
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2021) 78:4955–4972 
https://doi.org/10.1007/s00018-021-03827-5

REVIEW

Moonlighting of mitotic regulators in cilium disassembly

Cenna Doornbos1,2  · Ronald Roepman1,2 

Received: 23 October 2020 / Revised: 3 March 2021 / Accepted: 27 March 2021 / Published online: 15 April 2021 
© The Author(s) 2021

Abstract
Correct timing of cellular processes is essential during embryological development and to maintain the balance between 
healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling 
organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic 
processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) 
to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered 
to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator 
proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly 
defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and 
tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential 
in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.
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Abbreviations
+TIP  Plus-end tracking tip protein complex
APC/C  Anaphase promoting complex/cyclosome
IFTA  Intraflagellar transport, retrograde
IFTB  Intraflagellar transport, anterograde
K-fibres  Kinetochore fibres
KMN  KNL1/MIS12/NDC80 complex
MCC  Mitotic checkpoint complex
MT  Microtubule
MTOC  Microtubule-organizing centre
NPC  Nuclear pore complex
NUP  Nuclear pore
PCM  Pericentriolar matrix
PTM  Post-translational modification
RZZ  KNTC1 (also known as ROD)-ZWILCH-ZW10 

complex
SHH  Sonic hedgehog signalling pathway
TZ  (Ciliary) transition zone

UPS  Ubiquitin–proteasome system
WNT  Wingless and Int-1 signalling pathway

Introduction

Primary cilia are small organelles protruding from the 
plasma membrane. Their immobility distinguishes them 
from their motile counterparts, that have a clear function in 
extracellular fluid propulsion. Primary cilia are conserved 
across a variety of species and are present on almost every 
mammalian cell. These cilia have evolved into cellular sig-
nalling hubs by harbouring components of critical cell sig-
nalling pathways, such as the ‘Wingless and Int-1’ (WNT) 
signalling pathway [1, 2], ‘Sonic hedgehog’ (SHH) [3, 4], 
and autophagy [5, 6]. The exact ciliary signalling functions 
of the primary cilia vary widely and depend on the devel-
opmental stage and cell type. Due to their near-ubiquitous 
prevalence, dysfunction of the cilia can disturb the forma-
tion and functioning of a variety of organs, and therefore, is 
linked to a wide, overlapping spectrum of hereditary disor-
ders denominated “ciliopathies” [7].

Next to its general role as a cellular signalling hub, a more 
specific function of cilia in cell cycle regulation has become 
increasingly pronounced. Several studies suggest a link 
between cilia, tumour formation, and in some cases, mosaic 
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variegated aneuploidy (MVA) syndrome [8–11]. This link 
is best explained by the important double role of the centro-
somal centrioles in both segregation of the sister chromatids 
during cell division and in ciliogenesis during the G0/G1 
phase of the cells cycle (Fig. 1a). As these roles of the centri-
oles are mutually exclusive, it requires the assembly and dis-
assembly of the cilia each round of the cell cycle (Fig. 1b). 
The terms centriole, centrosome, microtubule-organizing 

centre (MTOC), spindle pole and basal body are often used 
intertwined, but they do not always refer to the same struc-
tures (Fig. 1c). After facilitating segregation of the nuclear 
material during M phase, the centrioles migrate towards the 
plasma membrane. Here, the mother centriole docks to the 
plasma membrane using the distal appendages and drive the 
accumulation of ciliogenesis-specific proteins towards the 
pericentriolar matrix (PCM) to form the basal body, from 
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Fig. 1  Cilia and ciliation cycle. a Graphic representation of the cen-
trioles. During mitosis (M phase) the centrioles form the spindle 
poles to separate the nuclear material. In quiescence (G0 phase) the 
centrioles (red) are positioned at the base of the cilium (green). b 
The cilia assemble every cell cycle in G0/G1 phase and disassemble 
during S/G2 phase, during which the centrioles are positioned at the 
ciliary base. After detachment from the plasma membrane, the linker 
between the mother and daughter centriole dissolves, allowing the 
two centrioles to move towards the nucleus to form the spindle poles. 
Each mother centriole forms a new daughter centriole during the next 
cycle. c The centrosomes, displaying two structurally different centri-

oles surrounded by the pericentriolar material (PCM), act as the main 
MTOC both during spindle pole formation and ciliogenesis. Nonethe-
less, an MTOC can also arise without a centrosome [174]. The spin-
dle pole and basal body refer to the centrosome as an MTOC with the 
pericentriolar material, but either contain proteins specific to the cell 
cycle, or ciliogenesis. The centrosomes gather different complexes for 
these specific functions, enriching the PCM for different sets of pro-
teins, and making it more likely for interacting proteins to bind at the 
right phase of the cell cycle. d Schematic representation of the cilia 
and the ciliary regions that can be distinguished
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which the cilium extends [12, 13]. When the cilia are present 
at the cell membrane, the centrioles cannot migrate back to 
the nucleus to facilitate mitosis, therefore, cell cycle re-entry 
requires the release of the centrioles from the membrane to 
enable reconstruction of the mitotic spindle poles.

