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Abstract

Cellular senescence is a process that can prevent tumour development in a cell autonomous manner by imposing a stable cell
cycle arrest after oncogene activation. Paradoxically, senescence can also promote tumour growth cell non-autonomously by
creating a permissive tumour microenvironment that fuels tumour initiation, progression to malignancy and metastasis. In
a pituitary tumour known as adamantinomatous craniopharyngioma (ACP), cells that carry oncogenic f-catenin mutations
and overactivate the WNT signalling pathway form cell clusters that become senescent and activate a senescence-associated
secretory phenotype (SASP). Research in mouse models of ACP has provided insights into the function of the senescent
cell clusters and revealed a critical role for SASP-mediated activities in paracrine tumour initiation. In this review, we first
discuss this research on ACP and subsequently explore the theme of paracrine tumourigenesis in other tumour models avail-
able in the literature. Evidence is accumulating supporting the notion that paracrine signalling brought about by senescent
cells may underlie tumourigenesis across different tumours and cancer models.

Keywords Pituitary tumour - Cancer stem cells - SOX2 - WNT/B-catenin - Oncogene-induced senescence - Therapy-
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Introduction

Almost over 60 years ago, it was first reported that continu-
ous in vitro culturing of human cells results in a gradual
but ultimately complete decay of their proliferative capac-
ity [1, 2]. The term cellular senescence was then applied
to describe this particular phenomenon as it was hypoth-
esized to be the result of a deterioration in the cell’s homeo-
static functions with time, a process resembling organismal
aging [3]. However, recently acquired understanding of
the complexity and heterogeneity of this phenomenon has
revealed that senescent cells can be anything but a simple
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manifestation of decay and dysfunction, as their name might
otherwise suggest.

The early concept of cellular senescence has now been
expanded to describe a growing list of phenotypes initiated
by damaging stimuli such as telomere attrition, ionizing
radiation, chemotherapeutic compounds, reactive oxygen
species (ROS), mitochondrial dysfunction and oncogenic
signalling [4]. Importantly, all of these phenotypes share
common hallmark features such as the activation of DNA-
damage pathways, cell cycle arrest mediated by the p16™54/
Rb and p21“*1/p53 pathways, the activation of anti-apop-
totic mechanisms and the widespread secretion of growth
factors, cytokines, chemokines and extracellular matrix com-
ponents (collectively known as the senescence-associated
secretory phenotype or SASP). The different types of senes-
cent phenotypes and their underlying mechanisms have been
thoroughly reviewed elsewhere [4, 5].

Senescent cells and the SASP can induce a vast array of
context-dependent effects, playing significant roles in the
regulation of normal tissue physiology but also in disease.
Senescent cells can be found in several tissues during embry-
onic development and participate in the proper patterning of
some organs and tissues [6-9]. After development, senescent
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cells are also involved in tissue regeneration and wound
repair in several organs, although their exact role appears to
be more complex and context dependent. While they have
been reported to play beneficial roles in acute wound repair
[10-16], the opposite has been observed during chronic
wounding scenarios [17-20]. This detrimental aspect of
long-term senescent cell accumulation has also been widely
described in the development of several pathologies, includ-
ing those related to organismal ageing (e.g. atherosclero-
sis, rheumatoid arthritis, metabolic dysfunction, diabetes
and neurodegenerative diseases, among many others). It is
possible that this dichotomy is related to a tight regulation
of dynamic balances between contrasting SASP activities,
such as the paracrine promotion of cellular plasticity and
reprogramming on one side, and the induction of by-stander
senescence and inflammation on the other [21, 22]. Impor-
tantly, there is evidence demonstrating that the SASP can
lead to widespread effects beyond the microenvironment,
such as driving systemic inflammation and haemostasis,
as well as mediating several side effects of chemotherapy
including decreased physical activity and strength, bone
marrow suppression and cancer recurrence [23-26]. Both
detrimental and beneficial activities of senescent cells and
the SASP have previously been reviewed in detail [27-29].

In the case of cancer and neoplastic diseases, senescence
can be induced cell autonomously by oncogene activation
(i.e. oncogene-induced senescence, OIS) or through thera-
peutics such as DNA-damaging chemical compounds and
ionizing radiation (i.e. therapy-induced senescence, TIS),
which lead to the activation of DNA-damage pathways and
the activation of a stable cell cycle arrest [30]. Additionally,
the SASP can induce senescence cell non-autonomously in
neighbouring cells (i.e. paracrine-induced senescence or
bystander effect) or mediate cancer cell clearance by the
immune system [31]. For this, cellular senescence has been
widely regarded as an innately protective mechanism that
restricts cancer cell proliferation and tumour growth [32,
33]. However, the paradigm of senescence as a tumour-
suppressing mechanism has been challenged by studies
showing that senescent cells and the SASP can represent
a double-edged sword with serious negative effects in can-
cer and other diseases. In particular, there is mounting evi-
dence showing that paracrine SASP signals can stimulate
several pro-tumourigenic cellular and molecular processes
such as cancer cell proliferation, progression to malignancy,
immune system evasion, resistance to therapy-induced apop-
tosis, angiogenesis, formation and maintenance of metastatic
niches, as well as increased cell invasiveness, migration
and epithelial-to-mesenchymal transitions (EMT) [34—41],
and even induce tumour formation cell non-autonomously
[42, 43]. We refer the reader elsewhere for comprehensive
reviews on the pro-tumourigenic activities of senescence and
the SASP [30, 44-46].
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The cell non-autonomous origin of some tumours stands
in stark contrast to traditional models of carcinogenesis
[47-49]. A review of the available evidence supporting this
scarcely discussed mechanism could provide further insights
into the role of senescence in cancer. In this manuscript,
we discuss studies on senescence and the SASP which have
improved our understanding of the origins and biology of
a paediatric pituitary tumour known as adamantinomatous
craniopharyngioma (ACP). We describe two genetically
engineered mouse models of ACP and present evidence sup-
porting a cell non-autonomous model of tumour formation
driven by senescence. We further explore the literature to
discuss existing examples of the widely unexplored phenom-
enon of paracrine tumour initiation and highlight studies that
have also shown a major role for senescence and the SASP
in this process.

