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Abstract
Cellular senescence is a process that can prevent tumour development in a cell autonomous manner by imposing a stable cell 
cycle arrest after oncogene activation. Paradoxically, senescence can also promote tumour growth cell non-autonomously by 
creating a permissive tumour microenvironment that fuels tumour initiation, progression to malignancy and metastasis. In 
a pituitary tumour known as adamantinomatous craniopharyngioma (ACP), cells that carry oncogenic β-catenin mutations 
and overactivate the WNT signalling pathway form cell clusters that become senescent and activate a senescence-associated 
secretory phenotype (SASP). Research in mouse models of ACP has provided insights into the function of the senescent 
cell clusters and revealed a critical role for SASP-mediated activities in paracrine tumour initiation. In this review, we first 
discuss this research on ACP and subsequently explore the theme of paracrine tumourigenesis in other tumour models avail-
able in the literature. Evidence is accumulating supporting the notion that paracrine signalling brought about by senescent 
cells may underlie tumourigenesis across different tumours and cancer models.

Keywords  Pituitary tumour · Cancer stem cells · SOX2 · WNT/β-catenin · Oncogene-induced senescence · Therapy-
induced senescence · Senolytics

Introduction

Almost over 60 years ago, it was first reported that continu-
ous in vitro culturing of human cells results in a gradual 
but ultimately complete decay of their proliferative capac-
ity [1, 2]. The term cellular senescence was then applied 
to describe this particular phenomenon as it was hypoth-
esized to be the result of a deterioration in the cell’s homeo-
static functions with time, a process resembling organismal 
aging [3]. However, recently acquired understanding of 
the complexity and heterogeneity of this phenomenon has 
revealed that senescent cells can be anything but a simple 

manifestation of decay and dysfunction, as their name might 
otherwise suggest.

The early concept of cellular senescence has now been 
expanded to describe a growing list of phenotypes initiated 
by damaging stimuli such as telomere attrition, ionizing 
radiation, chemotherapeutic compounds, reactive oxygen 
species (ROS), mitochondrial dysfunction and oncogenic 
signalling [4]. Importantly, all of these phenotypes share 
common hallmark features such as the activation of DNA-
damage pathways, cell cycle arrest mediated by the p16INK4/
Rb and p21CIP1/p53 pathways, the activation of anti-apop-
totic mechanisms and the widespread secretion of growth 
factors, cytokines, chemokines and extracellular matrix com-
ponents (collectively known as the senescence-associated 
secretory phenotype or SASP). The different types of senes-
cent phenotypes and their underlying mechanisms have been 
thoroughly reviewed elsewhere [4, 5].

Senescent cells and the SASP can induce a vast array of 
context-dependent effects, playing significant roles in the 
regulation of normal tissue physiology but also in disease. 
Senescent cells can be found in several tissues during embry-
onic development and participate in the proper patterning of 
some organs and tissues [6–9]. After development, senescent 
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cells are also involved in tissue regeneration and wound 
repair in several organs, although their exact role appears to 
be more complex and context dependent. While they have 
been reported to play beneficial roles in acute wound repair 
[10–16], the opposite has been observed during chronic 
wounding scenarios [17–20]. This detrimental aspect of 
long-term senescent cell accumulation has also been widely 
described in the development of several pathologies, includ-
ing those related to organismal ageing (e.g. atherosclero-
sis, rheumatoid arthritis, metabolic dysfunction, diabetes 
and neurodegenerative diseases, among many others). It is 
possible that this dichotomy is related to a tight regulation 
of dynamic balances between contrasting SASP activities, 
such as the paracrine promotion of cellular plasticity and 
reprogramming on one side, and the induction of by-stander 
senescence and inflammation on the other [21, 22]. Impor-
tantly, there is evidence demonstrating that the SASP can 
lead to widespread effects beyond the microenvironment, 
such as driving systemic inflammation and haemostasis, 
as well as mediating several side effects of chemotherapy 
including decreased physical activity and strength, bone 
marrow suppression and cancer recurrence [23–26]. Both 
detrimental and beneficial activities of senescent cells and 
the SASP have previously been reviewed in detail [27–29].

In the case of cancer and neoplastic diseases, senescence 
can be induced cell autonomously by oncogene activation 
(i.e. oncogene-induced senescence, OIS) or through thera-
peutics such as DNA-damaging chemical compounds and 
ionizing radiation (i.e. therapy-induced senescence, TIS), 
which lead to the activation of DNA-damage pathways and 
the activation of a stable cell cycle arrest [30]. Additionally, 
the SASP can induce senescence cell non-autonomously in 
neighbouring cells (i.e. paracrine-induced senescence or 
bystander effect) or mediate cancer cell clearance by the 
immune system [31]. For this, cellular senescence has been 
widely regarded as an innately protective mechanism that 
restricts cancer cell proliferation and tumour growth [32, 
33]. However, the paradigm of senescence as a tumour-
suppressing mechanism has been challenged by studies 
showing that senescent cells and the SASP can represent 
a double-edged sword with serious negative effects in can-
cer and other diseases. In particular, there is mounting evi-
dence showing that paracrine SASP signals can stimulate 
several pro-tumourigenic cellular and molecular processes 
such as cancer cell proliferation, progression to malignancy, 
immune system evasion, resistance to therapy-induced apop-
tosis, angiogenesis, formation and maintenance of metastatic 
niches, as well as increased cell invasiveness, migration 
and epithelial-to-mesenchymal transitions (EMT) [34–41], 
and even induce tumour formation cell non-autonomously 
[42, 43]. We refer the reader elsewhere for comprehensive 
reviews on the pro-tumourigenic activities of senescence and 
the SASP [30, 44–46].

The cell non-autonomous origin of some tumours stands 
in stark contrast to traditional models of carcinogenesis 
[47–49]. A review of the available evidence supporting this 
scarcely discussed mechanism could provide further insights 
into the role of senescence in cancer. In this manuscript, 
we discuss studies on senescence and the SASP which have 
improved our understanding of the origins and biology of 
a paediatric pituitary tumour known as adamantinomatous 
craniopharyngioma (ACP). We describe two genetically 
engineered mouse models of ACP and present evidence sup-
porting a cell non-autonomous model of tumour formation 
driven by senescence. We further explore the literature to 
discuss existing examples of the widely unexplored phenom-
enon of paracrine tumour initiation and highlight studies that 
have also shown a major role for senescence and the SASP 
in this process.

