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Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degra-
dative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ 
neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete 
their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, 
across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is 
required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and 
underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the 
neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. 
Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung 
have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated 
review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the 
trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary 
neutrophilia in lung disease.
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Abbreviations
AT  Alveolar epithelial type
DARC   Duffy antigen receptor for chemokines
ELR  Glu-Leu-Arg
ICAM  Intercellular adhesion molecule
IL  Interleukin
LPS  Lipopolysaccharide
NF  Nuclear factor
PMN  Neutrophil
VCAM  Vascular cell adhesion molecule
VLA  Very late activation antigen

Introduction

The lung, by virtue of its unique tissue architecture, con-
tinual exposure to the environment, and mandate to balance 
robust antimicrobial host defense with the maintenance 
of vital gas exchange, has a relationship to the circulating 
neutrophil (PMN) unlike that of all other organs. Rapid 
recruitment of PMNs from the bloodstream to the airspace 
is required for host defense. However, bystander tissue injury 
from excess or recurrent PMN recruitment contributes to 
nearly all categories of lung disease. Although the molecular 
mechanisms of PMN recruitment to the airspace have been 
studied for decades, foundational discoveries continue to 
be made. PMN trafficking to the lung differs fundamentally 
from that in other organs. In part due to the technical chal-
lenges of imaging and intervening upon PMN trafficking in 
the lung in vivo, in several cases, mechanisms of PMN traf-
ficking worked out in other tissues (e.g., cremaster muscle, 
intestine) have been extrapolated to the lung. In this review, 
after first discussing intriguing reciprocal homeostatic inter-
actions between the lung and PMN and the unique journey 
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that the intravascular PMN follows into the alveolar space 
during pneumonia, we highlight established and emerging 
mechanisms for chemokines, the endothelium, and the res-
piratory epithelium in the regulation of PMN trafficking into 
the airspace. Last, we close with a perspective on PMNs in 
lung disease and potential opportunities for therapy.

Homeostatic margination and function 
of PMNs in healthy lung

Mechanisms of PMN margination in the lung

Decades ago, studies of rabbits, sheep, and other animals 
revealed that non-inflamed lungs during health contain a 
pool of PMNs that is ~ 2–3 times the number of PMNs in 
the free circulation [1, 2]. These ‘marginated’ intravascu-
lar PMNs largely localize within alveolar capillaries. A 
series of landmark studies clarified that PMNs traveling 
from pulmonary arterioles to venules transit ~ 8–17 alveolar 
walls involving ~ 40–100 capillary segments, and that, due 
to size mismatch, at least half of these capillary segments 
require PMNs to deform and sometimes to even stop once 
or more during passage (reviewed in [2]). Likely due to their 
slower deformability, PMNs have a much longer transit time 
through the lungs than do erythrocytes [2], accounting, at 
least in part, for their marked relative concentration within 
the lung microvasculature. By contrast, studies using intravi-
tal labeling have generally reported relatively few extravas-
cular (i.e., interstitial, subepithelial) PMNs in the healthy 
murine lung, ranging from minimal [3–5] to ~ 14% of lung 
PMNs [6]. One group, however, did observe substantial 
numbers of extravascular PMNs by two-photon microscopy 
[7]. Whether this discrepancy reflects technical or environ-
mental (microbiome, caging/bedding) differences is unclear. 
Virtually no PMNs are found in the alveolar space during 
health.

Arguing against an important role for molecular adhesion 
in steady-state PMN margination in the lung, E-, L-, and 
P-selectins have been shown not to play a role in margina-
tion [2, 8–10]. By contrast, PMN CXCR4 may contribute to 
margination via ligation to pulmonary capillary endothelial 
CXCL12, although reports differ, with one showing that the 
CXCR4 antagonist AMD3100 demarginates PMNs from the 
lungs of mice and non-human primates [11], while another 
found that it increases pulmonary PMN content in mice [12].