Adamantinomatous craniopharyngioma
and mouse ACP models

Human adamantinomatous craniopharyngioma
(ACP): clinical aspects and pathology

Craniopharyngiomas (CPs) are benign epithelial tumours
(WHO grade 1) of the sellar region, which is an anatomical
structure located between the hypothalamus and the cranial
base. CPs represent between 1.2 and 4.6% of all intracranial
tumours, with an incidence of 0.5-2.5 new cases per 1 mil-
lion population per year [50, 51]. There are two subtypes
of CPs, the papillary and the adamantinomatous (PCP and
ACP, respectively), which differ in their clinical, histological
and molecular features [52]. Because of the proven relevance
of senescence in ACP, in this review, we will focus only on
this tumour type.

ACPs represent the most common non-neuroepithelial
intracranial tumours in children and young adults [50, 53].
They are difficult to manage and can behave aggressively
in the clinic. Additionally, treatments are non-specific (i.e.
maximal safe surgical resection avoiding damage of the
hypothalamus and visual pathways, followed by radio-
therapy), non-curative and associated with high morbidity
[53-57]. This morbidity is due to the tumour’s tendency to
invade surrounding structures such as the pituitary, hypo-
thalamus and optic chiasm. Consequences of both tumour
growth and its treatment include pan-hypopituitarism with
multiple neuroendocrine deficiencies, blindness and hypo-
thalamic damage, which usually leads to obesity, subsequent
type-2 diabetes and cardiovascular disease [58—60]. Further-
more, reduced psychosocial and neurocognitive function are
common in survivors, mostly in patients of younger age [58,
61]. All of these comorbidities lead to poor quality of life
and increased long-term mortality in survivors [62].
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The histomorphological features of ACPs are well defined
(Fig. 1). The tumour epithelium is surrounded by glial reac-
tive tissue that is comprised of non-tumoural cells such as
astrocytes, immune cells and fibroblasts [63]. The tumours
themselves are usually comprised of solid and cystic com-
ponents [64]. The solid part includes epithelial tumour cells,
organised in well-defined structures such as the palisading
epithelium, the stellate reticulum and whorl-like structures.
The epithelial component of these tumours shows no sign
of neuroendocrine differentiation (i.e. lack of expression of
pituitary hormones, cell-lineage markers or neuroendocrine
markers like synaptophysin). Additional solid components
include wet keratin (i.e. eosinophilic areas of keratinised
cells without nuclei) and calcification foci. In addition to
these solid structures, ACP tumours usually contain one or
multiple cysts filled with a dark fluid enriched in inflamma-
tory mediators and lipids [65—-67].

Molecularly, ACPs are driven by the overactivation of the
WNT/B-catenin signalling pathway [68, 69]. This pathway
is heavily involved in normal development and physiology
as well as in cancer [70]. Figure 2 depicts a schematic and
description of the pathway. Research from the last 2 decades
has demonstrated that mutations in exon 3 of CTNNBI, the
gene encoding for B-catenin, are the most common molecu-
lar alterations associated with ACP tumourigenesis [68, 69].
These mutations are predicted to prevent protein degradation
and cause nucleo-cytoplasmic accumulation of p-catenin
and activation of the pathway [71]. In agreement, immu-
nohistochemistry against f-catenin has shown the presence
of sporadic epithelial tumours cells with cytoplasmic and
nuclear staining, either dispersed throughout the tumour or
grouped in whorl-like epithelial structures (also known as
clusters) (Figs. 1, 3) [72]. Despite p-catenin accumulation
being restricted to a minority of cells, CTNNBI mutations
have been identified in all of the epithelial tumour cells in

a large cohort of ACPs by combining laser capture micro-
dissection with deep sequencing [73]. Three-dimensional
imaging of human ACP tumours has revealed that these
B-catenin-accumulating cell clusters are located within
finger-like protrusions of tumour epithelium that invade the
brain and surrounding structures, suggesting a potential role
in tumour invasion [74]. Importantly, murine studies have
demonstrated that mutations in CTNNBI are tumour drivers
and provided important insights into the role of the nucleo-
cytoplasmic p-catenin cell clusters in ACP tumourigenesis
(see below) [43, 75]. The cellular origin of human ACP is
still a matter of debate, with the most prominent hypoth-
esis being that it arises from embryonic oral ectoderm and
in particular from remnants of Rathke’s pouch epithelium,
a proposition derived from the observation of a common
expression of certain cytokeratins between ACPs and oral
epithelium [71, 76, 77]. In support of this, a recent RNA
sequencing study found that human ACPs share a common
transcriptional profile with tissues present during normal
tooth development [67].

Mouse models of ACP: insights into tumour
initiation and pathogenesis

Two genetically engineered mouse models of ACP have
been developed by expressing oncogenic f-catenin in either
HESX1 +embryonic precursors of the developing pituitary
(embryonic model; Hesx1"*; Ctnnb1"™©3/+ mouse line)
or in SOX2 + adult pituitary stem cells (inducible model;
Sox2CTeERT: Crnpp 'S5V mouse line) (Fig. 4a, b, respec-
tively) [43, 75]. These mouse models utilise the Cre/loxP
technology to induce the expression of a murine oncogenic
form of p-catenin that is functionally equivalent to those
identified in human ACPs. Specifically, Cre recombinase
expression in either Hesx or Sox2-expressing cells leads to

Human adamantinomatous craniopharyngioma

Fig. 1 Histopathology of human adamantinomatous craniopharyn-
gioma (ACP). TE tumour epithelium, GRT glial reactive tissue, PE
palisading epithelium, SR stellate reticulum, WL whorl-like epithelial
cell groups. Immunostaining for p-catenin showing nucleo-cytoplas-
mic accumulation in cells of the WL, whilst the rest of the tumour