The primary cilium is a highly organized organelle 
(Fig. 1d) [14], and ciliary assembly and disassembly are 
complex, well-timed mechanisms that regulate the formation 
and breakdown of each ciliary component. Even though the 
basal body forms the root of the cilium, it also functions as 
a protein recruitment centre. Several mechanisms cooperate 
to deliver proteins to the ciliary base in a tightly regulated 
fashion. The ciliary membrane has a different composition 
than the plasma membrane and this is regulated at the ciliary 
pocket and transition zone (TZ) [15, 16]. The membrane of 
the cilium is enriched for signalling molecules and cilium-
specific membrane regulators. Other proteins that are not 
membrane-associated can be recruited from the cytoplasm 
to the centriolar satellites [17, 18]. To assure correct pro-
tein trafficking, a gating module is localized at the TZ just 
above the basal bodies [19, 20]. Active transport along the 
microtubules (MTs) that make up the ciliary axoneme is 
regulated by two sets of ‘Intraflagellar transport’ (IFT) pro-
teins: IFTA for retrograde transport to the ciliary base using 
dynein motor proteins and IFTB for anterograde transport 
to the tip of the cilia using kinesin motor proteins [21]. This 
strict regulation is also seen in ciliary maintenance during 
G0–G1 phase, by a constant balance between ciliary assem-
bly and disassembly [22].

Ciliary disassembly

Cilia can disassemble by either cilium resorption or cilium 
excision (Fig. 2a). During resorption, the primary cilium 
is broken down gradually at variating velocities and all 
components are resorbed by the cell [23–25]. On the 
other hand, during excision the membrane of the cilium is 
pinched to shed part of the cilium [25]. The latter is also 
called whole cilium shedding and is not to be confused 
with ciliary vesicle shedding, in which small membra-
nous vesicles are released extracellularly from the cilium 
[26–28]. Ciliary excision was previously reported in Chla-
mydomonas reinhardtii in which stress allowed to shear 
off the whole cilium at the TZ [29, 30]. This mechanism 
can be induced through an acidity shock or by Dibucaine 
treatment, leaving a cilium-enriched fraction after cen-
trifugation of the growth medium [30–32]. More recent 
reports have shown that this mechanism of cilium exci-
sion is also conserved in mammalian cells [25]. Although 
the role of primary cilium excision in mammalian cells 
requires further exploration, the significance of resorption 
as a mechanism of ciliary disassembly is well established 

and it has been shown that cilium resorption is essential 
for cell survival in cycling cells [33].

The core axis in ciliary resorption is stimulated 
through WNT

For a protein to be considered a ciliary resorption protein, 
it has to been proven that it influences ciliary length during 
ciliary disassembly, while it is not involved in ciliary exci-
sion or budding. The core players in ciliary resorption are 
represented by the NEDD9/AURKA/HDAC6 axis, located 
at the base of the cilia (Fig. 2b). HDAC6 destabilizes ciliary 
MTs through deacetylation [34, 35]. HDAC6 localizes the 
MTOC organizing protein AURKA to the basal body, where 
it is stabilized by NEDD9 (previously known as HEF1) 
[23, 36]. Since most proteins discussed here have multiple 
names, all proteins names, alternative names and their corre-
sponding IDs are summarized in Electronic Supplementary 
Material—Table 1. NEDD9 stabilization prevents ubiqui-
tin–proteasome system (UPS)-mediated degradation of 
AURKA [37]. In turn, AURKA promotes HDAC6-mediated 
axoneme destabilization, functioning as a feedforward loop 
in ciliary disassembly.

The NEDD9/AURKA/HDAC6 axis is promoted through 
multiple pathways, among which mitochondrial stimulation 
through CALM1 [38, 39]. Another example is autophagy, 
since serum-starvation is often used in cell culture to induce 
cell cycle arrest and stimulate cilium formation [40]. On 
the other hand, serum resupplementation is associated with 
MTOR activation, ciliary disassembly and cell cycle re-
entry. AURKA activation is also mediated by PCM1, which 
recruits PLK1 to the basal body during ciliary disassembly 
[41]. Furthermore, PIFO-dependent AURKA activation pro-
motes ciliary disassembly and is linked to left–right symme-
try patterning [42, 43]. Last, the best-described pathway to 
stimulate ciliary resorption is WNT signalling. WNT signal-
ling promotes cell cycle division and is essential in embry-
onic development, but also stimulates the NEDD9/AURKA/
HDAC6 axis [44]. Extracellular WNT5A activates FZD1 
on the cell membrane to promote DVL2 signalling [45]. In 
turn, DVL2 promotes PLK1-dependent phosphorylation of 
AURKA, resulting in more potent deacetylation by HDAC6. 
Furthermore, PLK1 enhances the MT depolymerisation 
through kinesin motor protein KIF2A in ciliary disassembly 
[46]. Thus far, one potentially pathogenic KIF2A mutation 
has been found in patients with microcephaly [47].

There are several WNT5A mutations that are linked to 
Robinow syndrome. Robinow has previously been indicated 
as a possible ciliopathy due to the overlap in symptoms com-
pared to skeletal ciliopathies [48]. It would, therefore, be 
interesting to determine what the molecular influence is of 
these WNT5A mutations on ciliary disassembly and func-
tion. Another hypothesized ciliopathy causing mutation is 
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the premature stop mutation 282A > T in HDAC6, since it 
causes chondrodysplasia, brachydactyly, hydrocephaly and 
microphthalmia (Table 1) [49]. Furthermore, as part of the 
core disassembly axis, a tight regulation of NEDD9 and 

AURKA is essential. For NEDD9, there are no known path-
ogenic mutations, however, high protein levels are associated 
with breast cancer [37]. High protein levels of ARUKA are 
associated with several types of tumours and poor survival 
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rates [50, 51]. Overall, AURKA is considered the key link 
between ciliary disassembly and tumour development, which 
has recently been reviewed in depth [52].

