct experimentation. For example, Chang 
and Weiss [106] estimated that ρ-containing receptors open 
when they bind GABA in at least 3 of their 5 binding sites.

Channel modulating drugs

The activity of  GABAA receptors is modulated by subtype-
selective agonists and antagonists belonging to different 
chemical families such as benzodiazepines or barbiturates 
and including anesthetic, anxiolytic or antiepileptic drugs.

Since primary and transfected cells can often express sev-
eral subtypes simultaneously, it is necessary to distinguish 
from which subtype come the currents measured during 
electrical recordings. Subtype-selective channel modulating 
drugs facilitate in situ subtype identification [10].

For example, Lindquist and Birnir performed a patch-
clamp single-channel study of  GABAA extrasynaptic recep-
tors on dentate gyrus granule neurones and identified three 
types of electrophysiological signatures [107]. Receptors of 
the first, second and third type were potentiated respectively 
by zolpidem, flumazenil and THDOC, indicating that they 
belong respectively to α1βγ2, α4βγ2 and αβδ subtypes.

a

c

Fig. 3  Markovian models of receptor channel activity. a Simplest 
Markovian model of a receptor channel, with two unitary states: open 
(O) and closed (C). The transition rates describing channel opening 
and closure are respectively ko and kc. Both transition rates are a func-
tion of the agonist concentration [A]. b Application of the two-states 
model to steady-state situations. K is the equilibrium constant, and 
depends on agonist concentration. c MWC model. L, r and K are con-
stants depending on receptor structure and [G] is the GABA concen-
tration. The open states are O (no GABA bound), OG (one GABA) 
and  OG2 (two GABA); likewise, C, CG and CG2 are the close states

Table 1  Examples of Markovian steady-state models used for  GABAA receptor study

Model States Conditions of application

MWC Close, open (both bound to 0, 1 or 2 GABA) Macroscopic scale
Flip model Resting, resting bound to GABA, pre-sensitized bound, open bound Macroscopic scale
Resting-activated-desensitized Resting, open, desensitized (all bound to 0, 1 or 2 GABA) Desensitizing receptors
Chang and Weiss model Close (bound to 0–3 GABA), open ρ-Containing receptors
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Channel modulating drugs have also been used to study 
 GABAA receptors structure and to map subtypes expression 
in the brain. The benzodiazepine molecules [3H]Ro15-4513 
and diazepam bind respectively all γ-containing subtypes 
and α1,2,3,5βγ receptors. Hence, under competition from 
diazepam, [3H]Ro15-4513 binds only α4,6βγ subtypes. 
Using this property, Korpi et al. mapped α4,6βγ receptors 
by autoradiography of [3H]Ro15-4513 in mouse brains and 
showed that they were overexpressed in δ−/− mice [108]. 
This proved that γ subunits can partly substitute δ.

Etomidate is a general anesthetic binding  GABAA recep-
tors on their GABA binding sites and potentiating their 
response to GABA. This potentiation involves comparable 
allosteric shifts between αβδ and αβγ subtypes, showing that 
αβδ subtypes carry two GABA binding sites as had been 
previously described for αβγ subtypes [109].

Kinetic parameters

Activation time

The delay between a change in GABA concentration and 
channel response varies between receptor subtypes [110]. 
The channel opening occurs in two phases: first, agonists 
bind to the receptor; second, the receptor conformation 
changes and the central pore opens. Thus, the delay in 
 GABAA receptor opening upon GABA introduction in its 
environment depends both on GABA binding kinetics [111] 
and on the kinetics of receptor conformational change upon 
GABA fixation [111]. GABA fixation kinetics is determined 
by GABA concentration [75, 100, 105], following an allos-
teric pattern [112], and by the receptor affinity for GABA. 
At a given GABA concentration, the characteristic time of 
the GABA binding kinetics is theoretically inversely pro-
portional to the receptor affinity for GABA: this relation has 
been observed in β2γ2S-containing subtypes [75]. However, 
at saturating GABA concentrations (in the order of 10 mM 
[112]), the conformational change kinetics becomes the lim-
iting factor. This may explain why the δ subunit lowers the 
reactivity of the receptor compared to γ2 [113] despite a 
higher affinity. The activation time, i.e. the time to go from 
10 to 90% of open channels after introduction of GABA, is 
0.46 ms for α1β3γ2L at a GABA concentration of 1 mM, 
versus 2.4 ms for α1β3δ [114].

The activation times provided in Tables 2, 3 and 4 are 
calculated at saturating GABA concentration, thus should 
reflect the kinetics of conformation transition. In association 
with β3 and γ2L subunits, the rank order of α subunits in 
terms of activation time is α1 < α2 < α4 < α6 < α5 < α3, with 
α3 being three times slower than α1 [110–112, 114]. How-
ever, when associated with β1 and γ2, α2 confers an activa-
tion twice faster than α1 [100]. αβ subtypes [115], and even 
more ρ-containing subtypes [116], display an extremely slow 

activation time lasting several tens of milliseconds. Recep-
tors containing the ε subunit display slow activation in vivo 
[117]. However, this property has never been studied with 
recombinant ε-containing receptors, thus it may be conferred 
by another subunit.

The measured activation time depends on the size of the 
experimental settings. For example, macro-patches, in which 
several receptors gathered on a micrometric membrane 
domain are studied, display faster activation than whole-
cell recordings [112]. It may be due to the time required for 
GABA to diffuse to all  GABAA receptors, which is longer 
for larger experimental models, or to cytoplasmic proteins 
that may modulate  GABAA receptor kinetics in whole-cell 
studies [112].

Desensitization

Upon long exposure to GABA,  GABAA receptors lose 
their ability to open: this process is called desensitization 
(Fig. 2a). This mechanism is also observed when receptors 
are exposed to GABA transients at a high frequency and is 
then termed rundown (Fig. 4a) [118]. Desensitization pre-
vents the transmission of abnormally strong inhibitory sig-
nals during synaptic communication: if GABA is chronically 
present in the synapse rather than by interspaced bursts, as it 
is under normal conditions, postsynaptic  GABAA receptors 
will close [119].

In desensitized conformations, the M2 transmembrane 
domains are tilted and their -2′ residues obstruct the intra-
cellular end of the central pore of  GABAA channels [46]. 
The five monomers constituting the channel can transition 
between open and desensitized conformations independently 
from one another [120].

During prolonged GABA exposure, the proportion of 
open channels sometimes follows a decreasing exponential 
curve over time [75], thereby a characteristic time of desen-
sitization (td) can be calculated. In other cases, the observed 
desensitization curve can be described as the addition of 
several exponential components [112, 121, 122] (Fig. 4b). 
In this situation, a single td can be computed as the average 
of the characteristic times of each component weighted on 
the amplitude of the related current (this is the procedure fol-
lowed to calculate the td shown in Tables 2, 3 and 4). Conse-
quently, the calculated value of td depends on the duration of 
GABA exposure [111]. In long exposures, slow components 
gain in relative importance and the calculated td increases. In 
addition, td depends strongly on GABA concentration [75]: 
the curve of desensitization rate as a function of GABA con-
centration follows approximately an allosteric pattern. When 
enough data are available for calculations, the td presented in 
Tables 2, 3 and 4 are the asymptote of this curve at infinite 
GABA concentration.
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The characteristic time of desensitization is usually in the 
order of 1 s, despite important variations. αβγ receptors con-
taining the α4 subunit desensitize two to three times faster 
than those containing the α3 or α5 subunit, with α1 and 
α2 desensitizing almost as fast as α4, and α6 conferring an 
intermediary desensitization time [75, 111, 112]. However, 
when the receptor includes a δ subunit, α6 appears to confer 
faster desensitization than α1 [123]. β2 confers a slightly 
faster desensitization than β3, with β1 as an intermediate 
[124] or giving results similar to β2 [100]. Desensitization of 
γ2-containing receptors is two or three times faster than that 
of δ-containing receptors [113, 123, 125], but substantially 
slower than that of ε-containing receptors [126].