B-catenin

cells show normal membranous staining. Scale bar 200 pm. The fig-
ure is adapted from Martinez-Barbera JP, Andoniadou CL (2020)
Biological Behaviour of Craniopharyngiomas. Neuroendocrinology
1-8, with permission of S. Karger AG, Basel
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Fig.2 Schematic of main components of the canonical WNT signal-
ling pathway. In the absence of WNT ligands, fB-catenin, (encoded
by the CTNNBI gene) is normally recruited in a destruction complex
containing several proteins including APC (adenomatous polyposis
coli), AXIN, CKla (casein kinase 1 alpha) and GSK3f (glycogen
synthase kinase 3f). This results in B-catenin phosphorylation of spe-
cific amino acids encoded by CTNNBI exon 3 and protein degrada-
tion by the ubiquitin—proteasome pathway. Consequently, levels of
f-catenin protein concentration are low in the cytoplasm and nucleus,
hence keeping the target genes in a repressed state. At the same time,
two surface E3 ubiquitin ligases, RNF43 and ZNFR3, regulate levels
of the WNT ligand-receptor Frizzled through its ubiquitination which
leads to its endosomal internalization and degradation. Binding of
WNT ligands to their receptor, Frizzled, leads to the formation of a
complex alongside coreceptors LRP and Dishevelled (DVL), which

Destruction
complex

Embryonic model
He SX 1 Cre/+; Ctn n b 1on(ex3)/+

Human ACP

3-catenin/DAPI

Fig.3 Human adamantinomatous craniopharyngioma (ACP)
and ACP murine models contain nucleo-cytoplasmic -catenin-
accumulating cell clusters. a Immunofluorescent staining in human
ACP showing the nucleo-cytoplasmic accumulation of f-catenin in
cell groups known as “clusters” (arrows), a defining characteristic
of these tumours. b Expression of oncogenic p-catenin in Rathke’s
Pouch progenitors leads to the formation of clusters in a Hesx1™*;
Ctnb1"€3V* pre-tumoural pituitary. ¢ Clusters also form upon
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captures and disassembles the B-catenin destruction complex and thus
prevents B-catenin phosphorylation and degradation. This causes pro-
tein stabilization, nucleo-cytoplasmic accumulation of p-catenin and
the activation of target genes. Examples of WNT target genes encode
for LGR receptors (LGR4-6), which upon binding of R-spondins
(Rspo), recruit the RNF43/ZNFR3 complex and, therefore, allows
the accumulation of Frizzled in the membrane. This leads to positive
feedback and amplification of the WNT signalling pathway. Muta-
tions in exon 3 of CTNNBI, containing the regulatory amino acids
of B-catenin responsible for its degradation, prevent f-catenin phos-
phorylation by the destruction complex. This leads to its nucleo-cyto-
plasmic accumulation and constitutive overactivation of the WNT/f-
catenin pathway even in the absence of WNT ligands and R-spondins.
Created with BioRender.com

Inducible model
SO X, 2CreERT2/+ . Ct nn b 1/ox(ex3)/+

inducible expression of oncogenic fB-catenin in adult pituitary stem
cells in Sox2C™ERTZ+. Crapp ]'oe3I* mice. A 16-week post-tamox-
ifen induction pituitary is shown. Scale bars 100 pm. AL anterior
lobe, IL intermediate lobe. The figure is reproduced with permission
from Carreno G, Gonzalez-Meljem JM, Haston S, Martinez-Barbera
JP (2016) Stem cells and their role in pituitary tumorigenesis. Mol
Cell Endocrinol 445:27-34
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the deletion of exon 3 from the Ctnnb1lox(Ex3) allele, which
then codes for a mutant version of B-catenin missing several
important regulatory amino acids located in the N-terminal
end of the protein. Degradation of this mutant -catenin is
impaired, as the protein cannot be phosphorylated by its
destruction complex but can still activate transcription of tar-
get genes (Fig. 2). In agreement, both of these ACP murine
models show over-activation of the WNT/p-catenin pathway
(e.g. expression of target genes such as Axin2 and LefI) in
the developing (embryonic) or adult (inducible) pituitary
leading to the formation of tumours resembling human ACP
[72,78].

In the embryonic model, the expression of oncogenic
B-catenin is driven into early precursors of Rathke’s pouch
(RP) expressing the homeobox transcription factor Hesx!/
[75]. RP is the primordium of the anterior pituitary and
these precursors give rise to all of the pituitary hormone-
producing cells (e.g. somatotrophs expressing growth hor-
mone and corticotrophs expressing adrenocorticotrophic
hormone, among others) [79]. Sporadic cells and cell
clusters accumulating nucleo-cytoplasmic p-catenin are
observed in the developing pituitary soon after the initial
expression of oncogenic f-catenin in RP precursors and
prior to any sign of cell transformation or tumour devel-
opment (Fig. 3). Mice are born without pituitary tumours
but the clusters are detectable for the first several weeks of
postnatal life [80]. Analysis of tumour growth dynamics
in the embryonic model has revealed a latency period of
approximately 18 weeks from birth until the appearance of
proliferative tumours [81]. It is possible that human ACPs
follow similar a behaviour as there is a bimodal peak dis-
tribution for the age at diagnosis; first at 5—-15 years (pae-
diatric ACP) and at 45-60 (adult ACP), while a number of
neonatal and embryonic cases have also been reported [58,
82-85]. As in human ACP, cells accumulating p-catenin
are a minority despite the DNA mutation (i.e. Ctnnbl
exon 3 deletion) being present throughout the developing
pituitary cells as shown by laser capture microdissection
and PCR [75]. Mouse tumours contain solid and cystic
components, do not express markers of neuroendocrine
differentiation and show histological and imaging features
resembling human ACP [81].

An interesting finding from the analysis of the embry-
onic model is that if oncogenic f-catenin is expressed in
committed or differentiated pituitary embryonic cell types,
rather than in HesxI-expressing undifferentiated precur-
sors, clusters do not form and tumours never develop [75].
Because the RP precursors are multipotent, this finding
suggests that tumour formation requires a stem-like cell to
express oncogenic -catenin. This possibility has been fur-
ther explored in the inducible model. Expression of onco-
genic P-catenin in SOX?2 + ve cells of the postnatal pituitary,
which contain bona fide organ-specific stem cells results in

the initial formation of B-catenin-accumulating cell clusters
and subsequent development of ACP-like tumours after a
latency period of 3—6 months (Fig. 4a) [43]. In conclusion,
data from these mouse models support the idea that the
CTNNBI mutations identified in human ACP are drivers of
tumourigenesis and have provided evidence that ACP likely
originates from embryonic RP precursors. Additionally, the
dynamics of tumour development suggests that the forma-
tion of PB-catenin-accumulating cell clusters precede cell
transformation and tumour initiation.