The cell cycle complex APC/C plays a key role 
in ciliary resorption

Next to its role in anaphase, the E3 ubiquitin ligase APC/C 
is also involved in ciliary disassembly. Its complex member 
ANAPC2 and APC/C co-activator CDC20 promote ciliary 
disassembly, potentially by targeting ciliary components 
for UPS-mediated degradation [53]. The mitotic check-
point complex (MCC) cell cycle regulator, consisting of 
BUB1B, BUB3 and MAD2L1, is thought to competitively 
bind CDC20, to prevent APC/C-CDC20 complex formation 
during G0/G1 phase [54]. BUB1B has been shown to func-
tion as a negative regulator of ciliary disassembly [54]. Next 
to CDC20, the APC/C can also be activated through FZR1 
(previously known as CDH1), to target a different set of pro-
teins. Furthermore, CDC20 knockdown and FZR1 overex-
pression resulted in reduced DVL2 levels [54] and ANAPC2 
is required for cilia polarity through DVL2-WNT signalling 
[55]. Together these data suggest that APC/C-CDC20 is a 
disassembly promoter, while APC/C-FZR1 might inhibit 
ciliary disassembly.

The role of PLK1 in this process remains unclear. PLK1 
depletion results in decreased CDC14A-dependent dephos-
phorylation of FZR1 [56] and CDC14A is a positive regu-
lator of ciliogenesis [57]. Furthermore, PLK1 activity is 
promoted by the APC/C, which both support the idea that 
FZR1 might be a ciliary resorption inhibitor. On the other 
hand, during M phase, APC/C-CDC20 targets PLK1 and 
BUB1B for proteasomal degradation upon correct kine-
tochore attachment, to allow mitotic exit [58, 59]. Muta-
tions in BUB1B are associated with MVA, colorectal cancer 
(CRC), and premature chromatid separation (PCS), but there 
are no known pathogenic patient mutations for PLK1 [60, 
61]. Together, these data indicate that the exact mechanism 

of PLK1 and APC/C regulation is dependent on the specific 
spatiotemporal conditions and that their role might differ if 
the cell is in mitosis or performing ciliary disassembly.

The APC/C regulates its function in ciliary disassembly 
through multiple targets. One group is the family of ‘never 
in mitosis gene A’ ‘(NIMA) related kinase’ (NEK) family 
of kinases, that are thought to function as cell cycle and 
checkpoint control proteins [62]. NEK1 promotes centro-
some stability during ciliogenesis and is associated with 
polycystic kidney disease (PKD) [63], and skeletal ciliopa-
thies [64]. NEK1 is linked to ciliary tubulin organization 
through CEP104, while APC/C-mediated degradation of 
NEK1 is required for ciliary resorption [53, 65, 66]. In addi-
tion, NEK2-mediated activation of KIF24 is required for 
ciliary disassembly [67] and incorrect functioning of NEK2 
is related to the ciliopathy retinitis pigmentosa (RP) [68]. 
Overall, the family of NEK proteins is associated with dif-
ferent types of tumours [62].

Next to the NEK proteins, the APC/C can influence cili-
ary resorption through AURKA activation or degradation. In 
turn, this influences HDAC6-regulated ciliary disassembly 
through INVS, which marks the ciliary INVS/NPHP3 com-
partment, located just above the TZ in the cilium. Mutations 
in INVS cause the ciliopathy Nephronophthisis (NPHP) type 
2 [69, 70]. It binds ANAPC2 to promote DVL2 degradation 
and, as a consequence, inhibits AURKA phosphorylation 
by PLK1 [71]. In mature human retinal pigment epithelium 
(RPE) cells it has been shown that this mechanism is used 
in fully differentiated cells to inhibit ciliary disassembly by 
recruiting INVS to the base of the cilium [72]. Interestingly, 
INVS also binds directly to yet another NEK protein family 
member, NEK8, recruiting it to the ciliary INVS/NPHP3 
compartment [73]. This recruitment requires hydroxylation 
of INVS and ANKS6 by HIF1AN [74], and mutations in 
NEK8 underly the renal ciliopathy NPHP type 9. NEK8 is 
important for cell cycle regulation through the Hippo sig-
nalling pathway, and in turn, the Hippo and WNT pathways 
closely interact to regulate gene transcription [75, 76]. None-
theless, it has not yet been investigated if NEK8 is also a 
target of direct APC/C-mediated degradation, like NEK1. 
In conclusion, the APC/C has many interactors to regulate 
the cell cycle and ciliary resorption, but whether it is a cili-
ary resorption promotor or repressor might depend on the 
co-activator that is bound.