Adamantinomatous craniopharyngioma 
and mouse ACP models

Human adamantinomatous craniopharyngioma 
(ACP): clinical aspects and pathology

Craniopharyngiomas (CPs) are benign epithelial tumours 
(WHO grade 1) of the sellar region, which is an anatomical 
structure located between the hypothalamus and the cranial 
base. CPs represent between 1.2 and 4.6% of all intracranial 
tumours, with an incidence of 0.5–2.5 new cases per 1 mil-
lion population per year [50, 51]. There are two subtypes 
of CPs, the papillary and the adamantinomatous (PCP and 
ACP, respectively), which differ in their clinical, histological 
and molecular features [52]. Because of the proven relevance 
of senescence in ACP, in this review, we will focus only on 
this tumour type.

ACPs represent the most common non-neuroepithelial 
intracranial tumours in children and young adults [50, 53]. 
They are difficult to manage and can behave aggressively 
in the clinic. Additionally, treatments are non-specific (i.e. 
maximal safe surgical resection avoiding damage of the 
hypothalamus and visual pathways, followed by radio-
therapy), non-curative and associated with high morbidity 
[53–57]. This morbidity is due to the tumour’s tendency to 
invade surrounding structures such as the pituitary, hypo-
thalamus and optic chiasm. Consequences of both tumour 
growth and its treatment include pan-hypopituitarism with 
multiple neuroendocrine deficiencies, blindness and hypo-
thalamic damage, which usually leads to obesity, subsequent 
type-2 diabetes and cardiovascular disease [58–60]. Further-
more, reduced psychosocial and neurocognitive function are 
common in survivors, mostly in patients of younger age [58, 
61]. All of these comorbidities lead to poor quality of life 
and increased long-term mortality in survivors [62].
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The histomorphological features of ACPs are well defined 
(Fig. 1). The tumour epithelium is surrounded by glial reac-
tive tissue that is comprised of non-tumoural cells such as 
astrocytes, immune cells and fibroblasts [63]. The tumours 
themselves are usually comprised of solid and cystic com-
ponents [64]. The solid part includes epithelial tumour cells, 
organised in well-defined structures such as the palisading 
epithelium, the stellate reticulum and whorl-like structures. 
The epithelial component of these tumours shows no sign 
of neuroendocrine differentiation (i.e. lack of expression of 
pituitary hormones, cell-lineage markers or neuroendocrine 
markers like synaptophysin). Additional solid components 
include wet keratin (i.e. eosinophilic areas of keratinised 
cells without nuclei) and calcification foci. In addition to 
these solid structures, ACP tumours usually contain one or 
multiple cysts filled with a dark fluid enriched in inflamma-
tory mediators and lipids [65–67].

Molecularly, ACPs are driven by the overactivation of the 
WNT/β-catenin signalling pathway [68, 69]. This pathway 
is heavily involved in normal development and physiology 
as well as in cancer [70]. Figure 2 depicts a schematic and 
description of the pathway. Research from the last 2 decades 
has demonstrated that mutations in exon 3 of CTNNB1, the 
gene encoding for β-catenin, are the most common molecu-
lar alterations associated with ACP tumourigenesis [68, 69]. 
These mutations are predicted to prevent protein degradation 
and cause nucleo-cytoplasmic accumulation of β-catenin 
and activation of the pathway [71]. In agreement, immu-
nohistochemistry against β-catenin has shown the presence 
of sporadic epithelial tumours cells with cytoplasmic and 
nuclear staining, either dispersed throughout the tumour or 
grouped in whorl-like epithelial structures (also known as 
clusters) (Figs. 1, 3) [72]. Despite β-catenin accumulation 
being restricted to a minority of cells, CTNNB1 mutations 
have been identified in all of the epithelial tumour cells in 

a large cohort of ACPs by combining laser capture micro-
dissection with deep sequencing [73]. Three-dimensional 
imaging of human ACP tumours has revealed that these 
β-catenin-accumulating cell clusters are located within 
finger-like protrusions of tumour epithelium that invade the 
brain and surrounding structures, suggesting a potential role 
in tumour invasion [74]. Importantly, murine studies have 
demonstrated that mutations in CTNNB1 are tumour drivers 
and provided important insights into the role of the nucleo-
cytoplasmic β-catenin cell clusters in ACP tumourigenesis 
(see below) [43, 75]. The cellular origin of human ACP is 
still a matter of debate, with the most prominent hypoth-
esis being that it arises from embryonic oral ectoderm and 
in particular from remnants of Rathke’s pouch epithelium, 
a proposition derived from the observation of a common 
expression of certain cytokeratins between ACPs and oral 
epithelium [71, 76, 77]. In support of this, a recent RNA 
sequencing study found that human ACPs share a common 
transcriptional profile with tissues present during normal 
tooth development [67].

Mouse models of ACP: insights into tumour 
initiation and pathogenesis

Two genetically engineered mouse models of ACP have 
been developed by expressing oncogenic β-catenin in either 
HESX1 + embryonic precursors of the developing pituitary 
(embryonic model; Hesx1Cre/+; Ctnnb1lox(ex3)/+ mouse line) 
or in SOX2 + adult pituitary stem cells (inducible model; 
Sox2CreERT2/+; Ctnnb1lox(ex3)/+ mouse line) (Fig. 4a, b, respec-
tively) [43, 75]. These mouse models utilise the Cre/loxP 
technology to induce the expression of a murine oncogenic 
form of β-catenin that is functionally equivalent to those 
identified in human ACPs. Specifically, Cre recombinase 
expression in either Hesx1 or Sox2-expressing cells leads to 