Paracrine tumourigenesis in the ACP mouse models

An interesting question that has been investigated using
the ACP murine models is to interrogate the fate of the
cells expressing and accumulating oncogenic f-catenin.
This can be addressed in mice by permanently labelling
these cells and their progeny with the expression of a fluo-
rescent reporter protein (e.g. yellow fluorescent protein,
YFP), an approach known as genetic lineage tracing [86].
Genetic tracing has been initially carried out in the induc-
ible model to reveal that the ACP-like tumours do not
derive from SOX2 + pituitary stem cells expressing onco-
genic P-catenin [43]. Instead, targeted SOX2 + stem cells
give rise to f-catenin-accumulating cell clusters, while
the tumours originate from a different cell lineage as they
do not express the lineage reporter, nor do they contain a
Ctnnbl1 exon 3 deletion (Fig. 4a). These findings are rather
unexpected, especially when considering that in other sys-
tems (e.g. intestinal tumours), stem cells have been shown
to become the tumour cell-of-origin when targeted with
similar oncogenic mutations that result in the overactiva-
tion of the WNT/B-catenin signalling pathway [87, 88]. In
agreement, it has been shown that SOX2 + pituitary stem
cells can form tumours cell autonomously when YAP/
TAZ signalling is enhanced [89]. The cell non-auton-
omous origin of the ACP-like tumours has been further
corroborated in the embryonic model by lineage tracing
(Fig. 4b—d) and DNA sequencing, which have shown that
the tumours derive from a different cell lineage and contain
novel somatic mutations not present in the germline [42].
Therefore, the expression oncogenic B-catenin in either
SOX2 + adult stem cells or HESX1 + embryonic progeni-
tors leads first to the formation of clusters, which are simi-
lar to those found in human ACP, and then promote tumour
formation in a cell non-autonomous manner. Importantly,
in both ACP models and in human ACP, these clusters are
non-proliferative and express a multitude of growth fac-
tors (e.g. WNTs, FGFs, BMPs, EGF, among others) and
inflammatory mediators (e.g. IL1, IL6, CXCL1, CXCL20,
among others) [42, 43, 90]. Of note, recent research indi-
cates that SOX2 + stem cells in the normal pituitary have
an important paracrine signalling function by mediating
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the expansion of neighbouring committed progenitor cells, The role of senescence and its paracrine

suggesting that oncogenic B-catenin and the senescence signals in ACP

programme (discussed below) may consolidate the secre-

tory phenotype of SOX2 +stem cells [91]. These data sup-  Cellular senescence mediates paracrine

port a model of paracrine tumourigenesis, whereby non- tumourigenesis in mouse ACP models

dividing cluster cells are bestowed with the capacity to

initiate tumours in a cell non-autonomous manner. Molecular proﬁ]ing and genetic approaches have shown
that these -catenin accumulating clusters are enriched in
senescent cells in both mouse and human ACP. Specifically,
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«Fig. 4 Lineage tracing in mouse ACP models shows the cell non-
autonomous origin of tumours. Mouse ACP models were crossed
with R26"7P* lineage reporter mice which allows labelling of cells
and their descendants upon expression of Cre recombinase. a Dou-
ble immunofluorescent staining in Sox2CTeERT2/+. Cpppp Jlox(exdV/+,
R26FP* pituitaries showing cell clusters (arrowheads) and a large
tumoural lesion (asterisk) that accumulate f-catenin. The tumour
cells (asterisk) do not express the lineage reporter YFP, indicat-
ing they are not descendants of SOX2+stem cells. Note that the
clusters (arrowheads) co-express nucleocytoplasmic p-catenin and
YFP, demonstrating that they derive from SOX2+stem cells. b In
Hesx1C+; Ctnnb 13+ R26YFP4 mice, most cells of the ante-
rior lobe of the pituitary descend from HESXI 4 Rathke’s pouch
precursor cells, as shown by YFP expression in a 5-week-old pitui-
tary. After a period of latency, pituitary tissue is displaced by devel-
oping tumour tissue that does not express YFP. Scale bar 5 mm. ¢
The absence of Cre-mediated recombination in the tumours is further
demonstrated using the mT/mG dual reporter mouse line, in which
unrecombined cells express membrane TdTomato protein (red) while
pituitary-lineage cells express GFP (green). Note that in the Hes-
x1€7*; R26™T™G/+ control pituitary, the anterior lobe (al) tissue is
green (recombined) and the posterior lobe (pl) is red (unrecombined
since the pl is not derived from the Hesx1 lineage). In an ACP Hesx-
167+ Cinnb 1€+, Ro6MTMGA mouse tumour, most of the tumour
cells express TdTomato. Scale bar 1 mm. d Double immunofluores-
cent staining against the proliferation marker Ki67 and YFP reveal-
ing that although most of the cells in the pituitary anterior lobe (al)
of a 5-week-old ACP embryonic model are YFP+ve, the tumours
in a 20-week-old mouse develop from YFP-ve cells that show a high
proliferative activity (asterisk). In very advanced tumours (35 weeks)
most of the YFP+ve cells are missing and only sporadic cells are
detected in the periphery. Panel a is adapted with permission from
Andoniadou CL, Matsushima D, Mousavy-gharavy SN, et al. (2013)
The Sox2 + population of the adult murine pituitary includes progeni-
tor/stem cells with tumour-inducing potential. Cell Stem Cell 13:433—
445. b—d are adapted from Gonzalez-Meljem JM, Haston S, Carreno
G, et al. (2017) Stem cell senescence drives age-attenuated induction
of pituitary tumours in mouse models of paediatric craniopharyngi-
oma. Nat Commun 8:1819, which is an open-access article licensed
under a Creative Commons Attribution 4.0 International License

human and mouse cluster cells exhibit several hallmark fea-
tures of senescence: (1) they are viable and non-proliferative
(Ki67 and EdU negative); (2) express cell cycle inhibitors
(e.g. p21€™1); (3) exhibit DNA damage and activation of
a DNA damage response; (4) have an enlarged lysosomal
compartment (e.g. they show elevated expression of GLB1,
the enzyme responsible for the widely employed senescence-
associated B-galactosidase staining); (5) activate the NF-xB
pathway and a SASP [42]. Corroborating the expression data
above, unbiased molecular analyses have revealed that the
cluster cells are analogous cellular structures in human ACP
and both mouse ACP models, which share a common signa-
ture of senescence and SASP activation [42].