Centrosomal proteins are involved in ciliogenesis, 
ciliary resorption and ciliary excision

The centrosomal core proteins travel along with the centri-
oles from the spindle poles in M phase to the ciliary base 
in G1/S phase. It has been shown that the depletion of cen-
trosome-associated proteins, among which PCM1, tubulin, 
and NEK2, results in a decrease in ciliogenesis [77]. In this 

Fig. 2  Ciliary disassembly mechanism. a A schematic representation 
of ciliary resorption versus ciliary excision. b The core axis of cili-
ary disassembly is regulated through the NEDD9/AURKA/HDAC6 
pathway that drives ciliary resorption. This axis can be stimulated by 
the mitochondria, extracellular WNT signalling and cell cycle regula-
tors. The criteria for a protein to be considered a ciliary resorption 
protein, and to be included in this schematic overview, the protein has 
to influence ciliary length during disassembly, but is not involved in 
ciliary excision or budding. All of these proteins with a confirmed 
role in ciliary resorption are shown in blue. In addition to these, pro-
teins shown in grey and with dotted lines indicate known interactors 
of these resorption proteins, but which have not yet been investigated 
in the context of ciliary resorption specifically. PLK1 both stimulates 
and inhibits ciliary resorption by phosphorylation of a wide variety 
of targets. The APC/C stimulates ciliary resorption when activated by 
CDC20. For CENPJ, the exact role in ciliary resorption remains elu-
sive

◂
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process the loss of centrosome integrity results in G1 to 
S phase cell cycle arrest through MAPK14 (p38α), TP53 
and CDKN1A (p21) cell cycle regulators [77], possibly by 
disruption of CEP131, PCM1 and CEP290 localization in 
the centriolar satellites [78]. PCM1 seems to be essential 
for both ciliogenesis and ciliary disassembly, most likely 
through its role in the recruitment of proteins to the basal 
body and centriolar satellites. On the other hand, centroso-
mal protein CEP41 blocks HIF1A UPS-mediated degrada-
tion and in turn, HIF1A stimulates AURKA phosphoryla-
tion, which promotes ciliary resorption [79]. Interestingly, 
HIF1AN is, next to its role in NEK8 localization, a direct 
inhibitor of some HIF1A interactions under normoxia con-
ditions [80], making it an interesting target to study with 
regards to ciliary resorption and cellular oxygen-sensing. 
Another centrosomal protein, CENPJ (also known as CPAP 
or SAS4) has opposing roles during ciliary disassembly and 
mitosis, which seems to be a characteristic for disassembly-
related proteins.

CENPJ has been indicated to promote ciliary resorption 
and is essential for maintenance of the neural progenitor 
pool by forming a scaffold for NDE1, AURKA and OFD1 
[81]. In contrast, others have reported that it promotes cen-
triole elongation and is required for centriole duplication 
in late mitosis [82, 83]. This led to the opposing finding 
that CENPJ is a promoter of ciliogenesis and its expression 
decreased upon the induction of ciliary disassembly, which 
was not seen for disassembly proteins AURKA, PLK1 and 
NEK2 [84]. CENPJ is associated with Seckel syndrome 
(SCKL) and Microcephaly (MCPH) [85, 86]. The precise 
function of CENPJ in ciliary resorption might be dependent 
on its interacting proteins at the centrosomes.

CCP110 (also known as CEP110) has been shown to 
supress cilium assembly in conjunction with CEP97 by 
capping the mother centriole [87], and by association with 
a complex of other centrosomal proteins, among which 
CEP290 (NPHP6), RAB8A, CEP104, and CENPJ [88–92]. 
In turn, CEP290, NPHP4, RPGRIP1L (NPHP8), TMEM107 
and TMEM216 have been indicated in ciliary excision [93]. 
Mutations in CEP290 cause a variety of ciliopathies, includ-
ing ‘Joubert syndrome’ (JBTS) [94], ‘Leber congenital 

Table 1  Ciliary resorption regulators and related diseases

An overview of all validated ciliary resorption proteins, as indicated 
in blue in Fig. 2b, and weather these positively (↑) or negatively (↓) 
regulate ciliary resorption. For a protein to be included here as a cili-
ary resorption regulator, it has to meet the criteria that it influence 
ciliary length during ciliary disassembly, while it is not involved in 
ciliary excision or budding. The genetic variants indicate the total 
number of ClinVar genetic variants affecting only this gene (exclud-
ing multigene insertions, deletions and copy number variants). 
Between () is the number of these variants that are indicated as 
‘Likely pathogenic’, ‘Pathogenic’, ‘Risk factor’ or ‘Conflicting inter-
pretations’. For CENPJ, there are conflicting reports whether it is a 
resorption promotor or repressor.
ALS amyotrophic lateral sclerosis, CDCBM cortical dysplasia, com-
plex, with other brain malformations, CPVT ventricular tachycardia, 

Name OMIM disease Genetic vari-
ants (patho-
genic)

Resorp-
tion 
regulator

ANAPC2 – 3 (0) ↑
AURKA CRC (MIM 114500) 3 (2) ↑
BUB1B MVA (MIM 257300) 234 (20) ↓

PCS (176430)
CRC (MIM 114500)

CALM1 LQT (MIM 616247) 45 (14) ↑
CPVT (MIM 614916)

CCP110 – 10 (0) ↓
CDC14A DFNB (MIM 608653) 37 (11) ↓
CDC20 – 2 (0) ↑
CDK5 LIS (MIM 616342) 9 (1) ↓
CENPJ MCPH (MIM 608393) 149 (44) ↑↓?