Fig. 1   Histopathology of human adamantinomatous craniopharyn-
gioma (ACP). TE tumour epithelium, GRT​ glial reactive tissue, PE 
palisading epithelium, SR stellate reticulum, WL whorl-like epithelial 
cell groups. Immunostaining for β-catenin showing nucleo-cytoplas-
mic accumulation in cells of the WL, whilst the rest of the tumour 

cells show normal membranous staining. Scale bar 200 μm. The fig-
ure is  adapted from Martinez-Barbera JP, Andoniadou CL (2020) 
Biological Behaviour of Craniopharyngiomas. Neuroendocrinology 
1–8, with permission of S. Karger AG, Basel
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Fig. 2   Schematic of main components of the canonical WNT signal-
ling pathway. In the absence of WNT ligands, β-catenin, (encoded 
by the CTNNB1 gene) is normally recruited in a destruction complex 
containing several proteins including APC (adenomatous polyposis 
coli), AXIN, CKIα (casein kinase 1 alpha) and GSK3β (glycogen 
synthase kinase 3β). This results in β-catenin phosphorylation of spe-
cific amino acids encoded by CTNNB1 exon 3 and protein degrada-
tion by the ubiquitin–proteasome pathway. Consequently, levels of 
β-catenin protein concentration are low in the cytoplasm and nucleus, 
hence keeping the target genes in a repressed state. At the same time, 
two surface E3 ubiquitin ligases, RNF43 and ZNFR3, regulate levels 
of the WNT ligand–receptor Frizzled through its ubiquitination which 
leads to its endosomal internalization and degradation. Binding of 
WNT ligands to their receptor, Frizzled, leads to the formation of a 
complex alongside coreceptors LRP and Dishevelled (DVL), which 

captures and disassembles the β-catenin destruction complex and thus 
prevents β-catenin phosphorylation and degradation. This causes pro-
tein stabilization, nucleo-cytoplasmic accumulation of β-catenin and 
the activation of target genes. Examples of WNT target genes encode 
for LGR receptors (LGR4-6), which upon binding of R-spondins 
(Rspo), recruit the RNF43/ZNFR3 complex and, therefore, allows 
the accumulation of Frizzled in the membrane. This leads to positive 
feedback and amplification of the WNT signalling pathway. Muta-
tions in exon 3 of CTNNB1, containing the regulatory amino acids 
of β-catenin responsible for its degradation, prevent β-catenin phos-
phorylation by the destruction complex. This leads to its nucleo-cyto-
plasmic accumulation and constitutive overactivation of the WNT/β-
catenin pathway even in the absence of WNT ligands and R-spondins. 
Created with BioRender.com

Fig. 3   Human adamantinomatous craniopharyngioma (ACP) 
and ACP murine models contain nucleo-cytoplasmic β-catenin-
accumulating cell clusters. a Immunofluorescent staining in human 
ACP showing the nucleo-cytoplasmic accumulation of β-catenin in 
cell groups known as “clusters” (arrows), a defining characteristic 
of these tumours. b Expression of oncogenic β-catenin in Rathke’s 
Pouch progenitors leads to the formation of clusters in a Hesx1Cre/+; 
Ctnnb1lox(ex3)/+ pre-tumoural pituitary. c Clusters also form upon 

inducible expression of oncogenic β-catenin in adult pituitary stem 
cells in Sox2CreERT2/+; Ctnnb1lox(ex3)/+ mice. A 16-week post-tamox-
ifen induction pituitary is shown. Scale bars 100  μm. AL anterior 
lobe, IL intermediate lobe. The figure is  reproduced with permission 
from Carreno G, Gonzalez-Meljem JM, Haston S, Martinez-Barbera 
JP (2016) Stem cells and their role in pituitary tumorigenesis. Mol 
Cell Endocrinol 445:27–34
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the deletion of exon 3 from the Ctnnb1lox(Ex3) allele, which 
then codes for a mutant version of β-catenin missing several 
important regulatory amino acids located in the N-terminal 
end of the protein. Degradation of this mutant β-catenin is 
impaired, as the protein cannot be phosphorylated by its 
destruction complex but can still activate transcription of tar-
get genes (Fig. 2). In agreement, both of these ACP murine 
models show over-activation of the WNT/β-catenin pathway 
(e.g. expression of target genes such as Axin2 and Lef1) in 
the developing (embryonic) or adult (inducible) pituitary 
leading to the formation of tumours resembling human ACP 
[72, 78].

In the embryonic model, the expression of oncogenic 
β-catenin is driven into early precursors of Rathke’s pouch 
(RP) expressing the homeobox transcription factor Hesx1 
[75]. RP is the primordium of the anterior pituitary and 
these precursors give rise to all of the pituitary hormone-
producing cells (e.g. somatotrophs expressing growth hor-
mone and corticotrophs expressing adrenocorticotrophic 
hormone, among others) [79]. Sporadic cells and cell 
clusters accumulating nucleo-cytoplasmic β-catenin are 
observed in the developing pituitary soon after the initial 
expression of oncogenic β-catenin in RP precursors and 
prior to any sign of cell transformation or tumour devel-
opment (Fig. 3). Mice are born without pituitary tumours 
but the clusters are detectable for the first several weeks of 
postnatal life [80]. Analysis of tumour growth dynamics 
in the embryonic model has revealed a latency period of 
approximately 18 weeks from birth until the appearance of 
proliferative tumours [81]. It is possible that human ACPs 
follow similar a behaviour as there is a bimodal peak dis-
tribution for the age at diagnosis; first at 5–15 years (pae-
diatric ACP) and at 45–60 (adult ACP), while a number of 
neonatal and embryonic cases have also been reported [58, 
82–85]. As in human ACP, cells accumulating β-catenin 
are a minority despite the DNA mutation (i.e. Ctnnb1 
exon 3 deletion) being present throughout the developing 
pituitary cells as shown by laser capture microdissection 
and PCR [75]. Mouse tumours contain solid and cystic 
components, do not express markers of neuroendocrine 
differentiation and show histological and imaging features 
resembling human ACP [81].

An interesting finding from the analysis of the embry-
onic model is that if oncogenic β-catenin is expressed in 
committed or differentiated pituitary embryonic cell types, 
rather than in Hesx1-expressing undifferentiated precur-
sors, clusters do not form and tumours never develop [75]. 
Because the RP precursors are multipotent, this finding 
suggests that tumour formation requires a stem-like cell to 
express oncogenic β-catenin. This possibility has been fur-
ther explored in the inducible model. Expression of onco-
genic β-catenin in SOX2 + ve cells of the postnatal pituitary, 
which contain bona fide organ-specific stem cells results in 

the initial formation of β-catenin-accumulating cell clusters 
and subsequent development of ACP-like tumours after a 
latency period of 3–6 months (Fig. 4a) [43]. In conclusion, 
data from these mouse models support the idea that the 
CTNNB1 mutations identified in human ACP are drivers of 
tumourigenesis and have provided evidence that ACP likely 
originates from embryonic RP precursors. Additionally, the 
dynamics of tumour development suggests that the forma-
tion of β-catenin-accumulating cell clusters precede cell 
transformation and tumour initiation.