Certain subtypes do not desensitize or desensitize only 
partially. For example, homomeric ρ-containing receptors 
are almost insensitive to desensitization [5, 116, 127, 128]. 
Unlike γ-containing subtypes, receptors containing the δ 
subunit desensitize only partially [101]: α1β3δ currents 
decrease by only 11.6% upon 6 s exposure to saturating 
GABA concentration [123]. The α subunit plays a lesser 
but still notable role in determining the extent of desensiti-
zation (Table 5): γ-containing subtypes desensitize incom-
pletely only if they contain the α3 or α5 subunit [111], with 
a steady-state current in prolonged GABA exposure of up to 
30% of the peak amplitude. α1β3 receptors containing two α 
and three β subunits desensitize more extensively than recep-
tors containing three α and two β subunits [129].

Desensitization can be followed by a refractory period 
[114], during which receptors are unable to reopen. The 
length of this period is modeled as a function of several 
decreasing exponentials, indicating that  GABAA receptors 
can adopt several closed conformations [114, 130], whose 
relative proportions depend on GABA concentration [130]. 
In vivo, the fast components of the refractory period disap-
pear at low GABA concentration. In these conditions, desen-
sitization is less extensive but its effects last longer [130, 

131]. The length of the refractory period varies between sub-
types, with receptors containing α4 or α5 being the fastest 
to recover (with a characteristic time of 25 ms following a 5 
ms exposure to GABA), followed by α2 and α3 (about 100 
ms), then α1 (about 200 ms) and finally α6 (about 400 ms) 
[111]. Nonetheless, characteristic times heavily depend on 
experimental procedures and method of calculation [112].

The study of desensitization prompted the development 
of complex, non-steady-state models of  GABAA receptor 
activity since the MWC model does not describe recep-
tor desensitization and therefore applies well only to non-
desensitizing subtypes or to short time-frames of activation. 
These limitations are tackled by three-state models such as 
the resting-activated-desensitized model (Table 1) [132]. 
Other models describe the different components of desensi-
tization or refractory periods with several desensitized states 
[114, 120, 133]; the desensitization times and durations of 
refractory period components are represented by the transi-
tion rates respectively to and from these states. Using one 
of these models, Gielen et al. [120] proposed that the fast 
component of desensitization corresponds to receptors with 
two of their five monomers adopting a desensitized confor-
mation, while the slow component corresponds to receptors 
with at least three desensitized monomers.

Speed, extent and relative proportions of exponential 
components of desensitization are critical in shaping the 
time-course of the inhibitory post-synaptic current (IPSC) 
mediated by  GABAA receptors and strongly differ between 
subtypes [102, 106, 114, 134, 135]. For example, α6β3δ 
has no fast component, unlike α6β3γ2L [101, 123]. Con-
sequently, despite the similarity of the characteristic time 
of their slow component of desensitization, α6β3δ appears 
to desensitize less extensively than α6β3γ2L and is less 
sensitive to the duration of GABA exposure. As a result, 
α6β3δ transmits inhibitory signals whose intensity is 
roughly proportional to the duration of GABA exposure, 

a b

Fig. 4  Characteristics of  GABAA receptor desensitization. a Run-
down. When  GABAA receptors are exposed to frequent GABA tran-
sients, a portion of the receptor population desensitizes at each tran-
sient and does not recover before the next exposure, resulting in a 

decrease in peak amplitude. b Biphasic desensitization. The current 
decay upon desensitization can often be modeled as the sum of two 
decreasing exponential components. A global desensitization rate can 
be computed from the characteristic time (τ) of each component.
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while α6β3γ2L-mediated signals do not depend on exposure 
duration. This exemplifies that minor differences between 
subtypes at the microscopic scale can be amplified at larger 
scales. Furthermore, the time-course of IPSCs determines 
the strength and timing of neuronal inhibition, so limited 
differences in desensitization properties can have dramatic 
effects in the response of neuronal circuits to high-frequency 
inhibitory signals [101, 136].

Deactivation

GABAA receptors spontaneously release their ligands and 
close several milliseconds or tens of milliseconds after a 
drop in GABA concentration. The event of deactivation puts 
an end to the transmission of a hyperpolarizing signal dur-
ing synaptic communication, after a brief GABA exposure 
(synaptic GABA bursts usually last no longer than a few mil-
liseconds). Contrary to desensitized channels, deactivated 
channels can reopen without a refractory period.

Deactivation has been observed to be biphasic in vitro 
[100, 103, 111, 114, 122, 133] and in vivo [105, 137]; 
the relative proportions of the two components can vary 
depending on the receptor subtype. These two components 
may correspond to two conformations, one bound to two 
GABA molecules (the slow component) and the other to a 

single one (the fast component) [102], but this hypothesis 
is debated [114]. Deactivation can sometimes be triphasic 
[56], once again depending on the subtype and probably 
on recording procedures, because certain protocols do not 
enable the recording of very fast components [112].

Homomeric ρ-containing receptors deactivate quickly 
[116]. Among α-containing subtypes, those containing α4 
are the fastest to close, followed by α5 (1.5 times slower), 
α1 (2.5 times slower than α4), then α2 (5 times slower than 
α4), and finally α6 (6 times slower than α4) and α3 (about 
10 times slower than α4). The γ2 subunit confers a slower 
deactivation than δ [138, 139]. The β2 subunit confers a 
substantially faster deactivation than β3 [140].

Most studies on deactivation have been conducted on 
whole-cell or multichannel patches, which should give 
results close to what is observed in vivo at the synaptic or 
cell scale. However, deactivation is much faster in single-
channel (0.2–25 ms) than in channel cluster or whole cell 
(5–680 ms) recordings [141, 142]. This discrepancy likely 
stems from sequential closing and opening events of a single 
channel (Fig. 5), which are integrated in a single current 
time-course by whole-cell or multichannel patches record-
ings [105, 143]. It exemplifies the apparent gap between the 
complex macroscopic properties of  GABAA receptors and 
the single-channel activity they emerge from.

Fig. 5  Relationships between 
microscopic and macroscopic 
kinetics of channel opening. 
Deactivation is a macroscopic 
property resulting from the 
integration of single-channel 
currents time-courses. Its 
characteristic time (τ) is longer 
than mean channel open time 
due to possible channel reopen-
ing events and is increased by 
desensitization due to the possi-
ble reactivation of desensitized 
channels
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The deactivation time increases in proportion with the 
extent of desensitization [102, 123, 135], maybe due to a 
high GABA affinity of desensitized states [135]. GABA is 
thus retained on desensitized or pre-desensitized receptors 
for tens of milliseconds, even when all GABA has been 
cleared from the extracellular space [144]. If the receptor is 
still bound to GABA when the refractory period ends, it is 
able to reopen immediately. When numerous receptors are 
considered together, this process results in a prolongation of 
the phase in which the current decreases, which is described 
as a slower deactivation (Fig. 5). Consequently, the fast 
components of desensitization prolong  GABAA receptor 
responses to GABA and therefore synaptic communication 
while decreasing the current amplitude [102, 131].

Functional parameters

Conductance

A single  GABAA channel can display several conductance 
states, remarkably conserved between species and cell types, 
ranging around respectively 12, 20, 30 and 45 pS for the 
most frequent subtypes. The main conductance state is 30 
pS, meaning that this is the state adopted by the channel in 
most circumstances when it is open [4]. The conductance 
states may correspond to different channel conformations.

Most  GABAA receptor subtypes display very similar con-
ductance values (Tables 2, 3, 4) [145, 146]. However, the 
main conductance state of γ-containing receptors (~ 30 pS) 
[125] is higher than that of δ-containing receptors (~ 22 pS) 
[125], ρ-containing receptors (7 or 8 pS) [147, 148] and αβ 
binary subtypes (11–20 pS) [56].

GABA EC50

The curve of  GABAA receptor peak current intensity as a 
function of GABA concentration follows an allosteric pat-
tern (Fig. 2b), described by the equation of Hill:

where I is the current intensity, Imax its asymptote at infinite 
agonist concentration, [A] the agonist concentration, and h 
the Hill coefficient (see “Hill coefficient”).

