Skip to main content
Log in

Mechanisms in cochlear hair cell mechano-electrical transduction for acquisition of sound frequency and intensity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sound signals are acquired and digitized in the cochlea by the hair cells that further transmit the coded information to the central auditory pathways. Any defect in hair cell function may induce problems in the auditory system and hearing-based brain function. In the past 2 decades, our understanding of auditory transduction has been substantially deepened because of advances in molecular, structural, and functional studies. Results from these experiments can be perfectly embedded in the previously established profile from anatomical, histological, genetic, and biophysical research. This review aims to summarize the progress on the molecular and cellular mechanisms of the mechano-electrical transduction (MET) channel in the cochlear hair cells, which is involved in the acquisition of sound frequency and intensity—the two major parameters of an acoustic cue. We also discuss recent studies on TMC1, the molecule likely to form the MET channel pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kandel ER et al (2012) Principles of neural science. McGraw-Hill Education / Medical; 5th edn (October 26, 2012), p 1760

  2. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81(3):1305–1352

    CAS  PubMed  Google Scholar 

  3. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94(3):951–986

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pietsch M et al (2017) Spiral form of the Human Cochlea results from spatial constraints. Sci Rep 7(1):7500

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Von Bekesy G (1947) The variation of phase along the basilar membrane with sinusoidal vibrations. J Acoust Soc Am 19(3):452–460

    Google Scholar 

  6. Hubbard A (1993) A traveling-wave amplifier model of the cochlea. Science 259(5091):68–71

    CAS  PubMed  Google Scholar 

  7. Lee HY et al (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci U S A 112(10):3128–3133

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nankali A et al (2020) A role for tectorial membrane mechanics in activating the cochlear amplifier. Sci Rep 10(1):17620

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sellon JB et al (2015) Longitudinal spread of mechanical excitation through tectorial membrane traveling waves. Proc Natl Acad Sci U S A 112(42):12968–12973

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng J et al (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405(6783):149–155

    CAS  Google Scholar 

  11. Liberman MC et al (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419(6904):300–304

    CAS  PubMed  Google Scholar 

  12. Kaltenbach JA, Falzarano PR (1994) Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. J Comp Neurol 340(1):87–97

    CAS  PubMed  Google Scholar 

  13. Kaltenbach JA, Falzarano PR, Simpson TH (1994) Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J Comp Neurol 350(2):187–198

    CAS  PubMed  Google Scholar 

  14. Soons JA et al (2015) Cytoarchitecture of the mouse organ of corti from base to apex, determined using in situ two-photon imaging. J Assoc Res Otolaryngol 16(1):47–66

    PubMed  Google Scholar 

  15. Duvall AJ 3rd, Flock A, Wersall J (1966) The ultrastructure of the sensory hairs and associated organelles of the cochlear inner hair cell, with reference to directional sensitivity. J Cell Biol 29(3):497–505

    PubMed  PubMed Central  Google Scholar 

  16. Engstrom H, Engstrom B (1978) Structure of the hairs on cochlear sensory cells. Hear Res 1(1):49–66

    CAS  PubMed  Google Scholar 

  17. Hudspeth AJ (2014) Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci 15(9):600–614

    CAS  PubMed  Google Scholar 

  18. Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7(1):19–29

    CAS  PubMed  Google Scholar 

  19. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1):11–21

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    CAS  Google Scholar 

  21. Gill SS, Salt AN (1997) Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs. Hear Res 113(1–2):191–197

    CAS  PubMed  Google Scholar 

  22. Conlee JW, Bennett ML (1993) Turn-specific differences in the endocochlear potential between albino and pigmented guinea pigs. Hear Res 65(1–2):141–150

    CAS  PubMed  Google Scholar 

  23. Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281(5733):675–677

    CAS  PubMed  Google Scholar 

  24. Kazmierczak P et al (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91

    CAS  PubMed  Google Scholar 

  25. Siemens J et al (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428(6986):950–955

    CAS  PubMed  Google Scholar 

  26. Sollner C et al (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428(6986):955–959

    PubMed  Google Scholar 

  27. Elledge HM et al (2010) Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 107(23):10708–10712

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sotomayor M et al (2010) Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66(1):85–100

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sotomayor M et al (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492(7427):128–132

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Beurg M et al (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dionne G et al (2018) Mechanotransduction by PCDH15 relies on a novel cis -dimeric architecture. Neuron 99(3):480

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ge J et al (2018) Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. Elife. https://doi.org/10.7554/eLife.387707

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bartsch TF et al (2019) Elasticity of individual protocadherin 15 molecules implicates tip links as the gating springs for hearing. Proc Natl Acad Sci U S A 116(22):11048–11056