Paracrine tumourigenesis in the ACP mouse models

An interesting question that has been investigated using 
the ACP murine models is to interrogate the fate of the 
cells expressing and accumulating oncogenic β-catenin. 
This can be addressed in mice by permanently labelling 
these cells and their progeny with the expression of a fluo-
rescent reporter protein (e.g. yellow fluorescent protein, 
YFP), an approach known as genetic lineage tracing [86]. 
Genetic tracing has been initially carried out in the induc-
ible model to reveal that the ACP-like tumours do not 
derive from SOX2 + pituitary stem cells expressing onco-
genic β-catenin [43]. Instead, targeted SOX2 + stem cells 
give rise to β-catenin-accumulating cell clusters, while 
the tumours originate from a different cell lineage as they 
do not express the lineage reporter, nor do they contain a 
Ctnnb1 exon 3 deletion (Fig. 4a). These findings are rather 
unexpected, especially when considering that in other sys-
tems (e.g. intestinal tumours), stem cells have been shown 
to become the tumour cell-of-origin when targeted with 
similar oncogenic mutations that result in the overactiva-
tion of the WNT/β-catenin signalling pathway [87, 88]. In 
agreement, it has been shown that SOX2 + pituitary stem 
cells can form tumours cell autonomously when YAP/
TAZ signalling is enhanced [89]. The cell non-auton-
omous origin of the ACP-like tumours has been further 
corroborated in the embryonic model by lineage tracing 
(Fig. 4b–d) and DNA sequencing, which have shown that 
the tumours derive from a different cell lineage and contain 
novel somatic mutations not present in the germline [42]. 
Therefore, the expression oncogenic β-catenin in either 
SOX2 + adult stem cells or HESX1 + embryonic progeni-
tors leads first to the formation of clusters, which are simi-
lar to those found in human ACP, and then promote tumour 
formation in a cell non-autonomous manner. Importantly, 
in both ACP models and in human ACP, these clusters are 
non-proliferative and express a multitude of growth fac-
tors (e.g. WNTs, FGFs, BMPs, EGF, among others) and 
inflammatory mediators (e.g. IL1, IL6, CXCL1, CXCL20, 
among others) [42, 43, 90]. Of note, recent research indi-
cates that SOX2 + stem cells in the normal pituitary have 
an important paracrine signalling function by mediating 
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the expansion of neighbouring committed progenitor cells, 
suggesting that oncogenic β-catenin and the senescence 
programme (discussed below) may consolidate the secre-
tory phenotype of SOX2 + stem cells [91]. These data sup-
port a model of paracrine tumourigenesis, whereby non-
dividing cluster cells are bestowed with the capacity to 
initiate tumours in a cell non-autonomous manner.

The role of senescence and its paracrine 
signals in ACP

Cellular senescence mediates paracrine 
tumourigenesis in mouse ACP models

Molecular profiling and genetic approaches have shown 
that these β-catenin accumulating clusters are enriched in 
senescent cells in both mouse and human ACP. Specifically, 
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human and mouse cluster cells exhibit several hallmark fea-
tures of senescence: (1) they are viable and non-proliferative 
(Ki67 and EdU negative); (2) express cell cycle inhibitors 
(e.g. p21CIP1); (3) exhibit DNA damage and activation of 
a DNA damage response; (4) have an enlarged lysosomal 
compartment (e.g. they show elevated expression of GLB1, 
the enzyme responsible for the widely employed senescence-
associated β-galactosidase staining); (5) activate the NF-κB 
pathway and a SASP [42]. Corroborating the expression data 
above, unbiased molecular analyses have revealed that the 
cluster cells are analogous cellular structures in human ACP 
and both mouse ACP models, which share a common signa-
ture of senescence and SASP activation [42].

We have also reported that the presence of an activated 
SASP results in substantial microenvironmental changes in 
the pre-tumoural pituitary of the embryonic model. These 
changes include an excess production of ECM proteins 
(Fig. 5a), as well as the recruitment of YFP-ve (i.e. not 
targeted with oncogenic β-catenin) proliferative cells that 

coexpress the endothelial marker endomucin (EMCN) and 
the stem cell marker SOX9, which closely interact with the 
senescent clusters (Fig. 5b, c). Although these changes are 
less apparent in the inducible model, the presence of senes-
cent β-catenin-accumulating cell clusters in this model also 
leads to increased proliferation in nearby non-cluster cells 
(i.e. increased Ki67 mitotic index) [42]. Notably, the close 
interaction of clusters with SOX9-expressing cells occurs 
in both mouse models as well as in human ACP [43, 75].

The function of senescent cluster cells in ACP tumour-
igenesis has been investigated in mice using two genetic 
approaches. First, in the inducible model, it has been shown 
that the expression of oncogenic β-catenin in SOX2 + pitui-
tary stem cells at different ages results in a significant reduc-
tion in tumour formation when comparing induction in aged 
(6–9 months old) vs. young (4–6 weeks old) mice. This 
reduction in tumour burden is associated with a significant 
decrease in the senescence/SASP response in the clusters 
of the aged mice. Specifically, pituitaries from older mice 
contain smaller clusters and reduced expression of SASP 
factors, while reduced numbers of proliferating cells are also 
observed surrounding the clusters [42].

A second approach has taken advantage of the fact that 
deletions or inactivating mutations in the genes and proteins 
of the β-catenin destruction complex, such as Apc (adenoma-
tous polyposis coli) (Fig. 2), also lead to the over-activation 
of the WNT/β-catenin pathway and tumour formation (e.g. 
in intestinal cancers in mouse and humans) [87, 88]. How-
ever, the deletion of Apc in both Hesx1-expressing embry-
onic precursors, or SOX2 + adult stem cells, completely 
fails to generate ACP-like tumours. Detailed histological 
and molecular analyses have revealed that deletion of Apc 
also leads to the formation of β-catenin clusters that activate 
downstream targets of the WNT pathway and express mark-
ers of senescence. However, these clusters are smaller in size 
in comparison to those carrying oncogenic β-catenin and, 
importantly, show a drastically reduced expression of SASP 
factors [42]. In addition to an absence of tumour induction, 
Apc-null pituitaries do not display the microenvironmental 
alterations that usually precede tumour growth, such as the 
aberrant expression of ECM markers or the recruitment of 
a population of proliferating non-oncogene targeted (YFP-
negative) endothelial-like cells expressing SOX9 (Fig. 5c). 
Therefore, the attenuation of the paracrine activities of the 
senescent cluster cells in the aged inducible model and in 
Apc-deficient mice results in reduced tumour induction [42].