SCKL (MIM 613676)
CEP41 JBTS (MIM 614464) 182 (15) ↑
DVL2 – 5 (0) ↑
FBXW7 – 31 (14) ↓
FZD1 – 2 (0) ↑
HDAC6 Ciliopathy1 (MIM 300863) 33 (1) ↑
HIF1A – 14 (0) ↑
INVS NPHP (MIM 602088) 239 (45) ↓
KIF24 – 11 (0) ↑
KIF2A CDCBM (MIM 615411) 75 (7) ↑
NDE1 MHAC (MIM 605013) 97 (17) ↑

LIS (MIM 614019)
NDEL1 – 0 (0) ↑
NEDD9 – 3 (0) ↑
NEK1 SRTD/SRPS 

(MIM263520)
202 (47) ↓

ALS (MIM 617892)
NEK2 RP (MIM 615565) 11 (1) ↑
PAFAH1B1 LIS (MIM 607432) 257 (124) ↑
PCM1 – 20 (0) ↑
PIFO – 0 (0) ↑
PLK1 – 1 (0) ↑↓
TTK – 6 (1) ↑
VDAC3 – 0 (0) ↑
WNT5A DRS (MIM 180700) 113 (11) ↑

catecholaminergic polymorphic, CRC  colorectal cancer, DFNB deaf-
ness, with or without immotile sperm, DRS robinow, JBTS Joubert 
syndrome, LIS lissencephaly, LQT long QT syndrome, MCPH micro-
cephaly, MHAC microhydranencephaly, MVA mosaic variegated ane-
uploidy syndrome, NPHP nephronophthisis, PCS premature chroma-
tid separation, RP retinitis pigmentosa, SCKL Seckel syndrome, SRPS 
short-rib polydactyly syndrome, SRTD short-rib thoracic dysplasia
1 The referred mutation in HDAC6 might cause a ciliopathy, since 
patients present with common ciliopathy symptoms; chondrodyspla-
sia with platyspondyly, distinctive brachydactyly, hydrocephaly, and 
microphthalmia.

Table 1  (continued)
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amaurosis’ (LCA) [95] and ‘Meckel syndrome’ (MKS) [96]. 
Furthermore, RPGRIP1L [97, 98], TMEM107 [99, 100] and 
TMEM216 [101, 102] malfunctioning are also associated to 
JBTS and MKS among others, while mutations in NPHP4 
[103, 104] are associated with NPHP and ‘Senior-Loken 
syndrome’ (SLS) ciliopathies. Overall, centrosomal proteins 
seem to have a role in ciliogenesis, ciliary resorption and 
ciliary excision and are associated with a range of ciliopa-
thies, while other ciliary resorption proteins are more often 
associated with microcephaly and tumour formation.

In summary, ciliary resorption depends upon a complex 
interplay of proteins including the APC/C and WNT signal-
ling. Many of the proteins involved in ciliary resorption also 
play a role in cell division and disruption of these mecha-
nisms can lead to microcephaly and a variety of cancers. 
The centrosomal proteins at the base of the cilium also 
seem to affect ciliary resorption, but ciliary excision and 
ciliogenesis as well. Therefore, the mechanisms involved in 
cilium resorption might be different from the ones involved 
in ciliary excision, which is underpinned by the fact that 
ciliary excision proteins are associated with a variety of cili-
opathies, even though ciliary resorption proteins are more 
often associated with tumour formation and microcephaly. 
The latter might be explained by the double role of many 
ciliary resorption proteins in mitosis. Nonetheless, we do 
not fully understand how these proteins specifically disturb 
brain formation during embryology rather than affecting all 
mitotic process.

Mitotic structures: kinetochores and spindle 
poles

After ciliary disassembly, the centrioles migrate back to the 
nucleus, where they behave again as the main MTOC by 
nucleating an assembly of MT-polymerizing proteins that 
form the spindle poles. The plus-ends of the MTs are bound 
to the kinetochore with the help of the fibrous corona. The 
kinetochore consists of three layers: the corona, the outer 
kinetochore and the inner kinetochore (Fig. 3a). Kinetochore 
function and architecture have been reviewed in detail 
[105–109]. In summary, the corona is required for the cor-
rect positioning of the chromosomes towards the equatorial 
plane by binding of the MTs that extend from the MTOC. 
Since it is more likely to bind an MT at the side, rather than 
at the end, the corona provides a lateral to end-on conversion 
with the help of motor proteins [110]. CENPF recruits the 
NDE1/NDEL1/PAFAH1B1 (also known as LIS1) dynein 
motor complex to the kinetochore [111]. Both the minus-
end-directed motor protein dynein and the plus-end-directed 
CENPE protein are required for correct localization of the 
kinetochores at the MT plus-ends [112, 113].

The kinetochores are aligned on the equatorial plane in 
bi-orientation to assure that each sister chromatid is attached 
to the opposite spindle pole. BUB1 recruits the KNTC1 
(also known as ROD)-ZWILCH-ZW10 (RZZ) complex and 
BUB1B proteins to the kinetochores for the regulation of 
MT embedding and chromosome segregation [114]. Chro-
mosome segregation and the onset of anaphase are strictly 
inhibited by the spindle poles until each kinetochore is 
attached to MTs [115]. Upon correct attachment of all kine-
tochores, CDC20 activates the APC/C to polyubiquitinate 
PTTG1 (Securin), marking it for UPS-mediated degrada-
tion. In turn, PTTG1 can no longer inhibit ESPL1 (Separin), 
which cleaves the Cohesin ring complex that keeps the two 
sister chromatids together. This precise regulation is essen-
tial, since chromosome missegregation is linked to MVA and 
tumour formation [60, 61]. When the kinetochore is posi-
tioned end-on, the KNL1/MIS12/NDC80 (KMN)-complex 
embeds the plus-ends of the MTs into the outer kinetochore 
[116]. During mitosis, the kinetochore is attached to the cen-
trosomes with the help of the inner kinetochore centromere 
protein (CENP) family, of which the members are rich in 
DNA-binding motifs.