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmed ZM et al (2006) The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci 26(26):7022–7034

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Webb SW et al (2011) Regulation of PCDH15 function in mechanosensory hair cells by alternative splicing of the cytoplasmic domain. Development 138(8):1607–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maeda R et al (2017) Functional analysis of the transmembrane and cytoplasmic domains of Pcdh15a in Zebrafish hair cells. J Neurosci 37(12):3231–3245

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alagramam KN et al (2001) The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27(1):99–102

    CAS  PubMed  Google Scholar 

  38. Alagramam KN et al (2001) Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10(16):1709–1718

    CAS  PubMed  Google Scholar 

  39. Bolz H et al (2001) Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27(1):108–112

    CAS  PubMed  Google Scholar 

  40. Bork JM et al (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68(1):26–37

    CAS  PubMed  Google Scholar 

  41. Di Palma F et al (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27(1):103–107

    PubMed  Google Scholar 

  42. Kurima K et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30(3):277–284

    PubMed  Google Scholar 

  43. Kurima K et al (2003) Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis☆. Genomics 82(3):300–308

    CAS  PubMed  Google Scholar 

  44. Vreugde S et al (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30(3):257–258

    PubMed  Google Scholar 

  45. de Heer AM et al (2011) Progressive sensorineural hearing loss and normal vestibular function in a Dutch DFNB7/11 family with a novel mutation in TMC1. Audiol Neurootol 16(2):93–105

    PubMed  Google Scholar 

  46. Kitajiri SI et al (2007) Identities, frequencies and origins of TMC1 mutations causing DFNB7/B11 deafness in Pakistan. Clin Genet 72(6):546–550

    PubMed  Google Scholar 

  47. Tlili A et al (2008) TMC1 but not TMC2 is responsible for autosomal recessive nonsyndromic hearing impairment in Tunisian families. Audiol Neurootol 13(4):213–218

    CAS  PubMed  Google Scholar 

  48. Marcotti W et al (2006) Tmc1 is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. J Physiol 574(Pt 3):677–698

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Beurg M et al (2019) A Tmc1 mutation reduces calcium permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. Proc Natl Acad Sci U S A 116(41):20743–20749

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu X et al (2020) Deafness mutation D572N of TMC1 destabilizes TMC1 expression by disrupting LHFPL5 binding. Proc Natl Acad Sci U S A 117(47):29894–29903

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawashima Y et al (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121(12):4796–4809

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Asai Y et al (2018) Transgenic Tmc2 expression preserves inner ear hair cells and vestibular function in mice lacking Tmc1. Sci Rep 8(1):12124

    PubMed  PubMed Central  Google Scholar 

  53. Nakanishi H et al (2018) Tmc2 expression partially restores auditory function in a mouse model of DFNB7/B11 deafness caused by loss of Tmc1 function. Sci Rep 8(1):12125

    PubMed  PubMed Central  Google Scholar 

  54. Lelli A et al (2009) Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol 101(6):2961–2973

    PubMed  PubMed Central  Google Scholar 

  55. Waguespack J et al (2007) Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J Neurosci 27(50):13890–13902

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kurima K et al (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell Stereocilia. Cell Rep 12(10):1606–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Beurg M et al (2018) Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea. Nat Commun 9(1):2185

    PubMed  PubMed Central  Google Scholar 

  58. Li X et al (2019) Localization of TMC1 and LHFPL5 in auditory hair cells in neonatal and adult mice. FASEB J 33(6):6838–6851

    CAS  PubMed  Google Scholar 

  59. Cunningham CL et al (2020) tmie defines pore and gating properties of the mechanotransduction channel of mammalian cochlear hair cells. Neuron 107(1):126

    CAS  PubMed  Google Scholar 

  60. Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40(5):983–990

    CAS  PubMed  Google Scholar 

  61. Beurg M et al (2006) A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J Neurosci 26(43):10992–11000

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144(1):55–69

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim KX, Fettiplace R (2013) Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141(1):141–148

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan B et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515

    CAS  PubMed  Google Scholar 

  65. Beurg M, Goldring AC, Fettiplace R (2015) The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells. J Gen Physiol 146(3):233–243

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ballesteros A, Fenollar-Ferrer C, Swartz KJ (2018) Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. Elife. https://doi.org/10.7554/eLife.38433

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pan B et al (2018) TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 99(4):736-753.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Maeda R et al (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111(35):12907–12912

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Beurg M et al (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. Proc Natl Acad Sci U S A 112(5):1589–1594

    CAS  PubMed  Google Scholar 

  70. Labay V et al (2010) Topology of transmembrane channel-like gene 1 protein. Biochemistry 49(39):8592–8598

    CAS  PubMed  Google Scholar 

  71. Jia Y et al (2019) TMC1 and TMC2 proteins are pore-forming subunits of mechanosensitive ion channels. Neuron. https://doi.org/10.1016/j.neuron.2019.10.017