EC50 is the GABA concentration at which the current 
peak reaches 50% of its maximal amplitude. The EC50 par-
tially reflects the receptor affinity for GABA: in general, the 
lower the EC50, the higher the affinity. However, the EC50 
also depends on gating parameters such as the speed or max-
imal probability of channel opening. This can be exemplified 
by a simple stochastic model with a single binding site and 
a single opening state.

(2)
I

Imax

=
[A]h

EC50h + [A]h
,

where A is an agonist that binds to a receptor site R, A + R is 
the vacant state of the receptor site, AR the occupied state, 
AR* the open state, Kon and Koff, respectively the associa-
tion and dissociation constants of the agonist, and β and α 
are respectively the opening rate and closing rate constants 
of the channel. In this model, the true affinity of the recep-
tor for its ligand is the microscopic dissociation constant 
Kd = Koff/Kon. The receptor efficacy is defined as the equi-
librium constant of the closed-open isomerization E = β/α. 
In this model, the apparent affinity EC50 verifies EC50 = Kd/
(1 + E).

The receptor efficacy is related with Pomax, the maxi-
mum fraction of receptors in the active state, by the rela-
tion Pomax = E/(1 + E) = 1 − (EC50/Kd). Pomax can only 
be estimated at saturating GABA concentration using non-
stationary noise analysis [149]. However, the presence of 
several open states can render the estimation of receptor 
efficacy very challenging. Hence, the true affinity and effi-
cacy of  GABAA receptors are often inaccessible to accurate 
measurements and the EC50 is used as a measure of the 
apparent affinity.

When certain receptors of a cluster open for the first time 
upon GABA exposure, others may be already closed, due to 
fast desensitization. It results in a smoothened shape of the 
current time-course through decreased peak amplitude and 
spreading of charge transfer over time. This phenomenon is 
stronger at high GABA concentrations, which explains why 
Pomax is often substantially inferior to 1 and EC50 is close 
to the true affinity Kd.

GABA EC50 is up to 100-fold lower than the concentra-
tion (termed BC50) at which the probability of occupancy 
of the GABA binding sites is equal to 0.5 [150], and than 
the concentration at which the half-maximal activation rate 
is reached [100, 112]. This discrepancy is explained by dif-
ferences in GABA affinity between receptor conformations 
[106] and by the influence of desensitization on EC50, as 
confirmed by the small difference between EC50 and BC50 
in the non-desensitizing ρ1 subtype [106]. It indicates that 
the EC50 is not a purely thermodynamic parameter but 
partially depends on receptor kinetics. Macroscopic param-
eters of  GABAA receptor electrophysiology are complex and 
emerge from the interconnection of the numerous properties 
of single channels.

Significant differences in GABA EC50 can be observed 
between  GABAA receptor subtypes, covering 2 orders of 
magnitude from around 0.5 µM to around 50 µM. Discrepan-
cies are also observed for the same subtype in different stud-
ies, due to differences in the cell type where the receptor was 
expressed, in the species of origin of the receptor subunits 

(3)A + R

Kon

⇌

Koff

AR

�

⇌

�

AR ∗,
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or in experimental design (Tables 2, 3, 4). It nonetheless 
appears that the α subunit plays a crucial role in determining 
the receptor’s affinity for GABA (Table 5). The rank order 
of increasing GABA EC50 is α6 < α1 ~ α2 < α4 < α5 < α3 
when these subunits are associated with β3 and γ2S [151], 
but α6 < α4 ~ α5 < α1 < α2 < α3 in association with β3 and 
γ2L [111]. The β isoform affects GABA affinity to a lim-
ited degree, with the β3 isoform conferring a one to four-
fold lower GABA EC50 than β1 and β2 (Table 6). The γ1 
subunit confers a higher EC50 than γ2 when these subunits 
are associated with α5, but in association with α3, the rela-
tionship is inverted. Several studies indicate a low EC50 
in receptors containing the γ2S or γ3 subunits compared 
with the γ2L splice variant (Table 7). Receptors containing 
the δ subunit consistently display an EC50 around 5 times 
lower than γ2-containing receptors. ρ-containing subtypes 
are around 7 times more sensitive to GABA than the most 
abundant ternary receptors [147]. Subtypes containing two 
different isoforms of the same class generally show inter-
mediate properties between the two corresponding subtypes 
containing only one of these two isoforms [125, 152–157]. 
Binary receptors have a very low GABA EC50 [146, 158], 
around 1 µM, which is as low as the most GABA sensitive 
ternary receptors. Binary α1β3 receptors containing two α 
and three β subunits have a lower GABA EC50 than α1β3 
receptors with three α and two β subunits [129].

Hill coefficient

The Hill coefficient of a  GABAA receptor depends on 
its number of GABA binding sites and on cooperativity 
between GABA binding sites, the process by which the bind-
ing of GABA to one site increases the affinity or accessibil-
ity of the other site(s) for GABA. The higher the number of 
GABA binding sites or the extent of cooperativity are, the 
higher the Hill coefficient is. For Hill coefficients higher than 
1, there is a threshold in GABA concentration where the 
opening probability of the receptor dramatically increases 
over a limited concentration span. The higher the Hill coef-
ficient, the steeper the threshold (Fig. 2b).

In experimental systems with low temporal resolution, 
fast desensitization can decrease the resolution of the cur-
rent peak, which might lead to errors in calculations of Hill 
coefficients. To the best of our knowledge, this phenom-
enon has not been tested with  GABAA receptors, but it was 
described in the glycine receptor [159] which belongs to the 
same receptor superfamily as  GABAA receptors.

Most  GABAA receptor subtypes have very similar Hill 
coefficients of around 1.5. However, binary αβ receptors 
and ε-containing receptors display low cooperativity [126, 
146, 160, 161] with Hill coefficients below 1. On the oppo-
site, ρ-containing subtypes display higher Hill coefficients 
than the most abundant ternary receptors [106, 128, 162], 

probably due to the presence of 5 GABA-binding sites 
instead of 2 [54].

Subunits interplay in the integration 
of subtype‑specific electrophysiologycal properties

 Due to the remarkable evolutionary conservation of the 
sequence of  GABAA receptor ortholog subunits, the electro-
physiological properties of a certain subtype are expected to 
be similar in different species. To our knowledge, receptors 
of the same subtype but different species have never been 
compared in the same study. Tables 2, 3 and 4 highlight 
significant differences in the main parameters of certain sub-
types between species, but important intraspecies differences 
are also observed, sometimes even when the subunits are 
expressed in the same cell line. Indeed, experimental pro-
cedures and measurement techniques can have a substantial 
influence on the results [112]: it can therefore be difficult to 
compare different subtypes. A further complication is that 
many authors did not distinguish between the splice variants 
γ2S and γ2L. Still, conclusions can be drawn by comparing 
subtypes studied in the same article with the same protocols 
or when several articles give very similar results on the same 
subtype.

The electrophysiological properties of a ternary subtype 
are mainly determined by the α subunit isoform and the class 
of its “third subunit class” (Table 5, 6, 7). Few differences 
are observed between β or γ isoforms. Some of the differ-
ences observed between β isoforms are thought to stem from 
their differential distribution and association with different 
isoforms of the α class. For example, preferential association 
of β3 with α2 and α3 instead of α1 is likely to explain the 
slower kinetics of the β3-containing subtypes as compared 
with the other β-containing subtypes [193]. Moreover, the 
electrophysiology of a subtype does not result in a straight-
forward manner from the addition of the properties con-
ferred by its subunits because of the complex interactions 
between these subunits: the properties of a subunit depend 
on its environment within the receptor.