In human ACP, the location of the senescent clusters 
within the finger-like tumour protrusions invading the brain 
suggests that SASP activities may promote epithelial cell 
proliferation and invasion [74]. This is further supported by 
the molecular similarities between human clusters and the 
enamel knot, a signalling hub controlling epithelial bending 
and proliferation during tooth formation [67]. In addition, 

Fig. 4   Lineage tracing in mouse ACP models shows the cell non-
autonomous origin of tumours. Mouse ACP models were crossed 
with R26YFP/+ lineage reporter mice which allows labelling of cells 
and their descendants upon expression of Cre recombinase. a Dou-
ble immunofluorescent staining in Sox2CreERT2/+; Ctnnb1lox(ex3)/+; 
R26YFP/+ pituitaries showing cell clusters (arrowheads) and a large 
tumoural lesion (asterisk) that accumulate β-catenin. The tumour 
cells (asterisk) do not express the lineage reporter YFP, indicat-
ing they are not descendants of SOX2 + stem cells. Note that the 
clusters (arrowheads) co-express nucleocytoplasmic β-catenin and 
YFP, demonstrating that they derive from SOX2 + stem cells. b In 
Hesx1Cre/+; Ctnnb1lox(ex3)/+; R26YFP/+ mice, most cells of the ante-
rior lobe of the pituitary descend from HESX1 + Rathke’s pouch 
precursor cells, as shown by YFP expression in a 5-week-old pitui-
tary. After a period of latency, pituitary tissue is displaced by devel-
oping tumour tissue that does not express YFP. Scale bar 5  mm. c 
The absence of Cre-mediated recombination in the tumours is further 
demonstrated using the mT/mG dual reporter mouse line, in which 
unrecombined cells express membrane TdTomato protein (red) while 
pituitary-lineage cells express GFP (green). Note that in the Hes-
x1Cre/+; R26mTmG/+ control pituitary, the anterior lobe (al) tissue is 
green (recombined) and the posterior lobe (pl) is red (unrecombined 
since the pl is not derived from the Hesx1 lineage). In an ACP Hesx-
1Cre/+; Ctnnb1lox(ex3)/+; R26mTmG/+ mouse tumour, most of the tumour 
cells express TdTomato. Scale bar 1 mm. d Double immunofluores-
cent staining against the proliferation marker Ki67 and YFP reveal-
ing that although most of the cells in the pituitary anterior lobe (al) 
of a 5-week-old ACP embryonic model are YFP + ve, the tumours 
in a 20-week-old mouse develop from YFP-ve cells that show a high 
proliferative activity (asterisk). In very advanced tumours (35 weeks) 
most of the YFP + ve cells are missing and only sporadic cells are 
detected in the periphery. Panel a is adapted with permission from 
Andoniadou CL, Matsushima D, Mousavy-gharavy SN, et al. (2013) 
The Sox2 + population of the adult murine pituitary includes progeni-
tor/stem cells with tumour-inducing potential. Cell Stem Cell 13:433–
445. b–d are  adapted from Gonzalez-Meljem JM, Haston S, Carreno 
G, et al. (2017) Stem cell senescence drives age-attenuated induction 
of pituitary tumours in mouse models of paediatric craniopharyngi-
oma. Nat Commun 8:1819, which is an open-access article licensed 
under a Creative Commons Attribution 4.0 International License

◂
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the inhibition of the MAPK pathway in human ACP explant 
cultures results in reduced proliferation and increased apop-
tosis, while several ligands capable of activating the MAPK 
pathway are expressed in both human and murine senes-
cent clusters (e.g. FGFs and EGF) [67, 90]. Together, evi-
dence from mouse and human studies strongly suggests that 
senescence plays an essential role in tumour initiation in the 
murine models and in tumour growth, invasion and inflam-
mation in human ACP (Fig. 6).

Paracrine tumourigenesis and senescence-mediated 
paracrine tumourigenesis mechanisms have not yet been 
described in other pituitary tumours. In the case of pitui-
tary adenomas, cellular senescence has been shown to 
restrict tumour cell proliferation and is thought to under-
lie the almost invariable benign nature of pituitary tumours 
[92–97]. There are, however, interesting findings suggesting 
that paracrine SASP signalling might also contribute to pitu-
itary adenoma pathogenesis. For example, it has been shown 
that senescent cells in somatotroph adenomas also secrete 
growth hormone (GH) as part of their SASP and that GH and 
growth hormone releasing hormone (GHRH) are inducers 
of DNA damage and genomic instability in normal pituitary 

cells [98–100]. Additionally, IL6 is a crucial SASP factor 
that is normally secreted by pituitary folliculostellate cells, 
and while it has been shown to induce cellular senescence in 
adenoma cells, it has also been shown to promote pituitary 
cell proliferation and to be required for tumour induction in 
a somatotroph adenoma transplant model [101, 102]. These 
findings suggest that senescence and the SASP could play 
a dichotomous role in pituitary adenomas by restricting 
cell proliferation and preventing the onset of malignancy 
in established tumours, while promoting the acquisition of 
genomic instability and the formation of tumour permissive 
microenvironments.

Paracrine and senescence‑induced 
tumorigenesis

Evidence for paracrine tumorigenesis

Current and widely supported theories of carcinogenesis 
such as the cancer stem cell/hierarchical model, the genetic/
stochastic evolution model and more recent unifying 