The link between the MTOC and the kinetochores 
is strengthened by the formation of kinetochore fibres 
(k-fibres). These fibres are formed by bundling and cross-
linking of the MTs, and are required to withstand the high 
mechanical forces involved in chromosome segregation. 
Incorrect cross-linking of the MTs to form the k-fibres and 
mutations in depolymerising MT-tracking protein CENPF 
have been linked to microcephaly [117–119]. Intriguingly, 
this phenotype is seen in a variety of ciliopathies, among 
which ‘Mental retardation, truncal obesity, retinal dystrophy, 
and micropenis’ (MORM), suggesting a functional overlap 
of the proteins involved in k-fibre formation [120].

At the end of M phase, the kinetochores are dissociated, 
the MTs depolymerised, and the centrioles are released 
[121–123]. It is interesting to see that upon the formation of 
a new cilium in the next G1 phase, not only the centrioles, 
but also many of these kinetochore proteins play a role in 
ciliary assembly, disassembly, or functioning.

Conservation between cell cycle and ciliary 
disassembly proteins

We have briefly touched upon the double role of some cell 
cycle regulators in ciliary disassembly and vice versa. If 
we look at the structural conservation between the cilia and 
kinetochores, we can see that the further you go towards the 
outside of the kinetochores, the more proteins you will find 
that play a role in ciliary disassembly (Fig. 3b).
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Outer kinetochore proteins, but not inner 
kinetochore proteins, play a role in ciliary 
disassembly

Starting at the inner part, none of the inner kinetochore 
proteins have been detected in cilia. This is best explained 
by the role of the inner kinetochore proteins in binding of 
the kinetochore to the DNA. Since this is not required in 
cilia formation, the CENP family of DNA-binding proteins 
are not found in cilia. However, there are three CENP fam-
ily members, CENPJ, CENPF, and CENPE that do have a 
function in ciliogenesis or ciliary disassembly. Nonetheless, 
these three proteins do not have DNA-binding motifs and 
are not localized at the inner kinetochore, but at the spindle 
poles or corona instead.

Furthermore, the outer kinetochore proteins play an 
important role in ciliary disassembly and cell division. 
PLK1 is one of the proteins that is rooted deeply in both 
processes. In addition, cell cycle protein TTK (also known 
as MPS1) also plays a role in ciliary disassembly. During M 
phase, TTK is required for the localization of CENPE to the 
kinetochores [124, 125]. Here, it regulates APC/C-CDC20 
activity through MAD2L1 of the MCC. After cell division, 
TTK moves to the base of the cilia, where it is required for 
recruitment of mitochondrial channel protein VDAC3 and, 
in turn, ciliary disassembly [126]. VDAC3 is thought to be 
essential for UPS-mediated degradation of multiple targets 
during ciliary disassembly [127]. It has not been shown if 
TTK also regulates CDC20 in ciliary disassembly as it does 
during cell division.

Overlap in microtubule regulators between mitosis 
and ciliary disassembly

In contrast to outer kinetochore proteins PLK1 and TTK, 
the KMN complex that binds the MTs in the kinetochores 
does not seem to be conserved in cilia. Instead, the ciliary 
tip module, positioned at the kinetochore corona, is thought 
to connect the ciliary membrane to the MTs. This docking is 

performed by the plus-end tracking tip proteins (+TIP), MT-
binding proteins, and the IFT complex [128–130]. The plus-
end tracking tip proteins MAPRE1 (EB1) and MAPRE3 
(EB3) are conserved between kinetochores and cilia, but also 
play a role in the organization of other organelles [131–133]. 
At the kinetochores, they form a complex with CLASP1, 
CLASP2, CLIP1, CLIP2 and CKAP5 (also known as ch-
TOG) [134, 135]. Even though these interacting proteins 
are not directly linked to ciliary disassembly, it is interesting 
to see that not CKAP5, but another TOG-domain protein, 
TOGARAM1, is involved in MT organization in cilia [136] 
and that recent studies have linked TOGARAM1 to Joubert 
syndrome [137]. Furthermore, CLASP1, CLASP2, CLIP1 
and CLIP2 interactors are previously indicated to have a role 
in ciliary disassembly, including CENPE, CENPJ, PLK1, 
and dynein regulator PAFAH1B1. Together these data sug-
gest that there might be a role for more of the +TIP proteins 
in ciliary disassembly, or that these cell cycle proteins have 
a counterpart with similar protein domain structures, which 
shadows their role in ciliary disassembly, as seen for CKAP5 
and TOGARAM1.