Binary αβ receptors display low GABA EC50, con-
ductance and Hill coefficient, and activate slowly. In most 
cases, they desensitize slowly and not extensively, except 
the α1β3 subtype which desensitizes as fast and extensively 
as α1β3γ2L [114]. Despite substantial differences with ter-
nary receptors, binary receptors helped to understand the 
molecular basis of ternary receptors electrophysiology. For 
example, using αβ2 subtypes, Olander et al. [115] showed 
that differences in activation and desensitization kinetics 
between α isoforms are determined by their transmembrane 
and intracellular domains. However, this study didn’t iden-
tify the cause of variations in deactivation kinetics, since the 
different αβ2 subtypes investigated didn’t differ significantly 
in that parameter. Similarly, the extent of desensitization 
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Table 2  Main electrophysiological parameters of the different  GABAA receptor subtypes in standard ionic conditions (subunits expressed in 
Xenopus oocytes)

GABAA 
receptor 
subtype

Single-channel 
conductance (pS)

GABA EC50 (µM) Hill coefficient Characteristic time of 
desensitization td (s)

Characteristic time 
of deactivation (ms)

Activation time (ms)

α1β1γ1 1.2 [167]
α1β1γ2 30 [100] 4.5 [167]

6 [100]
1.2 [100] 0.492 [100] 

([GABA] = 1 mM)
0.6 [103] 

([GABA] = 100 
µM)

20.5 [100]
17.4 [103]

1.1 [100]
1 [103] (γ2S splice variant)

α1β1γ3 0.6 [167]
α1β2γ1 0.67 [167] (human γ1, rat 

α1 and β2, expressed in 
293 cells)

α1β2γ2 32 [152]
27.9 [56] (γ2S 

splice variant)

5 [172]
7 [110] (γ2S splice variant)
1.71 [177]

1.6 [110] (γ2S splice 
variant)

2.12 [152]

1.4 [110] (γ2S splice 
variant)

220 [110] (γ2S 
splice variant)

α1β2γ3 30.2 [178] 1.3 [167]
α1β2δ 6.71 [179]
α1β3γ1 2.1 [167]
α1β3γ2 28 [56] (γ2S splice 

variant)
27.5 [180]

1.7 [167]
2.9 [151] (γ2S splice 

variant)
7.6 [181] (γ2L splice 

variant)
14 [112] (γ2L splice variant)
36.2 [158] (γ2L splice 

variant)
14.1 [122] (γ2L splice 

variant)

1.7 [158] (γ2L splice 
variant)

0.424 [111] (average 
of 1 and 3 mM of 
GABA, γ2L splice 
variant)

0.95 [112] (γ2L splice 
variant, 1 mM of 
GABA)

68.6 [111] (γ2L 
splice variant)

143 [112] (γ2L 
splice variant)

82.5 [122] (γ2L 
splice variant)

0.55 [101] (γ2L splice variant)
0.603 [111] (γ2L splice variant)

α1β3δ 27.5 [180] 7.4 [181] 63.4 [181]
86.8 [123]

α2β1γ2 30 [100] 17 [184]
37 [100]

1.8 [100] 0.449 [100] 
([GABA] = 1 mM)

198.7 [100]
82 (type 1) or 51 

(type 2) [103]

0.5 [100]
0.5 [103] (γ2S splice variant)

α2β1ε 11.2 [185]
α2β2γ2 1.47 [177]
α2β3γ2 5.2 [151] (γ2S splice 

variant)
0.391 [111] (average 

of 1 and 3 mM of 
GABA, γ2L splice 
variant)

110.6 [111] (γ2L 
splice variant)

0.735 [111] (γ2L splice variant)

α3β1γ2 15.1 [167] (human α3, rat 
γ2 and β1, expressed in 
293 cells)

α3β2γ2 130 [187]
15.1 [167] (human α3, rat 

γ2 and β2, expressed in 
293 cells)

75 [110] (γ2S splice variant)
2.21 [177]

1.5 [110] (γ2S splice 
variant)

1.1 [187]

3.2 [110] (γ2S splice 
variant)

680 [110] (γ2S 
splice variant)

α3β3γ2 48 [151] (γ2S splice variant) 0.701 [111] (average 
of 1 and 3 mM of 
GABA, γ2S splice 
variant)

188.8 [111] (γ2L 
splice variant)

1.788 [111] (γ2L splice variant)

α4β1γ2 1.40 [177]
α4β1δ 0.30 [188]

0.17 [177]
1.57 [188] 174 [177]

α4β2γ2 3.9 [189]
1.4 [167]

α4β2δ 0.25 [179]
α4β3γ2 7.6 [151] (γ2S splice 

variant)
15 [112] (γ2L splice variant)

0.408 [111] (average 
of 1 and 3 mM of 
GABA, γ2L splice 
variant)

0.711 [112] (γ2L 
splice variant, 1 
mM of GABA)

24.8 [111] (γ2L 
splice variant)

109 [112] (γ2L 
splice variant)

0.951 [111] (γ2L splice variant)
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of αβγ receptors was not matched by the corresponding αβ 
subtypes, with α1β2 desensitizing incompletely, contrary to 
α1β2γ. This confirms that novel properties emerge from the 
new subunits interactions introduced by γ or δ subunits in 
ternary receptors.

Receptors made of ρ subunits react very slowly to changes 
of GABA concentration, do not desensitize and deactivate 
quickly; they have low conductance and GABA EC50 but a 
high Hill coefficient.

The response of  GABAA receptors to particular GABA 
inputs can be predicted from the parameters that have been 
described so far. For example, due to similar conductance, 
faster activation and slower deactivation, α2β1γ2 medi-
ates tenfold higher charge transfers than α1β1γ2 when it is 
activated [100], but the higher GABA EC50 of the former 
means that stronger inputs are necessary to activate it.

Several studies found a great consistency between the 
electrophysiological activity of in vitro recombinant and 
in vivo endogenous  GABAA receptors [60, 102, 103, 137, 
152, 154, 194] (reviewed in [195]). The parameter values 

given above should therefore be relevant enough in physi-
ological contexts to explain the activity and function of 
 GABAA receptors in the nervous system.

GABAA receptors mediate different types 
of currents at the neuronal scale

As receptors of the most abundant inhibitory neurotransmitter, 
 GABAA receptors are expressed in most neurons and influ-
ence their electric activity. Depending on the neuronal type, 
 GABAA receptors can be located in the dendrites, the cell body 
and/or the axons. They are highly enriched at post-synaptic 
sites [194, 196], where they usually mediate inhibitory neu-
rotransmission, but can also be found extrasynaptically and 
perisynaptically. Despite the preferential synaptic localization 
of α1, α2, α3, and especially γ2 [197], no  GABAA receptor 
subunit has yet been found exclusively in synapses [196, 198]. 
Receptors containing the α4, α5, α6, γ1, γ3 or δ subunits, as 
well as binary αβ subtypes, are mainly extrasynaptic [56, 196, 

Table 2  (continued)

GABAA 
receptor 
subtype

Single-channel 
conductance (pS)

GABA EC50 (µM) Hill coefficient Characteristic time of 
desensitization td (s)

Characteristic time 
of deactivation (ms)

Activation time (ms)

α4β3δ 0.35 [188] 1.8 [188]
α5β1γ2 5.6 [167]
α5β2γ2 5.8 [187]

4.2 [167]
0.47 [177]

1.5 [187]

α5β2γ3 4.9 [190] 1.9 [190]
α5β3γ2 24.9 [180] 11.6 [151] (γ2S splice 

variant)
1.315 [111] (average 

of 1 and 3 mM of 
GABA, γ2L splice 
variant)

41.5 [111] (γ2L 
splice variant)

1.247 [111] (γ2L splice variant)

α6β1γ2 0.5 [167]
α6β2γ1 0.4 [167]
α6β2γ2 5.2 [156] (γ2S splice 

variant)
1.4 [189]
0.34 [172]
0.50 [179] (γ2S splice 

variant)
α6β2δ 0.52 [156] (γ2S splice 

variant)
1.2 [167]
0.21 [179]

α6β3γ2 1 [151] (γ2S splice variant) 0.596 [111] (average 
of 1 and 3 mM of 
GABA, γ2L splice 
variant)

163.8 [111] (γ2L 
splice variant)

1.052 [111] (γ2L splice variant)

α6β3δ 340.4 [123]
ρ1 1.7 [116] 3.5 [116] 14.5 [116] (30 µM of 

GABA)
154 [116]

ρ2 2.6 [116] 3.3 [116] 8.2 [116] (30 µM of 
GABA)

180 [116]