Fig. 5   The β-catenin accumulating senescent cell clusters modify 
the tumour microenvironment (TME) in the pre-tumoural pituitary 
of the ACP embryonic model. a Immunostaining against fibronectin, 
laminin and endomucin (EMCN) showing TME alterations prior to 
tumour initiation in the ACP mouse model. Scale bar 100 μm. b Dou-
ble immunostaining for the lineage tracing reporter YFP showing an 
expanded population of EMCN-expressing cells that is not derived 
from the Hesx1 cell lineage targeted with oncogenic β-catenin. Note 
that clusters of YFP + ve cells are often surrounded by EMCN + ve 
cells (arrows). Scale bar 100 μm. c Triple immunostaining showing 
that in the context of oncogenic β-catenin (Hesx1Cre/+; Ctnnb1lox(ex3)/+ 
pituitary, top panel), large numbers of EMCN + ve cells also co-

express SOX9 and interact closely with the senescent clusters 
(arrows). However, in the context of wild type β-catenin (loss of 
tumour suppressor Apc in Hesx1Cre/+; Apcfl/fl pituitaries), senescent 
clusters are smaller and show an attenuated SASP that fail to induce 
changes in the TME. Of note, Hesx1Cre/+; Apcfl/fl do not develop 
tumours (see text). Scale bar 50 μm. The figure is  adapted from Gon-
zalez-Meljem JM, Haston S, Carreno G, et al. (2017) Stem cell senes-
cence drives age-attenuated induction of pituitary tumours in mouse 
models of paediatric craniopharyngioma. Nat Commun 8:1819, 
which is an open-access article licensed under a Creative Commons 
Attribution 4.0 International License
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propositions imply that a tumour (or each subclonal popu-
lation within a tumour) is formed by cells that are descend-
ants of the cell originally targeted by an initiating oncogenic 

insult [47–49]. On the other hand, the observation that 
tumours can arise cell non-autonomously, as in mouse mod-
els of ACP, stands in stark contrast to traditional theories 

Fig. 6   Models depicting the role of senescent cells in mouse 
and human ACP. a Oncogenic β-catenin expression in either in 
SOX2 + adult pituitary stem cells or Hesx1 pituitary embryonic 
progenitors leads to the formation of nucleocytoplasmic β-catenin-
accumulating clusters and SASP activation with expression of sev-
eral cytokines, chemokines and growth factors. Persistent and robust 
SASP promotes cell transformation of a non-targeted cell (i.e. not 
expressing oncogenic β-catenin or YFP) in a paracrine manner. In this 

model SASP-mediated activities of the clusters are required for either 
tumour initiation, progression or both. b Senescent clusters in human 
ACP (green cells) are usually found at the base of finger-like tumour 
projections that invade the brain. The factors secreted by the clusters 
are proposed to promote tumour cell proliferation of the palisaded 
epithelium and epithelial bending resulting in tumour invasion. Sig-
nals may also promote inflammation in the glial reactive tissue. Cre-
ated with BioRender.com
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of the origin of cancer. There are, however, several experi-
mental examples showing evidence that cell transformation 
and tumour initiation mechanisms do not necessarily follow 
traditional paradigms (Table 1).

Around 3 decades ago, in vitro experiments had already 
shown that paracrine or autocrine exposure of naïve cells 
to secreted developmental growth factors of the WNT and 
FGF families could initiate pre-malignant phenotypical 
changes, including: (1) ability to grow without attachment 
in agar plates (a sign of cell transformation); (2) alteration 
of cell morphologies; (3) increased proliferation and higher 
cell culture densities; (4) loss of contact inhibition of pro-
liferation [103–109]. However, these initial studies did not 
address the capacity of the paracrinally “transformed cells” 
to generate tumours in vivo. Although research conducted 
over the last decades has established the importance of 
mutations and deregulation of these signalling pathways in 
several cancers [110–113], the exact relationships between 
a tumour’s cell-of-origin (also known as tumour-initiating 
cell), oncogenic driver mutations and the source of paracrine 
protumourigenic signals have not been widely explored until 
recently.

In vivo, combinations of different methods such as line-
age tracing, cell ablation, DNA sequencing, laser-capture 
microdissection, chimera aggregations and cell transplanta-
tion have been instrumental in providing evidence of parac-
rine tumourigenesis; while it is important to note that these 
have also been used to support the validity of cell autono-
mous mechanisms in some in vivo cancer models [114–116]. 
For example, two notable studies used bone marrow replace-
ment experiments in genetically engineered mouse models to 
show that the loss of Dicer1 or the activation of oncogenic 
β-catenin, specifically in osteoprogenitors or osteoblasts, 
leads to the development of myelodysplastic syndromes and 
acute myeloid leukaemias in a paracrine manner. Interest-
ingly, they show that the tumour cell of origin does not carry 
the targeted mutations (i.e. Dicer1 or β-catenin) and instead 
display novel mutations and genomic aberrations [117, 118].

In breast cancer studies, most experiments so far have 
used in vitro cocultures to show the capacity of paracrine 
WNT signalling to transform mammary epithelial cell lines 
[104–107]. However, a study has shown that xenotrans-
planted mammary epithelial cell organoids required HGF 
and TGB1 secreted by irradiated stromal cells in order to 
form tumours in nude mice [119]. Likewise, another study 
has shown the requirement of mammary stroma exposed to 
the chemical carcinogen N-nitrosomethylurea (NMU) for the 
induction of mammary epithelial tumours [120].

In regard to brain cancer, lineage tracing and transplanta-
tion experiments have demonstrated an important role for 
paracrine PDGFB signalling in the recruitment of untargeted 
oligodendrocyte host cells to induce the formation of glio-
mas [121, 122]. Similarly, a combination of lineage tracing 

with chimera aggregations has shown the recruitment of 
untargeted cells during the formation of polyclonal intes-
tinal tumours [123]. Likewise, combining lineage tracing 
and bone marrow transplantations has revealed the require-
ment of macrophage-secreted TNF for the initiation of gas-
tric tumours [124] and that of FGF10 paracrine signalling 
between the urogenital mesenchyme and prostatic epithelia 
for the formation of prostatic neoplasias [125–127]. FGF 
signalling has also been implicated in cell non-autonomous 
tumourigenesis in the liver, as virally-delivered FGF19 or 
skeletal muscle-derived FGF19 were shown to be required 
for the induction of hepatocellular carcinomas in mice [128, 
129].

In skin models of cancer, it is known that certain onco-
genic driver mutations require wounding-derived inflamma-
tory signals to initiate tumourigenesis [130, 131]. Interest-
ingly, lineage tracing in a transgenic skin papilloma model 
has shown that activating constitutive MAPK signalling in 
suprabasal epidermal cells, in addition to skin wounding, can 
induce IL1A-driven hyperproliferation of non-targeted epi-
dermal basal cells, which then formed the bulk of the papil-
loma [132]. A similar strategy has also demonstrated the cell 
non-autonomous recruitment of untargeted cells in skin can-
cer models driven by the carcinogens 7,12-dimethylbenz(a)
anthracene (DMBA) and 2-O-tetradecanoylphorbol-13-ac-
etate (TPA) [133, 134]. Finally, the expression of oncogenic 
β-catenin in K19 + and Lgr5 + stem cells of the hair follicle 
has been shown to induce outgrowths and benign tumours 
which are mostly composed of untargeted cells as shown 
by lineage tracing [135–137]. Therefore, plenty of evidence 
exists supporting the notion that paracrine signalling can 
initiate tumour formation and fuel progression.