In addition to the +TIP module, other MT regulators 
localized at the kinetochore corona during M phase have 
been indicated to position towards the cilia during G0/G1. 
These include, CENPE, CENPF, and the Dynein regula-
tory complex. Even though most of the family of CENP 
proteins are positioned at the inner kinetochore, CENPE 
and CENPF localize at the corona [138, 139]. CENPE is a 
plus-end directed motor protein that counteracts the minus-
end directed Dynein proteins in positioning of the kineto-
chores and end-on attachment of the MTs [112, 140, 141]. 
CENPF is required for localization of the NDE1/NDEL1/
PAFAH1B1 module at the kinetochores [111, 138]. On the 
other hand, during quiescence, CENPF localizes at the cen-
trioles at the base of the cilia and has been shown to interact 
with CEP290 and ATF4 [118]. ATF4 is linked to skeletal 
and neuronal development [142, 143]. CEP290 is located at 
and just below the ciliary TZ during G0/G1 [144], and muta-
tions in CEP290 cause a variety of ciliopathies (as discussed 
above). These examples underpin the importance of under-
standing the role of kinetochore proteins in ciliary function.

NDE1 regulates dynein and is required for the positioning 
and functioning of a variety of cell organelles. Dynein is a 
minus-end directed motor protein and together with dyn-
actin important in MT elongation [145]. NDE1, together 
with NDEL1 and PAFAH1B1, regulates nuclear migration, 
Golgi localization, kinetochore positioning, and ciliary dis-
assembly [146, 147]. The complex is recruited to the mother 
centriole by CENPJ [81]. Targeting of NDE1 or NDEL1 to 
the membrane through palmitoylation lowers the amount of 
cytoplasmic dynein and decreases dynein-mediated traffick-
ing [146, 148]. Deletion of NDE1 results in a loss of mem-
brane bound dynein, leading to microcephaly [149]. This 

Fig. 3  Conservation between the cilia, kinetochores and spindle 
poles. a Schematic representation of the kinetochore, and the key 
proteins present in each part of this structure. Individual proteins 
are indicated as circles (blue), protein complexes as squares (green). 
The MTs are docked onto the outer kinetochore. The corona con-
tains many different proteins and protein complexes (inset), which 
either affect MT and dynein organization or cell cycle regulation. The 
MTs are bundled and crosslinked to withstand the high mechanical 
forces between the kinetochores and spindle poles prior to and upon 
segregation of the sister chromatids. b Many proteins and protein 
complexes are conserved between the cilia, kinetochores and spin-
dle poles. Proteins that have been confirmed to play a role in ciliary 
resorption are marked (bold). The proteins are sorted per module and 
their organization in the two structures seems to be dependent on the 
MT organization, from minus at the bottom to plus at the top

◂
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same phenotype is seen with mutations in other proteins that 
regulate both the cell cycle and ciliary disassembly, among 
which CENPF, CENPJ, and KIF2A [86, 118, 150].

During G0/G1, NDE1 stimulates ciliary disassembly 
and cell cycle re-entry in an AURKA-dependent manner 
[147]. To allow ciliary elongation during ciliogenesis, 
CDK5 primes NDE1 for polyubiquitination by the E3 ligase 
FBXW7, targeting NDE1 for UPS-mediated degradation 
[151]. CDK5, NDE1 and PAFAH1B1 are essential in neu-
ral migration during brain development and mutations have 
been shown to cause lissencephaly [149, 152–155]. Of inter-
est is that NDE1 and NDEL1 are located near the mother 
centriole at the base of the cilia during quiescence, while 
their downstream target PAFAH1B1, is located along the 
ciliary axoneme in a similar manner as Dynein [111, 146, 
156] (Fig. 3b).

Dynein associates with the nuclear pore complex (NPC) 
members RANBP2 (NUP358), RANGAP1 and XPO1 
(CARM1) at the kinetochores and this same association has 
been suggested to occur in the ciliary axoneme as a coun-
ter partner of the RAN/Importin complex that is required 
for nuclear and ciliary gating [107, 157–159]. This idea 
is supported by the fact that multiple nuclear pore (NUP) 
complex members have been identified to interact with 
IFTs at the base of the cilia in G0/G1 phase [19, 160]. For 
instance, NUP62 indirectly interacts with IQCB1 (NPHP5) 
and CEP290 (NPHP6) through NUP93, and it is targeted 
towards the ciliary tip in a KIF17-dependent manner [19]. 
Furthermore, inhibition of XPO1 has been shown to increase 
ciliary localization of SHH transcription factor GLI2 [160]. 
Lastly, it has been shown that RANBP2 is required for cor-
rect photoreceptor formation and functioning in mice [161]. 
It would be valuable to identify the entire Dynein/XPO1 
complex in cilia, and to see if it functions in a similar man-
ner as it does during the cell cycle.

A last interesting note is that most of the kinetochore 
corona cell cycle regulators are positioned at the base of the 
cilia during G0/G1, while many of the MT regulators are 
located along the ciliary axoneme or at the ciliary tip. Get-
ting a better understanding of the localization and function 
of these modules in ciliary disassembly might prove valuable 
in the search for therapeutic targets.

Overlapping mechanisms reveal cell cycle regulators 
with a potential role in ciliary resorption

Next to the MT regulators, there is a second group of pro-
teins positioned at the kinetochore that plays a role in ciliary 
disassembly, being the APC/C and its regulators (Fig. 3a). 
Studying mitotic interactors of this complex in a ciliary-spe-
cific manner might reveal novel insight into the mechanism 
of ciliary resorption.