We have also reported that the presence of an activated
SASP results in substantial microenvironmental changes in
the pre-tumoural pituitary of the embryonic model. These
changes include an excess production of ECM proteins
(Fig. 5a), as well as the recruitment of YFP-ve (i.e. not
targeted with oncogenic f-catenin) proliferative cells that

coexpress the endothelial marker endomucin (EMCN) and
the stem cell marker SOX9, which closely interact with the
senescent clusters (Fig. 5b, ¢). Although these changes are
less apparent in the inducible model, the presence of senes-
cent B-catenin-accumulating cell clusters in this model also
leads to increased proliferation in nearby non-cluster cells
(i-e. increased Ki67 mitotic index) [42]. Notably, the close
interaction of clusters with SOX9-expressing cells occurs
in both mouse models as well as in human ACP [43, 75].

The function of senescent cluster cells in ACP tumour-
igenesis has been investigated in mice using two genetic
approaches. First, in the inducible model, it has been shown
that the expression of oncogenic pB-catenin in SOX2 + pitui-
tary stem cells at different ages results in a significant reduc-
tion in tumour formation when comparing induction in aged
(6-9 months old) vs. young (4—6 weeks old) mice. This
reduction in tumour burden is associated with a significant
decrease in the senescence/SASP response in the clusters
of the aged mice. Specifically, pituitaries from older mice
contain smaller clusters and reduced expression of SASP
factors, while reduced numbers of proliferating cells are also
observed surrounding the clusters [42].

A second approach has taken advantage of the fact that
deletions or inactivating mutations in the genes and proteins
of the p-catenin destruction complex, such as Apc (adenoma-
tous polyposis coli) (Fig. 2), also lead to the over-activation
of the WNT/B-catenin pathway and tumour formation (e.g.
in intestinal cancers in mouse and humans) [87, 88]. How-
ever, the deletion of Apc in both HesxI-expressing embry-
onic precursors, or SOX2 +adult stem cells, completely
fails to generate ACP-like tumours. Detailed histological
and molecular analyses have revealed that deletion of Apc
also leads to the formation of f-catenin clusters that activate
downstream targets of the WNT pathway and express mark-
ers of senescence. However, these clusters are smaller in size
in comparison to those carrying oncogenic f-catenin and,
importantly, show a drastically reduced expression of SASP
factors [42]. In addition to an absence of tumour induction,
Apc-null pituitaries do not display the microenvironmental
alterations that usually precede tumour growth, such as the
aberrant expression of ECM markers or the recruitment of
a population of proliferating non-oncogene targeted (YFP-
negative) endothelial-like cells expressing SOX9 (Fig. 5c¢).
Therefore, the attenuation of the paracrine activities of the
senescent cluster cells in the aged inducible model and in
Apc-deficient mice results in reduced tumour induction [42].

In human ACP, the location of the senescent clusters
within the finger-like tumour protrusions invading the brain
suggests that SASP activities may promote epithelial cell
proliferation and invasion [74]. This is further supported by
the molecular similarities between human clusters and the
enamel knot, a signalling hub controlling epithelial bending
and proliferation during tooth formation [67]. In addition,
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a b
Wild type Hesx1¢r*;Ctnnb 1/ex(ex3)/*

Fig.5 The p-catenin accumulating senescent cell clusters modify
the tumour microenvironment (TME) in the pre-tumoural pituitary
of the ACP embryonic model. a Immunostaining against fibronectin,
laminin and endomucin (EMCN) showing TME alterations prior to
tumour initiation in the ACP mouse model. Scale bar 100 pm. b Dou-
ble immunostaining for the lineage tracing reporter YFP showing an
expanded population of EMCN-expressing cells that is not derived
from the Hesx1 cell lineage targeted with oncogenic B-catenin. Note
that clusters of YFP+ve cells are often surrounded by EMCN + ve
cells (arrows). Scale bar 100 pm. ¢ Triple immunostaining showing
that in the context of oncogenic p-catenin (Hesx1<"“*; Ctnnb 13+
pituitary, top panel), large numbers of EMCN+ve cells also co-

EMCN

Hesx1 Cre/+- (¢}
Ctn n b 1/ox{ex3)/+

Fibronectin

Laminin
Hesx16re’:
Apc™

the inhibition of the MAPK pathway in human ACP explant
cultures results in reduced proliferation and increased apop-
tosis, while several ligands capable of activating the MAPK
pathway are expressed in both human and murine senes-
cent clusters (e.g. FGFs and EGF) [67, 90]. Together, evi-
dence from mouse and human studies strongly suggests that
senescence plays an essential role in tumour initiation in the
murine models and in tumour growth, invasion and inflam-
mation in human ACP (Fig. 6).

Paracrine tumourigenesis and senescence-mediated
paracrine tumourigenesis mechanisms have not yet been
described in other pituitary tumours. In the case of pitui-
tary adenomas, cellular senescence has been shown to
restrict tumour cell proliferation and is thought to under-
lie the almost invariable benign nature of pituitary tumours
[92-97]. There are, however, interesting findings suggesting
that paracrine SASP signalling might also contribute to pitu-
itary adenoma pathogenesis. For example, it has been shown
that senescent cells in somatotroph adenomas also secrete
growth hormone (GH) as part of their SASP and that GH and
growth hormone releasing hormone (GHRH) are inducers
of DNA damage and genomic instability in normal pituitary
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Hesx 16+ Ctnnb 1ox(ex3/+- R 26 YFP/+

n

express SOX9 and interact closely with the senescent clusters
(arrows). However, in the context of wild type fB-catenin (loss of
tumour suppressor Apc in HesxI1<“*; Apc™" pituitaries), senescent
clusters are smaller and show an attenuated SASP that fail to induce
changes in the TME. Of note, HesxI"*; Apcd™ do not develop
tumours (see text). Scale bar 50 pm. The figure is adapted from Gon-
zalez-Meljem JM, Haston S, Carreno G, et al. (2017) Stem cell senes-
cence drives age-attenuated induction of pituitary tumours in mouse
models of paediatric craniopharyngioma. Nat Commun 8:1819,
which is an open-access article licensed under a Creative Commons
Attribution 4.0 International License

cells [98-100]. Additionally, IL6 is a crucial SASP factor
that is normally secreted by pituitary folliculostellate cells,
and while it has been shown to induce cellular senescence in
adenoma cells, it has also been shown to promote pituitary
cell proliferation and to be required for tumour induction in
a somatotroph adenoma transplant model [101, 102]. These
findings suggest that senescence and the SASP could play
a dichotomous role in pituitary adenomas by restricting
cell proliferation and preventing the onset of malignancy
in established tumours, while promoting the acquisition of
genomic instability and the formation of tumour permissive
microenvironments.