Roman: rat subunits; bold: human subunits; bold italics: mouse subunits. The Hill coefficient, GABA EC50, main conductance state and charac-
teristic times of activation, deactivation and desensitization of the most abundant subtypes in vivo, i.e. ternary subtypes and ρ homopentamers, 
are presented. Information on other subtypes can be found in [13, 103, 112, 114, 116, 123, 125, 130, 146, 152–157, 176, 180, 182, 191, 192]
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Table 3  Main electrophysiological parameters of the different  GABAA receptor subtypes in standard ionic conditions (subunits expressed in 
mouse L929 cells)

Roman: rat subunits; bold: human subunits; italics: bovine subunits. The Hill coefficient, GABA EC50, main conductance state and character-
istic times of activation, deactivation and desensitization of the most abundant subtypes in vivo, i.e. ternary subtypes and ρ homopentamers, are 
presented. Information on other subtypes can be found in [13, 103, 112, 114, 116, 123, 125, 130, 146, 152–157, 176, 180, 182, 191, 192]

GABAA 
receptor 
subtype

Single-channel con-
ductance (pS)

GABA EC50 (µM) Hill coefficient Characteristic time of 
desensitization td (s)

Characteristic time of 
deactivation (ms)

Activation time (ms)

α1β1γ1 5.2 [165]
α1β1γ2 30 [125] (γ2L splice 

variant)
29.3 [145] (γ2S splice 

variant)

7.1 [146]
5.2 [168] (γ2L splice 

variant)
5.1 [169] (γ2L splice 

variant)
6.2 [125] (γ2L splice 

variant)

1.7 [146]
1.9 [168] (γ2L splice 

variant)
1.9 [169] (γ2L splice 

variant)
1.4 [125] (γ2L splice 

variant)

5 [125] (γ2L splice 
variant)

6.0 [145] (γ2S splice 
variant)

α1β1δ 22 [125] No desensitization 
observed [125]

400 [125]

α1β2γ2 29 [145] (γ2S splice 
variant)

11 [171]

α1β3γ2 25.9 [114]
26.8 [130]

14 [171]
11.6 [130] (γ2L 

splice variant)
15.5 [111] (γ2L 

splice variant)
15.5 [182] (γ2L 

splice variant)

1.48 [111] (γ2L 
splice variant)

1.5 [182] (γ2L splice 
variant)

0.462 [114] ([GABA] = 1 
mM, γ2L splice variant)

76.1 [114] (γ2L 
splice variant)

0.46 [114] (γ2L splice 
variant)

α1β3δ 23.8 [114]
26.7 [130]

2.8 [130]
4.4 [182]

1.4 [182] 1.26 [114] ([GABA] = 1 
mM)

42.8 [114] 2.4 [114]

α1β3ε 24 [161] (rat α1 and 
β3, and human ε, in 
L929 cells)

0.8 [161] (rat α1 and 
β3, and human ε, 
in L929 cells)

0.9 [161] (rat α1 and 
β3, and human ε, 
in L929 cells)

α2β3γ2 25 [111] (γ2L splice 
variant)

α3β3γ2 35.8 [111] (γ2L 
splice variant)

α4β3γ2 10.7 [111] (γ2L 
splice variant)

2.57 [113]

1.3 [113] 2.5 [113] ([GABA] = 100 
µM)

α4β3δ 0.5 [113] 1.3 [113] 4.8 [113] ([GABA] = 100 
µM)

α5β1γ2 32.8 [157] (γ2L 
splice variant)

26 [124] (γ2L splice 
variant)

1.69 [157] (γ2L 
splice variant)

α5β3γ2 22 [133] (γ2L splice 
variant)

5.7 [157] (γ2L splice 
variant)

6 [124] (γ2L splice 
variant)

9.4 [111] (γ2L splice 
variant)

1.54 [157] (γ2L 
splice variant)

51.8 [133] (γ2L 
splice variant)

0.9 [133] (γ2L splice 
variant)

α5β3γ3 26.9 [191] 1.5 [191] 1.6 [191]
α5β3π 23.8 [191] 1.3 [191] 1.4 [191]
α6β2γ2 2 [171]
α6β2δ 0.2 [171]
α6β3γ2 2 [171] (γ2L splice 

variant)
2.25 [111] (γ2L 

splice variant)

1.04 [111] (γ2L 
splice variant)

α6β3δ 0.3 [171]
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197, 199], although the α4, α5 and α6 subunits can also be 
found in synapses at medium concentrations.

Due in part to the diversity in electrophysiology of the different 
subtypes,  GABAA receptors mediate several types of currents in 
neurons. These currents, and by extension the subtypes involved 
in their generation, have different biological functions.

Phasic activity

Post-synaptic  GABAA receptors primarily have a phasic 
activity: they mediate intense currents of regulated duration 

upon binding GABA molecules released in the synaptic cleft 
by the pre-synaptic neuron. Phasic receptors are involved 
in synaptic communication and are the main mediators of 
inhibitory signals [200]. The most abundant synaptic recep-
tors of the mature brain belong to subtypes containing the 
γ2 subunit associated with β subunits and α1 or α2 [114, 
201]. Their electrophysiological properties (see Tables 5, 6, 
7) ensure the speed and specificity of inhibitory post-syn-
aptic currents (IPSCs) generated in response to pre-synaptic 
GABA release, ensuring efficient neuronal communication. 
Indeed, the GABA concentration reaches 2-5 mM in the 

Table 4  Main electrophysiological parameters of the different  GABAA receptor subtypes in standard ionic conditions (subunits expressed in 
Xenopus oocytes)

Roman: rat subunits; bold: human subunits; italics: bovine subunits; bold italics: mouse subunits. The Hill coefficient, GABA EC50, main con-
ductance state and characteristic times of activation, deactivation and desensitization of the most abundant subtypes in vivo, i.e. ternary subtypes 
and ρ homopentamers, are presented. Information on other subtypes can be found in [13, 103, 112, 114, 116, 123, 125, 130, 146, 152–157, 176, 
180, 182, 191, 192]

GABAA receptor subtype GABA EC50 (µM) Hill coefficient

α1β1γ1 25 [163]
41 [164]
75 [166]

α1β1γ2 9.8 [170] (γ2S splice variant)
19.9 [126] (γ2S splice variant)

1.36 [126] (γ2S splice variant)

α1β1δ 4.9 [170]
α1β1ε 4.0 [126] 0.85 [126]
α1β2γ2 41 [153]

16 [132] (γ2L splice variant)
45.8 [47, 173, 174]
34 [97] (γ2L splice variant)
55 [175]
20 [155]
20 [163]
4.61 [176] (γ2L splice variant)

1.39 [153]
1.59 [174]
1.57 [47, 173]
1.38 [97] (γ2L splice variant)
1.4 [175]
1.38 [176] (γ2L splice variant)

α1β3γ2 8 [163]
α2β1γ1 39.8 [183]
α2β1γ2 30.6 [183]
α3β1γ1 114 [163]
α3β1γ2 240 [154]

208 [163]
200 [186] (γ2S splice variant)
98 [164]

α3β1γ3 32 [163]
α3β1ε 2.3 [186]
α3β1θ 81 [186]
α3β2γ2 487 [154]

11 [163]
α3β3γ2 28 [163]
α5β1γ2 17 [154]

15 [163]
α5β2γ2 14 [154]
α5β3γ1 24 [163]
α5β3γ2 3 [163] (γ2L splice variant)
α5β3γ3 2 [163]
α6β2γ2 6.7 [153]

1.6 [155]
0.82 [153]

ρ1 0.81 [106] 2.83 [106]
ρ2 1.19 [162] 2.17 [162]
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synaptic cleft during a GABA burst [134, 202], a concen-
tration much higher than the EC50 of any  GABAA recep-
tor subtype (Tables 2, 3, 4). Low affinity receptors are thus 
activated by GABA bursts without being activated by back-
ground GABA concentration (Fig. 7a), which ensures that 
receptor activation is dependent on pre-synaptic inputs. The 
quick activation of most phasic receptors increases the speed 
at which neuronal networks communicate, and allows the 
receptors to respond to GABA bursts despite the extremely 
fast clearance of GABA in the synapse (whose time constant 
is only 0.3–0.6 ms) [134].