First, a role for BUB1B, ANAPC2 and CDC20 is well 
established in ciliary disassembly, however not all of the 
APC/C members and its regulators have been indicated to 
function in ciliary processes as of yet (Fig. 3b). For exam-
ple, ANAPC2 and CDC20 have been shown to localize to 
the base of the cilia prior to and during ciliary disassembly, 
however, FZR1 localization at the base of the cilia could 
not be confirmed in quiescent cells or during ciliary disas-
sembly [53]. To our knowledge, other APC/C components 
have not been studied with respect to ciliary localization 
thus far. Furthermore, the MCC is indicated to downregulate 
APC/C-CDC20 activity during G0/G1, and MCC-member 
BUB1B is a negative regulator of ciliary disassembly [54]. 
Nonetheless, since all MCC studies, thus, far focused on 
the cell cycle, it remains to be demonstrated the other MCC 
members, MAD2L1 and BUB3, are indeed also inhibit-
ing CDC20 at the base of the cilia. The same accounts for 
CDC20-regulators BUB1 and the RZZ. During mitosis, 
BUB1 is required for BUB1B and RZZ recruitment to the 
kinetochores [114]. Here, the RZZ complex stimulates the 
MCC in downregulation of APC/C-CDC20 activity. Next to 
the MCC, the BUB1–PLK1 complex inhibits CDC20 in an 
MCC-independent manner, but it is unclear if this mecha-
nism also functions during disassembly [162]. It would be 
interesting to see if MAD2L, BUB3, BUB1 and the RZZ 
have a similar mechanism of regulating BUB1B and CDC20 
in ciliary disassembly by determining the exact spatiotempo-
ral positions of these interactors. Second, another interesting 
target to study regarding ciliary resorption is BORA, since 
AURKA activation by BORA has been shown to be essen-
tial in mitosis, but it remains unclear if the same applies 
to ciliary resorption [163]. During anaphase, PLK1 marks 
BORA and AURKA for proteasomal degradation. The latter 
is regulated through the anaphase promoting complex/cyclo-
some (APC/C), which can polyubiquitinate AURKA after 
the complex is activated through FZR1. Another method 
through which the APC/C might influence AURKA in ciliary 
resorption is the APC/C E2 ubiquitin-conjugating enzymes 
UBE2C. This protein is required for polyubiquitination in 
the process of APC/C-dependent UPS-mediated degradation 
[164]. Inhibition of UBE2C leads to a reduction of AURKA 
phosphorylation. It remains unclear if it functions as an E2 
after APC/C activation through CDC20 or FZR1 and if this 
process also occurs during ciliary resorption. Lastly, the later 
also applies to PTP4A3, which promotes AURKA degrada-
tion through APC/C-FZR1 in colorectal cancer progression 
[165]. Studying the role of BORA, UBE2C and PTP4A3 in 
a ciliary resorption-specific manner might reveal new cilium 
disassembly mechanisms that overlap with known mitotic 
mechanisms.
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Finding therapeutic targets by scrutinizing 
the conserved mechanisms

Looking at the type of disorders associated with defects 
in ciliary disassembly, we have to distinguish two groups 
of patients. On the one hand, the patients suffering from 
ciliopathies and developmental disorders, which are more 
often related to ciliogenesis and ciliary excision. These 
ciliopathies are caused by genetic predispositions leading 
to disruptions in embryonic development. Consequently, 
these are often embryonically lethal, hence, for this group 
of patients, finding the causative mutation is more relevant 
for genetic counselling of the expecting parents, than finding 
a therapeutic target. On the other hand, we have the group 
of patients showing MVA and different types of tumours. 
Although ciliogenesis defects are not typically linked to 
increased tumour formation [166], the opposite is true for 
ciliary disassembly proteins regulators [9, 167, 168]. The 
latter might be explained by the double role of ciliary resorp-
tion proteins in mitosis.

To get a better understanding of the possible therapeutic 
targets, the proteins involved in post-translational modifi-
cations (PTMs) might reveal interesting targets. PTMs are 
essential for proper ciliary disassembly. One example is 
microtubule acetylation, required for dimerization and auto-
assembly to form the ciliary axoneme and, in turn, tubulin 
deacetylation by HDAC6 is required for ciliary disassembly 
[35, 169]. Another example is the highly diverse PLK1 that 
has opposing roles in both ciliary disassembly and mitosis 
based on its spatiotemporal position. Lastly, ubiquitination 
has been shown to increase upon the initiation of ciliary 
disassembly. Moreover, the relevance of UPS-mediated deg-
radation in cell division and signal transduction has been 
known for almost 30 years now [170–173].

Getting a better understanding of the conservation 
between these two mechanisms is essential in the develop-
ment of cancer treatment. One excellent example of this is 
the targeting of NEDD9 as an AURKA stabilizer in cili-
ary disassembly to potentiate AURKA treatment in breast 
tumours [37].

Conclusion

In summary, many proteins involved in cilium disassembly 
also play a role in cell division. This conservation is not 
only seen for centrosomal proteins, but also for a range of 
other protein, among which kinetochore proteins and MT 
regulators. Misregulation of these proteins or mutations in 
the genes encoding them can lead to a variety of diseases 
affecting neuronal development, or can lead to tumour 

development across a range of different cancers. Getting a 
better understanding of the conservation between mitosis 
and cilium resorption might prove pivotal in developing 
therapeutic targets for these diseases.
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