Paracrine and senescence-induced
tumorigenesis

Evidence for paracrine tumorigenesis

Current and widely supported theories of carcinogenesis

such as the cancer stem cell/hierarchical model, the genetic/
stochastic evolution model and more recent unifying
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b
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.
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»

Palisading
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Fig.6 Models depicting the role of senescent cells in mouse
and human ACP. a Oncogenic p-catenin expression in either in
SOX2+adult pituitary stem cells or Hesxl pituitary embryonic
progenitors leads to the formation of nucleocytoplasmic fB-catenin-
accumulating clusters and SASP activation with expression of sev-
eral cytokines, chemokines and growth factors. Persistent and robust
SASP promotes cell transformation of a non-targeted cell (i.e. not
expressing oncogenic p-catenin or YFP) in a paracrine manner. In this

propositions imply that a tumour (or each subclonal popu-
lation within a tumour) is formed by cells that are descend-
ants of the cell originally targeted by an initiating oncogenic

+e== INvasion
*

Tumour

Cell-of-origin
(YFP-)

Tumour
(YFP-)

L.\ .:o.:: .
e e = No tumours
‘e .

Brain and glial reactive
tissue L

*
LTS

Proliferation

model SASP-mediated activities of the clusters are required for either
tumour initiation, progression or both. b Senescent clusters in human
ACP (green cells) are usually found at the base of finger-like tumour
projections that invade the brain. The factors secreted by the clusters
are proposed to promote tumour cell proliferation of the palisaded
epithelium and epithelial bending resulting in tumour invasion. Sig-
nals may also promote inflammation in the glial reactive tissue. Cre-
ated with BioRender.com

insult [47-49]. On the other hand, the observation that
tumours can arise cell non-autonomously, as in mouse mod-
els of ACP, stands in stark contrast to traditional theories
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of the origin of cancer. There are, however, several experi-
mental examples showing evidence that cell transformation
and tumour initiation mechanisms do not necessarily follow
traditional paradigms (Table 1).

Around 3 decades ago, in vitro experiments had already
shown that paracrine or autocrine exposure of naive cells
to secreted developmental growth factors of the WNT and
FGF families could initiate pre-malignant phenotypical
changes, including: (1) ability to grow without attachment
in agar plates (a sign of cell transformation); (2) alteration
of cell morphologies; (3) increased proliferation and higher
cell culture densities; (4) loss of contact inhibition of pro-
liferation [103—109]. However, these initial studies did not
address the capacity of the paracrinally “transformed cells”
to generate tumours in vivo. Although research conducted
over the last decades has established the importance of
mutations and deregulation of these signalling pathways in
several cancers [110-113], the exact relationships between
a tumour’s cell-of-origin (also known as tumour-initiating
cell), oncogenic driver mutations and the source of paracrine
protumourigenic signals have not been widely explored until
recently.

In vivo, combinations of different methods such as line-
age tracing, cell ablation, DNA sequencing, laser-capture
microdissection, chimera aggregations and cell transplanta-
tion have been instrumental in providing evidence of parac-
rine tumourigenesis; while it is important to note that these
have also been used to support the validity of cell autono-
mous mechanisms in some in vivo cancer models [114-116].
For example, two notable studies used bone marrow replace-
ment experiments in genetically engineered mouse models to
show that the loss of Dicerl or the activation of oncogenic
B-catenin, specifically in osteoprogenitors or osteoblasts,
leads to the development of myelodysplastic syndromes and
acute myeloid leukaemias in a paracrine manner. Interest-
ingly, they show that the tumour cell of origin does not carry
the targeted mutations (i.e. Dicerl or -catenin) and instead
display novel mutations and genomic aberrations [117, 118].

In breast cancer studies, most experiments so far have
used in vitro cocultures to show the capacity of paracrine
WNT signalling to transform mammary epithelial cell lines
[104-107]. However, a study has shown that xenotrans-
planted mammary epithelial cell organoids required HGF
and TGBI1 secreted by irradiated stromal cells in order to
form tumours in nude mice [119]. Likewise, another study
has shown the requirement of mammary stroma exposed to
the chemical carcinogen N-nitrosomethylurea (NMU) for the
induction of mammary epithelial tumours [120].

In regard to brain cancer, lineage tracing and transplanta-
tion experiments have demonstrated an important role for
paracrine PDGFB signalling in the recruitment of untargeted
oligodendrocyte host cells to induce the formation of glio-
mas [121, 122]. Similarly, a combination of lineage tracing
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with chimera aggregations has shown the recruitment of
untargeted cells during the formation of polyclonal intes-
tinal tumours [123]. Likewise, combining lineage tracing
and bone marrow transplantations has revealed the require-
ment of macrophage-secreted TNF for the initiation of gas-
tric tumours [124] and that of FGF10 paracrine signalling
between the urogenital mesenchyme and prostatic epithelia
for the formation of prostatic neoplasias [125-127]. FGF
signalling has also been implicated in cell non-autonomous
tumourigenesis in the liver, as virally-delivered FGF19 or
skeletal muscle-derived FGF19 were shown to be required
for the induction of hepatocellular carcinomas in mice [128,
129].

In skin models of cancer, it is known that certain onco-
genic driver mutations require wounding-derived inflamma-
tory signals to initiate tumourigenesis [130, 131]. Interest-
ingly, lineage tracing in a transgenic skin papilloma model
has shown that activating constitutive MAPK signalling in
suprabasal epidermal cells, in addition to skin wounding, can
induce IL1A-driven hyperproliferation of non-targeted epi-
dermal basal cells, which then formed the bulk of the papil-
loma [132]. A similar strategy has also demonstrated the cell
non-autonomous recruitment of untargeted cells in skin can-
cer models driven by the carcinogens 7,12-dimethylbenz(a)
anthracene (DMBA) and 2-O-tetradecanoylphorbol-13-ac-
etate (TPA) [133, 134]. Finally, the expression of oncogenic
B-catenin in K19 +and Lgr5 + stem cells of the hair follicle
has been shown to induce outgrowths and benign tumours
which are mostly composed of untargeted cells as shown
by lineage tracing [135—-137]. Therefore, plenty of evidence
exists supporting the notion that paracrine signalling can
initiate tumour formation and fuel progression.