The transmission of a strong inhibitory signal requires 
maximization of charge transfer. This is ensured by the high 
receptor concentration (there are usually tens to hundreds of 
receptors per inhibitory synapse) [56, 73] and the mainte-
nance of the IPSC for relatively long times [102]. Indeed, the 
slow or intermediate deactivation of phasic receptors enables 
IPSCs to last several tens of milliseconds. In addition, slow 
deactivation is associated with fast and complete desensi-
tization, which explains the common observation of IPSC 

depression upon high frequency stimulation, a phenomenon 
termed rundown (Fig. 4a) [203, 204]. This process protects 
neurons against pathological excessive inhibition in case of 
defective clearance of GABA, or excessive GABA emission 
in the synaptic cleft.

Different  GABAA receptor subtypes can be located at dif-
ferent synapses of the same neuron. This phenomenon ena-
bles precise modulation of neurotransmission because iden-
tical signals received at different synapses will not induce 
the same phasic current in the postsynaptic neuron [196, 
205, 206]. Several subtypes can even be expressed in the 
same synapse [207–210]. In such a case, the post-synaptic 
current triggered by GABA is a composite of the currents 
mediated by the individual subtypes.

Ternary subtypes (αβγ or αβδ) and ρ-containing subtypes 
are coexpressed at the axon terminals of retinal bipolar cells 
[208, 210] and mediate different types of phasic currents: 
ternary receptors mediate fast and brief currents, whereas 
ρ-containing receptors mediate long and delayed currents 
that can be explained by their slow activation and lack of 
desensitization [211]. Since ρ-containing subtypes have the 
lowest GABA EC50 (Tables 2, 3, 4), it is possible that at 
low GABA concentration, only the slow and long currents 
take place. Therefore, the diversity of phasic receptors facili-
tates complex and diverse responses to GABA inputs in a 
dose-dependent manner [5, 212]. In retinal bipolar cells, the 
contribution of different  GABAA receptor subtypes to the 
generation of inhibitory currents varies between cell sub-
populations [213, 214], probably because of differences in 

Table 6  Properties conferred by the “second subunit class” of the 
receptor

Isoform β1 β2 β3

GABA EC50 Medium Medium Moderate
Desensitization Medium Medium Moderately slow
Deactivation Medium Moderately slow

Table 7  Properties conferred by the “third subunit class” of the receptor

Isoform γ1 γ2L γ3 δ ε π

Conductance Medium Medium Medium Low Low Medium
GABA EC50 Medium Medium (γ2L variant) or moderate 

(γ2S variant)
Moderate Low Medium Moderate

Hill coefficient Medium Medium Medium Medium Low Medium
Desensitization Complete and moderately fast Slow and incomplete Fast
Deactivation Medium Moderately fast
Activation Fast Slow

Table 5  Properties conferred by the “first subunit class” of the receptor

isoform α1 α2 α3 α4 α5 α6

GABA EC50 Medium Medium Very high Medium Medium Very low
Desensitization Complete and 

moderately fast
Complete and 

moderately fast
Slow and incomplete Fast and complete Slow and incomplete Medium 

speed and 
complete

Refractory period Long Medium Medium Short Short Very long
Deactivation Moderately fast Moderately slow Very slow Very fast Fast Slow
Activation Fast Moderately fast Slow Medium Moderately slow Medium
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abundance of the considered subtypes. Consequently, the 
IPSCs follow different times-courses in different cell sub-
populations [215], leading to differences in cell function 
(reviewed in [5]). This exemplifies that the characteristics of 
an IPSC depend on the  GABAA receptor subtype by which 
it is mediated and that different types of neurons can vary in 
their phasic activity as a consequence of different subtypes 
expression patterns (reviewed in [216]).

During development, phasic currents are longer and less 
intense than in the adult brain [56, 73, 200, 217]. Indeed, the 
α1 and α2 subunits are not yet expressed at high levels and 
most synaptic receptors belong to the α3βγ2 subtypes, which 
display very slow deactivation (Tables 2, 3, 4).

Sometimes, GABA escapes from a synapse (a process 
termed spillover) and reaches a nearby synapse. The micro-
molar GABA concentration in the receiving synapse induces 
a very faint IPSC, and desensitizes a portion of the  GABAA 
receptors present there, which enter refractory periods that 
can last several seconds. If millimolar GABA bursts occur 
in the synapse before the end of the refractory period, the 
resulting phasic current will be diminished by rundown 
(Fig. 6) [131]. Since GABA bursts frequently occur in syn-
apses, the net effect of spillovers is often excitatory despite 
the faint IPSC they directly induce. Spillovers are rare in 
physiological conditions in the adult brain since highly effi-
cient GABA uptake systems usually ensure efficient clear-
ance of GABA in synapses; however, these systems can be 
downregulated [218, 219].

Whether  GABAA receptor-mediated currents are excita-
tory or inhibitory depends in certain circumstances on 
receptor location and timing relative to depolarizing signals 
[220, 221], hence the importance of the brevity and spatial 
confinement of phasic currents [198]. Phasic currents are 
brief and often induced at a single synapse, allowing them 
to regulate neuronal and cerebral activity very finely and 
to generate a substantial diversity of responses to similar 
inputs, in part due to  GABAA receptor subtype diversity. 
Among other functions,  GABAA receptor phasic activity 

is required in the generation of θ and γ frequency network 
oscillations, under strict temporal control [198].

Tonic activity

Certain  GABAA receptors, mostly extrasynaptic, mediate 
chronic low-amplitude currents termed tonic currents [198]. 
Their activity is less temporally and spatially restricted than 
that of phasic receptors [198]. They are involved in long-
run (seconds to minutes) modulation of neuronal activity 
and respond to GABA spillover or to non-synaptic release 
of GABA. They belong mostly to subtypes containing 
the δ subunit and the α4, α5 or α6 subunits [64, 114, 196, 
222] or to ρ-containing subtypes [62], although certain 
γ2-containing subtypes can mediate tonic currents (reviewed 
in [201]). The characteristics of tonic activity are related to 
the electrochemical properties of the  GABAA receptor sub-
types involved [223]: these subtypes display a high affinity 
to GABA (Tables 2, 3, 4), allowing a response to low extra-
synaptic GABA concentration; and a low conductance as 
well as incomplete desensitization, enabling channel groups 
to deliver limited but steady currents (Fig. 7b). Furthermore, 
the amplitude of current mediated by δ-containing receptors 
at saturating GABA concentrations can be multiplied up to 
20 times by the agonist etomidate [109], showing that the 
maximal open probability in the absence of agonists Pomax 
of the concerned subtypes is no higher than 5%, and explain-
ing the low amplitude of the tonic currents they mediate.

γ-containing subtypes desensitize extensively when 
exposed to high GABA concentrations, but the low GABA 
concentrations which elicit tonic activity may not desensi-
tize them to such an extent as to abolish tonic currents [114, 
195]. Deactivation does not hamper tonic activity, because 
GABA presence is maintained over long periods, allowing 
closed receptors to reopen; deactivation even ensures that 
tonic currents remain at a low amplitude. Finally, the slow 
activation of tonic receptors, caused both by low GABA con-
centrations and the electrophysiological properties of the 

Fig. 6  Effects of spillover on 
 GABAA receptor-mediated post-
synaptic currents. Phasic activ-
ity occurs upon the fixation of 
GABA by  GABAA receptors on 
the post-synaptic neuron. Spillo-
vers from nearby synapses can 
desensitize part of the receptors 
and decrease the amplitude of 
the next IPSC
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subtypes involved, participates in shaping tonic currents. 
At subsaturating GABA concentrations, the current peak is 
truncated, resulting in stable currents reaching a steady state 
without going through sharp peaks after changes in GABA 
concentration [112].

Receptors that usually mediate phasic currents can at 
times display a low-level tonic activity, including in synaptic 
locations, due to a very low but strictly positive probability 
of opening at GABA concentrations close to zero [132, 224]. 
For example, even at standard extracellular GABA concen-
tration, the amplitude of tonic currents through α1β2γ2L 
can reach 1% of the amplitude of phasic currents [224]. 
Moreover, it has been proposed that certain subtypes can 
mediate both phasic and tonic currents not only depending 
on their location or on GABA concentration, but also on 
whether both or only one of their two GABA-binding sites 
are occupied [175].