Evidence for senescence‑induced tumorigenesis

There is ample in vitro and in vivo evidence demonstrat-
ing the tumour promoting activities of cellular senescence 
on cells carrying oncogenic mutations (see reviews cited 
above). On the other hand, the requirement of senescence 
and SASP signalling for the cell non-autonomous initiation 
of tumours (as it occurs in mouse ACP models) has been less 
explored, possibly due to the inherent difficulty in studying 
the early stages of cell transformation and tumour initiation 
in vivo.

Although a considerable number of in vitro experiments 
have shown that conditioned media from senescent cell cul-
tures can enhance the cancerous properties of preneoplas-
tic or neoplastic cells (see the reviews mentioned above), 
it has also been shown that some cells require exposure to 
senescent cell-conditioned media to acquire cancer stem 
cell-like phenotypes and the ability to form tumours when 
transplanted into nude mice [138–140]. In vivo, senescence 
and the SASP-driven paracrine tumourigenesis have been 
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convincingly demonstrated to occur in several tissues of D. 
melanogaster. In this model, elegant use of gene targeting, 
genetic lineage tracing and cell ablation approaches have 
shown that activating oncogenic Ras induces senescence-
like phenotypes and SASP activation in targeted cells, 
which lead to tumour growth in neighbouring wild type cells 
through the activation of developmental pathways and JNK 
signalling [141–144]. In a zebrafish model of melanoma, 
researchers showed that telomere shortening promotes the 
accumulation of senescent cells which produces an inflam-
matory environment that significantly fosters the formation 
of melanomas [145]. This, taken together with the fact that 
senescent cells accumulate during aging in several tissues 
and that their elimination in mice causes a significant delay 
in cancer deaths [146–149], implicates senescent cells in 
age-related tumourigenesis.

In mice, the injection of senescent HRasV12-express-
ing keratinocytes can induce the formation of skin papil-
lomas that are very similar to those in DMBA/TPA mod-
els. Strikingly, a considerable portion of cells within the 
papillomas contain non-targeted host cells, suggesting an 
important role for senescence-driven paracrine signalling 
in tumour formation [150]. Notably, a recent study revealed 
that p16INK4A-expressing senescent keratinocytes and their 
SASP induce hyperproliferation and activation of WNT sig-
nalling target genes in neighbouring naïve cells, leading to 
the formation of papillomas when DMBA/TPA is applied 
[151]. These findings are remarkably similar to the previ-
ously discussed studies involving the paracrine recruitment 
of untargeted cells in skin tumours, thus raising interest-
ing questions about the contributions of senescence and the 
SASP in those models [132–137].

There is also strong evidence suggesting that senes-
cence and the SASP can drive paracrine tumourigenesis in 
the liver. For example, it has been shown that obese mice 
develop higher levels of the microbial metabolite deoxy-
cholic acid (DCA) which leads to higher number of senes-
cent hepatic stellate cells (HSCs) and increased SASP 
expression. Interestingly, depletion of either the senescent 
HSCs or knockout of IL1B signalling (a common SASP 
component) significantly prevents the growth of DMBA-
induced hepatocellular carcinomas [152]. Moreover, other 
studies have shown the requirement of senescent fibroblasts 
and their SASP for the induction of liver tumours from trans-
planted cancer cell lines [39, 153]. In particular, it has been 
shown that the pro-tumourigenic effects of the SASP can be 
inhibited by knockdown of PTBP-1, a factor controlling the 
alternative splicing of genes involved in intracellular traf-
ficking [39]. The tumour-initiating role of senescence has 
further been supported by a recent study showing that car-
cinogen-induced liver tumour formation requires the SASP 
from senescent HSCs and that it can be prevented by chemi-
cally ablating senescent cells [154].

The evidence discussed above suggests three conceiva-
ble mechanisms, acting alone or in combination, that could 
mediate senescence-mediated paracrine tumourigenesis: (1) 
induction of proliferation in neighbouring cells, therefore, 
promoting genomic instability and the appearance of novel 
mutations [155, 156]; (2) promotion of cell reprogramming 
and plasticity, which has already been shown to occur in 
the contexts of cancer, aging and repair during injury both 
in vivo and in vitro [21, 150, 157–159]; (3) activation of 
developmental pathways (such as WNT signalling) related 
to the induction, maintenance and survival of cancer stem 
cell phenotypes [160, 161]. Our findings from both humans 
and mouse models suggest all 3 mechanisms are involved 
in ACP pathogenesis. First, proliferating cells are often 
found in close proximity to the senescent clusters, while the 
expression of the stem cell factor SOX9 is increased in these 
neighbouring cells. Importantly, the presence of both prolif-
erating and SOX9 + cells is diminished in the context of an 
attenuated SASP [42, 75]. Second, mouse ACP pituitaries 
contain more and faster growing pituitary progenitors/stem 
cells as determined by colony-forming assays [75]. Finally, 
the senescent clusters in both mouse and human possess a 
transcriptional profile that is analogous to the enamel knot, 
while their SASP contains many developmental signalling 
factors from the WNT, SHH, BMP and FGF families that 
are critical for tooth morphogenesis [67].

New therapeutic opportunities: senolytics 
and SASP‑modulating drugs

The discovery that senescent cells, through the SASP, are 
determinant factors of age-related pathogenesis and drivers 
of organismal ageing has led to the identification and devel-
opment of drugs able to counteract their damaging effects. 
Senotherapies aim mostly to either kill senescent cells selec-
tively, by targeting key survival critical pathways, or to regu-
late their paracrine activities using SASP-modulating drugs. 
In a couple of milestone studies, Baker and colleagues have 
demonstrated that the genetic ablation of p16-expressing 
senescent cells is able to delay ageing-associated disorders 
[146, 162]. Subsequently, three independent studies have 
shown that senescent cells can specifically be killed using 
certain senolytic compounds, resulting in the rejuvenation of 
tissue stem cells [163–165]. These initial studies have been 
followed by more investigations targeting senescent cells in 
different disease contexts that have together provided solid 
evidence for a critical contribution of senescence in several 
age-related diseases [166–170]. Senolytic therapies have 
thoroughly been reviewed elsewhere [27, 171, 172]

The previously discussed cell autonomous and non-
autonomous functions of senescent cells in tumourigenesis 
have provided a strong rationale to explore the potential of 
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senotherapies to prevent or delay tumour formation. Seno-
therapies could improve anticancer treatments, as many cur-
rently used therapies may lead to the induction and accu-
mulation of senescent cells in the tumour bed, which could 
be detrimental for the patients and result in recurrence. In 
support of this, it has been shown that genetic or chemical 
ablation of senescent cells that are induced after anti-cancer 
therapy significantly reduces tumour recurrence in breast 
and liver cancer models [25, 173].