Evidence for senescence-induced tumorigenesis

There is ample in vitro and in vivo evidence demonstrat-
ing the tumour promoting activities of cellular senescence
on cells carrying oncogenic mutations (see reviews cited
above). On the other hand, the requirement of senescence
and SASP signalling for the cell non-autonomous initiation
of tumours (as it occurs in mouse ACP models) has been less
explored, possibly due to the inherent difficulty in studying
the early stages of cell transformation and tumour initiation
in vivo.

Although a considerable number of in vitro experiments
have shown that conditioned media from senescent cell cul-
tures can enhance the cancerous properties of preneoplas-
tic or neoplastic cells (see the reviews mentioned above),
it has also been shown that some cells require exposure to
senescent cell-conditioned media to acquire cancer stem
cell-like phenotypes and the ability to form tumours when
transplanted into nude mice [138-140]. In vivo, senescence
and the SASP-driven paracrine tumourigenesis have been
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convincingly demonstrated to occur in several tissues of D.
melanogaster. In this model, elegant use of gene targeting,
genetic lineage tracing and cell ablation approaches have
shown that activating oncogenic Ras induces senescence-
like phenotypes and SASP activation in targeted cells,
which lead to tumour growth in neighbouring wild type cells
through the activation of developmental pathways and JNK
signalling [141-144]. In a zebrafish model of melanoma,
researchers showed that telomere shortening promotes the
accumulation of senescent cells which produces an inflam-
matory environment that significantly fosters the formation
of melanomas [145]. This, taken together with the fact that
senescent cells accumulate during aging in several tissues
and that their elimination in mice causes a significant delay
in cancer deaths [146—149], implicates senescent cells in
age-related tumourigenesis.

In mice, the injection of senescent HRasV12-express-
ing keratinocytes can induce the formation of skin papil-
lomas that are very similar to those in DMBA/TPA mod-
els. Strikingly, a considerable portion of cells within the
papillomas contain non-targeted host cells, suggesting an
important role for senescence-driven paracrine signalling
in tumour formation [150]. Notably, a recent study revealed
that p16™K4A_expressing senescent keratinocytes and their
SASP induce hyperproliferation and activation of WNT sig-
nalling target genes in neighbouring naive cells, leading to
the formation of papillomas when DMBA/TPA is applied
[151]. These findings are remarkably similar to the previ-
ously discussed studies involving the paracrine recruitment
of untargeted cells in skin tumours, thus raising interest-
ing questions about the contributions of senescence and the
SASP in those models [132-137].

There is also strong evidence suggesting that senes-
cence and the SASP can drive paracrine tumourigenesis in
the liver. For example, it has been shown that obese mice
develop higher levels of the microbial metabolite deoxy-
cholic acid (DCA) which leads to higher number of senes-
cent hepatic stellate cells (HSCs) and increased SASP
expression. Interestingly, depletion of either the senescent
HSCs or knockout of IL1B signalling (a common SASP
component) significantly prevents the growth of DMBA-
induced hepatocellular carcinomas [152]. Moreover, other
studies have shown the requirement of senescent fibroblasts
and their SASP for the induction of liver tumours from trans-
planted cancer cell lines [39, 153]. In particular, it has been
shown that the pro-tumourigenic effects of the SASP can be
inhibited by knockdown of PTBP-1, a factor controlling the
alternative splicing of genes involved in intracellular traf-
ficking [39]. The tumour-initiating role of senescence has
further been supported by a recent study showing that car-
cinogen-induced liver tumour formation requires the SASP
from senescent HSCs and that it can be prevented by chemi-
cally ablating senescent cells [154].

The evidence discussed above suggests three conceiva-
ble mechanisms, acting alone or in combination, that could
mediate senescence-mediated paracrine tumourigenesis: (1)
induction of proliferation in neighbouring cells, therefore,
promoting genomic instability and the appearance of novel
mutations [155, 156]; (2) promotion of cell reprogramming
and plasticity, which has already been shown to occur in
the contexts of cancer, aging and repair during injury both
in vivo and in vitro [21, 150, 157-159]; (3) activation of
developmental pathways (such as WNT signalling) related
to the induction, maintenance and survival of cancer stem
cell phenotypes [160, 161]. Our findings from both humans
and mouse models suggest all 3 mechanisms are involved
in ACP pathogenesis. First, proliferating cells are often
found in close proximity to the senescent clusters, while the
expression of the stem cell factor SOXO9 is increased in these
neighbouring cells. Importantly, the presence of both prolif-
erating and SOX9 + cells is diminished in the context of an
attenuated SASP [42, 75]. Second, mouse ACP pituitaries
contain more and faster growing pituitary progenitors/stem
cells as determined by colony-forming assays [75]. Finally,
the senescent clusters in both mouse and human possess a
transcriptional profile that is analogous to the enamel knot,
while their SASP contains many developmental signalling
factors from the WNT, SHH, BMP and FGF families that
are critical for tooth morphogenesis [67].