    Article  PubMed  Google Scholar 

  72. Tlili A et al (2005) A novel autosomal recessive non-syndromic deafness locus, DFNB66, maps to chromosome 6p21.2–22.3 in a large Tunisian consanguineous family. Hum Hered 60(3):123–128

    PubMed  Google Scholar 

  73. Kalay E et al (2006) Mutations in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss. Hum Mutat 27(7):633–639

    CAS  PubMed  Google Scholar 

  74. Shabbir MI et al (2006) Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. J Med Genet 43(8):634–640

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Longo-Guess CM et al (2005) A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Proc Natl Acad Sci U S A 102(22):7894–7899

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Longo-Guess CM et al (2007) Targeted knockout and lacZ reporter expression of the mouse Tmhs deafness gene and characterization of the hscy-2J mutation. Mamm Genome 18(9):646–656

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiong W et al (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151(6):1283–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cosetti M et al (2008) Unique transgenic animal model for hereditary hearing loss. Ann Otol Rhinol Laryngol 117(11):827–833

    PubMed  PubMed Central  Google Scholar 

  79. Zhao B et al (2014) TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 84(5):954–967

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mitchem KL et al (2002) Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Hum Mol Genet 11(16):1887–1898

    CAS  PubMed  Google Scholar 

  81. Naz S et al (2002) Mutations in a novel gene, TMIE, are associated with hearing loss linked to the DFNB6 locus. Am J Hum Genet 71(3):632–636

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Santos RL et al (2006) Novel sequence variants in the TMIE gene in families with autosomal recessive nonsyndromic hearing impairment. J Mol Med (Berl) 84(3):226–231

    CAS  Google Scholar 

  83. Cunningham CL et al (2017) The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. Elife. https://doi.org/10.7554/eLife.24318

    Article  PubMed  PubMed Central  Google Scholar 

  84. Erickson T et al (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife. https://doi.org/10.7554/eLife.28474

    Article  PubMed  PubMed Central  Google Scholar 

  85. Giese APJ et al (2017) CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nat Commun 8(1):43

    PubMed  PubMed Central  Google Scholar 

  86. Michel V et al (2017) CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 9(12):1711–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang Y et al (2017) Loss of CIB2 causes profound hearing loss and abolishes mechanoelectrical transduction in mice. Front Mol Neurosci 10:401

    PubMed  PubMed Central  Google Scholar 

  88. Blazejczyk M et al (2009) Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling. Arch Biochem Biophys 487(1):66–78

    CAS  PubMed  Google Scholar 

  89. Riazuddin S et al (2012) Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet 44(11):1265–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jan A (2013) Mutations in CIB2 calcium and integrin-binding protein disrupt auditory hair cell calcium homeostasis in Usher syndrome type 1J and non-syndromic deafness DFNB48. Clin Genet 83(4):317–318

    CAS  PubMed  Google Scholar 

  91. Booth KT et al (2017) Variants in CIB2 cause DFNB48 and not USH1J. Clin Genet 93(4):812–821

    Google Scholar 

  92. Ahmed ZM et al (2008) Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. Nat Genet 40(11):1335–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Du X et al (2008) A catechol-O-methyltransferase that is essential for auditory function in mice and humans. Proc Natl Acad Sci USA 105(38):14609–14614

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ross CJ et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349

    CAS  PubMed  Google Scholar 

  95. Maoiléidigh OD, Ricci AJ (2019) A bundle of mechanisms: inner-ear hair-cell mechanotransduction. Trends Neurosci 42(3):221–236

    PubMed Central  Google Scholar 

  96. Marquis RE, Hudspeth AJ (1997) Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells. Proc Natl Acad Sci U S A 94(22):11923–11928

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tinevez JY, Julicher F, Martin P (2007) Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell. Biophys J 93(11):4053–4067

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Beurg M et al (2008) The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Biophys J 94(7):2639–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hacohen N et al (1989) Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J Neurosci 9(11):3988–3997

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kennedy HJ et al (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6(8):832–836

    CAS  PubMed  Google Scholar 

  101. Kimitsuki T, Ohmori H (1992) The effect of caged calcium release on the adaptation of the transduction current in chick hair cells. J Physiol 458:27–40

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ricci AJ, Fettiplace R (1997) The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells. J Physiol 501(Pt 1):111–124

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ricci AJ, Wu YC, Fettiplace R (1998) The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci 18(20):8261–8277

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Peng AW, Effertz T, Ricci AJ (2013) Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry. Neuron 80(4):960–972