Tonic charge transfer can have a significant effect on neu-
ronal communication: it has stronger inhibitory effects than 
phasic inhibition in certain neuron types such as cerebellar 
granule cells and hippocampal pyramidal cells [73, 200, 222, 
225]. This demonstrates that the steadiness of tonic currents 
can compensate for their lack of intensity compared to pha-
sic currents in generating a strong response [222].

Tonic activity has been predicted to have different effects 
than phasic activity on neuronal network activity, notably a 
decrease of rhythmicity and synchronicity between neurons 
[226, 227]. At a wider scale, models of cerebellar activity 
predict that tonic inhibition increases the number of motor 
patterns that can be stored in the cerebellum [228, 229].

During development, tonic activity is mainly activated 
by action potential-induced GABA release in the extra-
cellular space [73, 200, 217]; however, non-vesicular and 
acetylcholine-induced, action potential-independent GABA 
release plays the major role in tonic inhibition in the adult 
cerebellum [137, 200]. This developmental transition can 
be related to the increasing wrapping of synapses by glial 

cells [230], which progressively prevents GABA spillover 
[200]. It is not only the source of tonic currents that varies 
during development, but also their amplitude. For example, 
tonic currents are detected in hippocampal pyramidal cells 
only in embryonic life [231], while they increase over time 
in cerebellar granule cells [73, 200]. Spatial discrepancies 
can also be caused by variations in extracellular GABA con-
centration between brain areas [225].

Tonic currents can modify the information conveyed 
by neurons [70, 232]. Unlike phasic currents, they do not 
determine the information conveyed by a single message but 
rather subtly modulate the information transmitted by the 
neuron over long time frames encompassing several commu-
nication events. Tonic inhibition is a form of regional-scale 
neuromodulation, offering a negative feedback to periods of 
intense synaptic activity during which successive spillovers 
increase the extracellular GABA concentration [198]. The 
long duration of tonic currents enables them to mitigate the 
oscillatory patterns often induced by phasic communication 
[226] and thus to desynchronize the activity of neighbor 
neurons [227].

Since the various tonic  GABAA receptor subtypes differ 
in their EC50, slight increases in GABA extracellular con-
centration can progressively recruit a new receptor popula-
tion. It widens the repertoire of potential tonic activity, since 
limited and finely regulated changes in GABA concentration 
can lead to the selective activation or inhibition of only part 
of the receptors mediating tonic currents [225].

Most transporters responsible for the clearance of GABA 
out of the extracellular space are unable to lower GABA 
concentration below 0.4 µM [233], a concentration higher 
than the EC50 of several α6-containing subtypes (Tables 2, 
3, 4). Some receptors are thus continually activated and 
exert a function of leakage channel, as experimentally con-
firmed in the rat hippocampus [234]. Rather than being 
involved in the transmission of inhibitory signals, such 
receptors are believed to regulate membrane resistivity 

a b

Fig. 7  Comparison of phasic and tonic currents. a Phasic current. 1: 
due to the high GABA EC50 of most phasic receptors, background 
GABA transients do not activate  GABAA receptors. 2: fast activation. 

3: high amplitude current peak. 4: slow deactivation. 5: rundown. b 
Tonic current. 1: slow activation. 2: steady-state, low-amplitude cur-
rent with limited desensitization
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[78]. If this hypothesis is correct, these receptors control 
the time window over which synaptic integration occurs 
as well as the neuronal gain (the ratio between received 
and emitted currents), and thus the action potential firing 
rate [225, 232]. This exemplifies that the functions accom-
plished by a  GABAA receptor subtype are determined by its 
electrophysiology.

Perisynaptic  GABAA receptors

Perisynaptic  GABAA receptors are activated by GABA spill-
over out of the synaptic cleft. They account for the slow-
component inhibition of biphasic GABA-mediated response 
[235], a phenomenon in which the GABA released in a syn-
apse first activates phasic post-synaptic receptors, then spills 
over in the extracellular space and activates perisynaptic 
receptors. GABA diffuses in a much greater volume in the 
extracellular space than in the synaptic cleft. Consequently, 
it reaches perisynaptic receptors with a delay compared 
to synaptic receptors and at a much lower concentration. 
Therefore, the biphasic GABA-mediated response consists 
of a localized, fast and intense phasic current followed by 
a diffuse, low-level and less cell-specific hyperpolarization. 
Perisynaptic receptors thus prolong phasic activity. They 
also take part in tonic inhibition [73] and spillover-mediated 
heterosynaptic modulation [232], whereby GABA spillover 
out of a synapse inhibits nearby neurons uninvolved in the 
considered synapse (reviewed in [236]).

Presynaptic inhibition

GABAA receptors can be found on the axons of certain neu-
ron types, where they sometimes mediate depolarizations, 
with either inhibitory [237, 238] or excitatory [78, 239] 
effects on downstream synaptic activity.

In the process of presynaptic inhibition, GABA released 
at axo-axonic synapses activates  GABAA receptors on the 
axon of the receiving neuron and prevents the propagation 
of synchronous action potentials [240] (Fig. 8). Unlike syn-
aptic and perisynaptic inhibitions [241], presynaptic inhi-
bition requires a precise synchronization of the excitatory 
signal with the chloride influx mediated by the  GABAA 
receptor [198]. However, this does not necessarily imply 
that the GABA input must be synchronized with the action 
potentials: indeed, in certain retinal cells where ρ-containing 
subtypes are exclusively located in axons [213], the long-
lasting signals mediated by these subtypes ensure an efficient 
presynaptic inhibition which allows a small delay between 
the inhibitory input and the action potentials.

The functions of presynaptic inhibition remain poorly 
understood [78]. However, the release of GABA by axons of 
hippocampal mossy fiber [242, 243] or cerebellar basket and 
stellar cells [244] suggests that one function of presynaptic 

inhibition is self-inhibition and tissular negative feedback 
on neuronal activity. In addition, presynaptic inhibition ena-
bles the axonal ramifications of a neuron to convey different 
messages if only part of the ramifications receive a presyn-
aptic inhibitory signal (Fig. 8). This mechanism increases 
the complexity and specificity of neuronal communication 
[245]. For example, the presynaptic inhibition mediated by 
ρ-containing subtypes in the retina increases the dynamic 
range of brain responses to light intensity [246].

Control of  GABAA receptor electrophysiology

GABAA receptor electrical activity is determined by GABA 
concentration and its intrinsic electrophysiological proper-
ties, but also by its chemical and cellular environment, some-
times in a subtype-specific manner.

GABAA receptor control by phosphorylation

GABAA receptors are subject to phosphorylation by sev-
eral kinases such as protein kinase A (PKA) and C (PKC). 
Phosphorylation by PKC inhibits  GABAA receptors, prob-
ably by endocytosis [247] or through an inhibition of the 
non-desensitizing fraction of  GABAA receptors [248]. Both 
increases [249, 250] and decreases [147, 251–253] in cur-
rents mediated by  GABAA receptors have been reported 
upon phosphorylation by PKA, probably because it can 
simultaneously speed up desensitization while slowing down 
deactivation [254, 255]. In the retina, PKA mediates dopa-
minergic signals which result in a potentiation of  GABAA 
receptors through a decrease in GABA EC50 [128]. Phos-
phorylation may explain the differences in electrophysiology 
between γ2S and γ2L containing receptors, since the only 
difference between these two splice forms is a cytoplasmic 
insertion of 8 residues in γ2L containing a PKC phospho-
rylation site [34].

Fig. 8  Presynaptic inhibition of action potentials mediated by 
 GABAA receptors. Inhibitory currents mediated by  GABAA receptors 
can inhibit simultaneous action potentials, and allow different axonal 
ramifications to convey different signals
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Receptors of different neurotransmitters can colocal-
ize at post-synaptic sites and be activated by presynaptic 
co-release of several neurotransmitters. The simultaneous 
activation of different postsynaptic receptors often induces 
a partial occlusion of their respective currents. This cross-
talk has been proposed to represent a fast adaptive process 
in controlling signal transmission [256]. Negative cross-talk 
was demonstrated between  GABAA receptors and dopamine 
receptors [256], P2X receptors [257] and glycine receptors 
[258]. The inhibition of  GABAA receptors by glycine recep-
tors depends on phosphatase 2B activity, while kinase activ-
ity is necessary for recovery of  GABAA receptors from this 
inhibition [259].