New therapeutic opportunities: senolytics
and SASP-modulating drugs

The discovery that senescent cells, through the SASP, are
determinant factors of age-related pathogenesis and drivers
of organismal ageing has led to the identification and devel-
opment of drugs able to counteract their damaging effects.
Senotherapies aim mostly to either kill senescent cells selec-
tively, by targeting key survival critical pathways, or to regu-
late their paracrine activities using SASP-modulating drugs.
In a couple of milestone studies, Baker and colleagues have
demonstrated that the genetic ablation of pl6-expressing
senescent cells is able to delay ageing-associated disorders
[146, 162]. Subsequently, three independent studies have
shown that senescent cells can specifically be killed using
certain senolytic compounds, resulting in the rejuvenation of
tissue stem cells [163—165]. These initial studies have been
followed by more investigations targeting senescent cells in
different disease contexts that have together provided solid
evidence for a critical contribution of senescence in several
age-related diseases [166—170]. Senolytic therapies have
thoroughly been reviewed elsewhere [27, 171, 172]

The previously discussed cell autonomous and non-
autonomous functions of senescent cells in tumourigenesis
have provided a strong rationale to explore the potential of
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senotherapies to prevent or delay tumour formation. Seno-
therapies could improve anticancer treatments, as many cur-
rently used therapies may lead to the induction and accu-
mulation of senescent cells in the tumour bed, which could
be detrimental for the patients and result in recurrence. In
support of this, it has been shown that genetic or chemical
ablation of senescent cells that are induced after anti-cancer
therapy significantly reduces tumour recurrence in breast
and liver cancer models [25, 173].

In ACP models, initial experiments have shown that the
genetic attenuation of the senescence/SASP response is able
to reduce significantly the tumour-inducing potential of the
senescent cell clusters [42]. In human ACP, the inhibition
of IL6 (a SASP factor expressed in mouse and human ACP)
results in reduced motility of ACP epithelial tumour cells,
suggesting that SASP attenuation may reduce tumour burden
in vivo [174]. A number of studies have shown that senes-
cent cluster cells in the embryonic mouse ACP model can be
ablated chemically using senolytic agents in vitro. Treatment
of pre-tumoural mouse pituitaries with ABT-263 and ABT-
737, two well-studied senolytics that target the anti-apop-
totic proteins Bcl2, Bel-xL and Bcel-w [164, 165], results
in smaller clusters due to cell apoptosis in ex vivo explants
cultures [42, 175]. Likewise, ouabain and digoxin, two mem-
bers of the cardiac glycoside family of organic compounds,
can induce apoptosis in senescent cluster cells [175]. In a
recent report, a galactose-modified cytotoxic prodrug has
been used to preferentially kill the cluster senescent cells
in vitro based on the higher levels of B-galactosidase in these
cells [176]. Therefore, mouse ACP models can potentially
be used to study novel senolytic compounds in the context of
senescence-mediated paracrine tumourigenesis in vivo. Pre-
clinical studies are still required to establish proof-of-prin-
ciple evidence that senotherapies may be relevant against
craniopharyngioma and therefore mouse ACP models are
ideal tools to test these novel treatments.

Conclusions

Early studies showing a negative correlation between senes-
cent cell burden and tumour progression towards malignancy
helped establish cellular senescence as a tumour-suppressive
mechanism. However, when viewed under the precepts of
widely accepted cell autonomous paradigms of tumorigen-
esis, this inverse senescence-cancer progression relation-
ship implies that cells carrying oncogenic driver mutations
have to either bypass or escape the senescent phenotype for
tumours to progress. Although there are some convincing
experiments in vitro [161, 177], conclusive evidence dem-
onstrating the occurrence of either senescence bypass or
escape has yet to be produced in vivo [178]. Of relevance,
a genome-wide methylation analysis has shown that the

@ Springer

methylation signature of transformed cells is acquired sto-
chastically and independently of the senescent epigenetic
state, which argues against the senescence escape hypothesis
[179]. Likewise, although NOTCH1 is the most commonly
mutated gene in the physiologically aged human oesopha-
gus (followed by TP53), NOTCHI mutations are consider-
ably underrepresented in oesophageal cancers, suggesting
these are more likely to evolve from epithelial cells with-
out NOTCH 1 mutations. In contrast, 7P53 mutations, which
are several-fold less frequent in the aged oesophagus, are
almost universally present in oesophageal cancers, sug-
gesting that these cancers originate from the small fraction
of TP53 mutant cells [180, 181]. These findings also argue
against senescence escape as an underlying mechanism of
oesophageal cancer development, as it would be expected
for mutations in NOTCHI1 to be as abundant as T7P53. More
recently, the mechanisms of action of known carcinogens
have been challenged. By analysing the mutational signa-
tures of tumours generated in mice exposed to one of 20 car-
cinogens, it has been found that most of these agents are not
directly mutagenic on the genome (i.e. they do not increase
mutation burden in the tumours), with most mutations,
including driver mutations, resulting from tissue-specific
endogenous processes. This suggests that these carcinogens
promote tumour initiation in a different manner, possibly
by creating a permissive environment that allows tumour
growth rather than, as initially believed, by increasing muta-
tion rate [182]. Therefore, a combination of techniques such
as genetic lineage-tracing, transplantation and sequencing
strategies will be required to demonstrate that oncogene-
targeted cells can escape or avoid the senescent phenotype
in animal models of cancer.

The ACP models have revealed that the relationship
between oncogenic driver-mutations, tumour cells-of-ori-
gin and the tumour microenvironment (TME) can be much
more complex than what can be explained by conventional
models of carcinogenesis. Lineage tracing has shown the
otherwise counterintuitive observation that tumours can be
formed from cells that are not related to the original onco-
genic insult. Molecular studies in these models indicate that
senescent cells bring about a pro-tumourigenic TME that
induces tumour initiation in a paracrine manner through the
SASP, while in human ACP, the evidence strongly supports
a role of senescent cells in tumour growth and invasion. Fur-
ther preclinical research using senolytics in the ACP mouse
models may pave the way to clinical trials to evaluate the
clinical relevance of senotherapies, alone or in combination,
against human ACP.

It remains to be seen how common the occurrence of
senescence-induced paracrine tumourigenesis in other
tumours and cancers is, but it will be particularly interest-
ing to assess the role of senescent cells and the SASP in
the cancer models for which cell non-autonomous initiating
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mechanisms have already been described (Sect. 4.1 and
Table 1). Evidence of the prevalence of such mechanisms
in the origin or establishment of some human cancers will
also have to be produced, which may be difficult due to
the fact that early stages of tumourigenesis are hard to get
hold of in humans. However, within the context of therapy-
induced senescence, it may be easier to demonstrate the pro-
tumourigenic effects of both senescent tumoural cells and
senescent cells within the TME. Therefore, therapies capa-
ble of inducing senescent phenotypes such as radiotherapy,
chemotherapy or even targeted approaches, in combination
with senolytics or SASP-modulators [183], could signifi-
cantly improve the current standard of care and result in
better clinical outcomes.
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