In ACP models, initial experiments have shown that the 
genetic attenuation of the senescence/SASP response is able 
to reduce significantly the tumour-inducing potential of the 
senescent cell clusters [42]. In human ACP, the inhibition 
of IL6 (a SASP factor expressed in mouse and human ACP) 
results in reduced motility of ACP epithelial tumour cells, 
suggesting that SASP attenuation may reduce tumour burden 
in vivo [174]. A number of studies have shown that senes-
cent cluster cells in the embryonic mouse ACP model can be 
ablated chemically using senolytic agents in vitro. Treatment 
of pre-tumoural mouse pituitaries with ABT-263 and ABT-
737, two well-studied senolytics that target the anti-apop-
totic proteins Bcl2, Bcl-xL and Bcl-w [164, 165], results 
in smaller clusters due to cell apoptosis in ex vivo explants 
cultures [42, 175]. Likewise, ouabain and digoxin, two mem-
bers of the cardiac glycoside family of organic compounds, 
can induce apoptosis in senescent cluster cells [175]. In a 
recent report, a galactose-modified cytotoxic prodrug has 
been used to preferentially kill the cluster senescent cells 
in vitro based on the higher levels of β-galactosidase in these 
cells [176]. Therefore, mouse ACP models can potentially 
be used to study novel senolytic compounds in the context of 
senescence-mediated paracrine tumourigenesis in vivo. Pre-
clinical studies are still required to establish proof-of-prin-
ciple evidence that senotherapies may be relevant against 
craniopharyngioma and therefore mouse ACP models are 
ideal tools to test these novel treatments.

Conclusions

Early studies showing a negative correlation between senes-
cent cell burden and tumour progression towards malignancy 
helped establish cellular senescence as a tumour-suppressive 
mechanism. However, when viewed under the precepts of 
widely accepted cell autonomous paradigms of tumorigen-
esis, this inverse senescence-cancer progression relation-
ship implies that cells carrying oncogenic driver mutations 
have to either bypass or escape the senescent phenotype for 
tumours to progress. Although there are some convincing 
experiments in vitro [161, 177], conclusive evidence dem-
onstrating the occurrence of either senescence bypass or 
escape has yet to be produced in vivo [178]. Of relevance, 
a genome-wide methylation analysis has shown that the 

methylation signature of transformed cells is acquired sto-
chastically and independently of the senescent epigenetic 
state, which argues against the senescence escape hypothesis 
[179]. Likewise, although NOTCH1 is the most commonly 
mutated gene in the physiologically aged human oesopha-
gus (followed by TP53), NOTCH1 mutations are consider-
ably underrepresented in oesophageal cancers, suggesting 
these are more likely to evolve from epithelial cells with-
out NOTCH1 mutations. In contrast, TP53 mutations, which 
are several-fold less frequent in the aged oesophagus, are 
almost universally present in oesophageal cancers, sug-
gesting that these cancers originate from the small fraction 
of TP53 mutant cells [180, 181]. These findings also argue 
against senescence escape as an underlying mechanism of 
oesophageal cancer development, as it would be expected 
for mutations in NOTCH1 to be as abundant as TP53. More 
recently, the mechanisms of action of known carcinogens 
have been challenged. By analysing the mutational signa-
tures of tumours generated in mice exposed to one of 20 car-
cinogens, it has been found that most of these agents are not 
directly mutagenic on the genome (i.e. they do not increase 
mutation burden in the tumours), with most mutations, 
including driver mutations, resulting from tissue-specific 
endogenous processes. This suggests that these carcinogens 
promote tumour initiation in a different manner, possibly 
by creating a permissive environment that allows tumour 
growth rather than, as initially believed, by increasing muta-
tion rate [182]. Therefore, a combination of techniques such 
as genetic lineage-tracing, transplantation and sequencing 
strategies will be required to demonstrate that oncogene-
targeted cells can escape or avoid the senescent phenotype 
in animal models of cancer.

The ACP models have revealed that the relationship 
between oncogenic driver-mutations, tumour cells-of-ori-
gin and the tumour microenvironment (TME) can be much 
more complex than what can be explained by conventional 
models of carcinogenesis. Lineage tracing has shown the 
otherwise counterintuitive observation that tumours can be 
formed from cells that are not related to the original onco-
genic insult. Molecular studies in these models indicate that 
senescent cells bring about a pro-tumourigenic TME that 
induces tumour initiation in a paracrine manner through the 
SASP, while in human ACP, the evidence strongly supports 
a role of senescent cells in tumour growth and invasion. Fur-
ther preclinical research using senolytics in the ACP mouse 
models may pave the way to clinical trials to evaluate the 
clinical relevance of senotherapies, alone or in combination, 
against human ACP.

It remains to be seen how common the occurrence of 
senescence-induced paracrine tumourigenesis in other 
tumours and cancers is, but it will be particularly interest-
ing to assess the role of senescent cells and the SASP in 
the cancer models for which cell non-autonomous initiating 
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mechanisms have already been described (Sect. 4.1 and 
Table 1). Evidence of the prevalence of such mechanisms 
in the origin or establishment of some human cancers will 
also have to be produced, which may be difficult due to 
the fact that early stages of tumourigenesis are hard to get 
hold of in humans. However, within the context of therapy-
induced senescence, it may be easier to demonstrate the pro-
tumourigenic effects of both senescent tumoural cells and 
senescent cells within the TME. Therefore, therapies capa-
ble of inducing senescent phenotypes such as radiotherapy, 
chemotherapy or even targeted approaches, in combination 
with senolytics or SASP-modulators [183], could signifi-
cantly improve the current standard of care and result in 
better clinical outcomes.
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