Glutamate excitatory neurotransmission mediated by 
NMDA receptors induces calcineurin-dependent γ2 subunit 
dephosphorylation, leading to a reversible and local disper-
sion of postsynaptic  GABAA receptor clusters [260]. Disper-
sion lowers receptors’ EC50, activation and desensitization 
times, and slows down their deactivation [261–263]. Conse-
quently, receptors transition from synaptic phasic activity to 
extrasynaptic tonic activity upon dephosphorylation.

Voltage dependency

Although  GABAA receptors are generally voltage-independ-
ent, a few subtypes are voltage-sensitive in rare situations 
[123, 240, 264]. Voltage seems to affect current peak ampli-
tude but not kinetic properties (desensitization and deactiva-
tion) of the α1β3δ, α5β3π and ρ1 subtypes [106, 123, 191, 
192], unlike the α6β3δ subtype whose kinetic properties are 
affected but not other parameters [123]. Voltage dependency 
can also be observed in channels that are rare or never found 
in vivo, such as α1β3 or α6β3 [123].

Ionic modulation

GABAA receptors are sensitive to ionic modulation: a 
change in the concentration of certain ions, in either the 
extracellular or the cytosolic compartment, can modify their 
activity. The nature or extent of the modulation is subtype-
specific (Fig. 9).

Extracellular  Ca2+ does not affect the activity of ternary 
receptors [87, 265], but it increases the amplitude of cur-
rents mediated by ρ-containing subtypes [266]. Intracellular 
 Ca2+ has varying effects on many subtypes, depending on 
its origin and concentration.  Ca2+ coming from the extracel-
lular space does not affect  GABAA receptor opening [267], 
whereas  Ca2+ originating from intracellular compartments 
activates  GABAA receptors at low concentrations, but 
inhibits it at high concentrations [268, 269]. This may be 
a consequence of receptor phosphorylation by PKC [248] 
or dephosphorylation by calcineurin [260], because these 
enzymes are activated by intracellular calcium.  Ca2+ control 

of  GABAA receptors is involved in the long-run (seconds to 
minutes) modulation of neuronal activity [268].

Extracellular  Zn2+ is released during synaptic activity by 
numerous neurons, particularly in the limbic and neocorti-
cal regions [270] and during development. It decreases the 
opening frequency of certain  GABAA receptor subtypes 
[271] (reviewed in [4]). αβ receptors are up to 3400-fold 
more sensitive to  Zn2+ than αβγ and αβδ receptors [113, 
272], while ρ [266], αβπ [191] and αβε [126, 171] subtypes 
have an intermediate sensitivity. In addition, α1 confers a 
higher zinc sensitivity than the other α subunits [124, 126, 
171, 182, 189, 273]. The discrepancy in sensitivity between 
αβγ and αβ subtypes is explained by the position of the  Zn2+ 
binding sites in the receptor (two between α and β subunits 
and one in the ion pore), which are disturbed by γ subunits 
[182, 274]. Additionally, αβ subtypes comprised of two α 
and three β subunits contain a third zinc-binding site at the 
β-β interface, explaining their higher sensitivity compared 
with αβγ subtypes and the very rare αβ subtypes containing 
three α and two β subunits [129]. Zinc increases the EC50 of 
α1β1δ but not α1β1, and the Hill coefficient of α1β1 while it 
decreases the Hill coefficient of α1β1δ [273].  Zn2+ sensitiv-
ity displays very similar characteristics in vivo and in vitro 
(reviewed in [5]).  Zn2+ may take part in the control of tonic 
currents in hippocampal pyramidal neurons, where up to 
10% of extrasynaptic  GABAA receptors may belong to αβ 
subtypes [180].

All  GABAA receptor subtypes seem to be insensitive to 
intracellular pH [275] (reviewed in [4]), but certain subtypes 
are sensitive to extracellular pH because of their two extracel-
lular proton-binding sites [170, 275]. Conductance is nega-
tively correlated with extracellular pH for α1β1, α1β2γ2 and 
α1β1δ [170, 276], and positively for ρ subtypes [277, 278], 
while α1β1γ2S is pH-insensitive [170] and the curves of 
α1β1γ2Sδ, α4β3γ2, α4β3δ and α1β2γ2S conductance as a 
function of extracellular pH are bell-shaped [73, 170]. Extra-
cellular protons slow the deactivation of the α1β3δ subtype 

Fig. 9  Ionic modulation of the  GABAA receptor. Ion flows are repre-
sented with black arrows, activation with green arrows and inhibition 
with red arrows. Dashed lines indicate subtype specificity
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and increase its opening probability in the absence of GABA 
without affecting its desensitization, resulting in an increase of 
currents at low pH [181]. On the contrary, α1β2γ2 desensitizes 
less and slower at low pH [276], while its activation is slowed, 
and deactivation is shifted toward its slow component.  GABAA 
receptor inhibition at high pH is explained by a faster closure 
of the channel [279].

In vivo,  GABAA channel charge transfer is generally neg-
atively correlated with extracellular pH [170, 280]. During 
synaptic transmission, a transient acidosis of the synaptic cleft 
is followed by a durable increase in pH [281]. This phenom-
enon synergizes with the concomitant variations of GABA 
concentration and helps to induce a fast and massive opening 
of  GABAA receptors during the first milliseconds of synaptic 
transmission, followed by the progressive closure of the chan-
nels when protons and GABA are cleared from the synaptic 
cleft.

NMDA, the glutamate receptor mediating most of the excit-
atory signals in the central nervous system, is inhibited by 
low pH [282]. Thus, the opposite effects of pH on the inhibi-
tory  GABAA receptor and the excitatory NMDA receptor may 
explain why neuronal activity and excitability increase with 
extracellular pH [283]. High regional electrical activity elicits 
an acidosis: the pH-sensitivity of  GABAA receptor and NMDA 
receptor thus creates a negative feedback against hyperactiv-
ity. This process relies notably on tonic currents mediated by 
δ-containing receptors [181]. Other pH regulation processes 
can also modulate neurone activity through  GABAA receptors 
[280]. Extracellular pH can itself be modified by bicarbonate 
transport across  GABAA receptors [284], making them broad-
casters of neuromodulatory signals in addition to their function 
of chloride channel.

Furthermore, acidity displays protective effects against 
 Zn2+ inhibition in α1β1 receptors [273], showing that the dif-
ferent types of ionic modulation to which  GABAA receptors 
are submitted are not independent.

The ionic modulation of the  GABAA receptor is involved 
in the long-term depression or potentiation of inhibitory cur-
rents characteristic of neuronal plasticity, and may play a role 
in hypomagnesia-induced hyperexcitability [285], anoxic and 
ischaemic conditions [286] or epileptogenesis [287].

Conclusion

GABAA receptors are highly complex and are able to gener-
ate a vast repertoire of electric responses to different inputs 
under the control of various types of regulations. Their 
influence on cellular electric activity at different scales of 
time and space can to a great extent be predicted from the 

structural and electrophysiological properties of the differ-
ent subtypes, whose diversity provides additional modular-
ity, robustness and specialization to the  GABAA receptor 
system.

GABAA receptor agonists and antagonists are increas-
ingly used in medicine to treat various diseases, from epi-
lepsy to insomnia and others. Improved knowledge of the 
electrophysiology, pharmacology and expression patterns 
of  GABAA receptor subtypes has led to the development of 
subtype-specific drugs that limit side effects. Further stud-
ies on  GABAA receptor electrophysiology are warranted in 
order to develop new treatments, particularly in the fields of 
 GABAA receptors structure–function relationships, interac-
tions with intracellular proteins, and electrical properties 
of lesser-known subtypes such as those containing π or θ 
subunits.
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