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Corns LF et al (2014) Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 111(41):14918–14923

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Caprara GA et al (2019) Hair bundle stimulation mode modifies manifestations of mechanotransduction adaptation. J Neurosci 39(46):9098–9106

    PubMed  PubMed Central  Google Scholar 

  107. Hirono M et al (2004) Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44(2):309–320

    CAS  PubMed  Google Scholar 

  108. Zhao H et al (2012) Large membrane domains in hair bundles specify spatially constricted radixin activation. J Neurosci 32(13):4600–4609

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Goodyear RJ et al (2003) A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J Neurosci 23(27):9208–9219

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sekerkova G et al (2006) Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli. Cell Mol Life Sci 63(19–20):2329–2341

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Peng AW et al (2016) Adaptation independent modulation of auditory hair cell mechanotransduction channel open probability implicates a role for the lipid bilayer. J Neurosci 36(10):2945–2956

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Effertz T et al (2017) Phosphoinositol-4,5-bisphosphate regulates auditory hair-cell mechanotransduction-channel pore properties and fast adaptation. J Neurosci 37(48):11632–11646

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Caprara GA, Mecca AA, Peng AW (2020) Decades-old model of slow adaptation in sensory hair cells is not supported in mammals. Sci Adv 6(33):eabb4922

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ricci AJ et al (2005) The transduction channel filter in auditory hair cells. J Neurosci 25(34):7831–7839

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Krey JF et al (2020) Mechanotransduction-Dependent Control of Stereocilia Dimensions and Row Identity in Inner Hair Cells. Curr Biol 30(3):442-454e7

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu S et al (2019) TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice. Elife. https://doi.org/10.7554/eLife.47441

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rodriguez L et al (2012) Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition. Proc Natl Acad Sci U S A 109(35):14013–14018

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gianoli F, Risler T, Kozlov AS (2017) Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction. Proc Natl Acad Sci U S A 114(51):E11010

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Meyer J et al (1998) Evidence for opening of hair-cell transducer channels after tip-link loss. J Neurosci 18(17):6748–6756

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yue X et al (2019) Distinct functions of TMC channels: a comparative overview. Cell Mol Life Sci 76(21):4221–4232

    CAS  PubMed  Google Scholar 

  122. Zhang L et al (2015) TMC-1 attenuates C elegans development and sexual behaviour in a chemically defined food environment. Nat Commun 6:6345

    CAS  PubMed  Google Scholar 

  123. Wang X et al (2016) TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons. Neuron 91(1):146–154

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yue X et al (2018) TMC proteins modulate egg laying and membrane excitability through a background leak conductance in C. elegans. Neuron 97:1–15

    Google Scholar 

  125. Tang Y-Q et al (2020) Ankyrin is an intracellular tether for TMC mechanotransduction channels. Neuron 107(4):759

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Guo Y et al (2016) Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113(26):7243–7248

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang YV et al (2016) The basis of food texture sensation in Drosophila. Neuron 91(4):863–877

    CAS  PubMed  PubMed Central  Google Scholar 

  128. He L et al (2019) Direction selectivity in Drosophila proprioceptors requires the mechanosensory channel Tmc. Curr Biol 29(6):945-956e3

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vaadia RD et al (2019) Characterization of proprioceptive system dynamics in behaving drosophila larvae using high-speed volumetric microscopy. Curr Biol 29(6):935–944

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between Stereocilia in the Guinea-Pig organ of corti, and their possible relation to sensory transduction. Hear Res 15(2):103–112

    CAS  PubMed  Google Scholar 

  131. Furness DN, Hackney CM (1985) Cross-Links between Stereocilia in the Guinea-Pig Cochlea. Hear Res 18(2):177–188

    CAS  PubMed  Google Scholar 

  132. Xiao B (2020) Levering mechanically activated piezo channels for potential pharmacological intervention. Annu Rev Pharmacol Toxicol 60:195–218

    CAS  PubMed  Google Scholar 

  133. Marcotti W et al (2003) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548(Pt 2):383–400

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31522025, 31571080, 81873703, and 31861163003), Beijing Municipal Science and Technology Commission (Z181100001518001), and a startup fund from the Tsinghua-Peking Center for Life Sciences. W.X. is a CIBR cooperative investigator (2020-NKX-XM-04) funded by the Open Collaborative Research Program of Chinese Institute for Brain Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong.

Ethics declarations

Conflict of interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, S., Zou, L. et al. Mechanisms in cochlear hair cell mechano-electrical transduction for acquisition of sound frequency and intensity. Cell. Mol. Life Sci. 78, 5083–5094 (2021). https://doi.org/10.1007/s00018-021-03840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03840-8

Keywords

Navigation