Emerging roles for the lung in the PMN life cycle

Recent reports that there is a complex community of mar-
ginated immune cells in the lung in addition to PMNs 
(i.e., natural killer [NK] cells,  CD4+ T cells,  CD8+ T 
cells, invariant NK T cells) suggest that the pulmonary 

microvasculature may provide a niche for transcellular 
immune communications [4]. The PMN content of the 
lung microvasculature, in particular, exceeds that of large 
vessels by ~ 50-fold [2], suggesting that, quantitatively, 
alveolar capillaries are an important stop in the PMN 
life cycle. Of interest, it was recently reported that aged 
 CD11bhiL-selectinloCXCR4+ PMNs constitute a large pro-
portion of PMNs in the lung vasculature, that PMNs physi-
cally interact with B cells in the lung via CD18, and that 
this interaction induces PMN apoptosis, committing PMNs 
to phagocytic removal (‘efferocytosis’) [13]. This report, 
taken together with others that aged PMNs may also be 
preferentially recruited to the lung during inflammation 
[14], suggests that the lung niche, rather than serving as 
a simple mechanical sieve for PMNs, may be selective, 
acting as a major final resting ground for, and homeostatic 
regulator of PMNs. Of interest, epinephrine induces rapid 
release of PMNs from the lungs [11]. Conversely, intra-
venous injection of complement fragments or activated 
plasma induces rapid and marked retention of PMNs in 
alveolar capillaries and associated neutropenia [15, 16]. 
Collectively, this suggests that the lung serves as an emer-
gency sink and source for PMNs during times of acute 
systemic stress.

Emerging roles for marginated PMNs in the lung

In the liver and spleen, intravascular macrophages play 
an important role in the clearance of pathogens from the 
bloodstream. By contrast, the lungs in mice and humans 
are not thought to contain intravascular macrophages. 
Of interest, a recent report using intravital microscopy 
indicates that marginated PMNs may serve this surveil-
lance role in the lungs [5]. Yipp and colleagues reported 
that pulmonary intravascular PMNs crawl short distances 
along the endothelium in a CD11b-dependent fashion in 
the steady state, but that these distances increase within 
minutes of exposure to LPS or bacteria. Moreover, intra-
vascular bacteria were noted to be captured by the pul-
monary endothelium through adherence, where they were 
rapidly targeted by migratory PMNs for phagocytic clear-
ance. Suggesting that PMNs may have a unique affinity 
for the lung niche, it has been noted that PMNs adhere to 
pulmonary endothelium in the steady state, unlike dermal 
endothelium [5]. Beyond CXCL12 [11], the identity of the 
pulmonary endothelial molecules that specifically address 
PMNs to the lung in the steady state remain to be identi-
fied, as does whether biomechanical signals induced in 
compressed intracapillary PMNs or in the endothelial cells 
contacting them poise marginated PMNs and pulmonary 
microvascular endothelial cells for their cooperative sur-
veillance roles.
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Overview of the microanatomic passage 
of PMNs into lung during inflammation/
infection

In the lungs, the conducting airways branch > 20 times 
before the terminal alveolar spaces (‘alveoli’) are reached 
[17]. In humans, the alveolar surface area has been 
approximated at ~ 100 m2 [18]. Alveoli are lined by two 
types of epithelial cells—squamous alveolar epithelial 
type 1 (AT1) cells (involved primarily in gas and solute 
exchange), and cuboidal type 2 (AT2) cells (involved in 
surfactant synthesis and recycling). Additional cells in the 
alveolar septal wall during health include endothelial cells, 
fibroblasts, pericytes, macrophages, and mast cells [18]. 
Transmission electron microscopy (EM) studies of the 
alveolar wall have suggested a ‘thin’ (≤ 0.2 μm) side with 
near apposition of epithelial and endothelial cells overly-
ing a shared basement membrane, and a ‘thick’ side with 
interstitial components (e.g., extracellular matrix [ECM], 
fibroblasts) separating epithelium from endothelium [18].

Reports to date have generally supported a model 
wherein PMNs emigrating during lung inflammation do 
not leave the vasculature at the level of high endothelial 
venules as in other tissues, but primarily at the level of 
alveolar capillaries [19]. Work by Walker and colleagues 
using transmission EM and serial section reconstruction 
suggests that PMNs exit the vasculature paracellularly 
(i.e., between endothelial cells) at the junction of the thin 
and thick portions of the alveolar septal wall at a location 
where interstitial fibroblasts penetrate pre-existing (ana-
tomic) holes in the basement membrane and reach the 
endothelium [18, 20, 21]. Emigrating PMNs are thought 
to follow the track of these fibroblasts through the inter-
stitium to pre-existing holes in the subepithelial basement 
membrane, extensively contacting the fibroblast along the 
way, and then to enter the alveolus paracellularly at tri-
cellular junctions of two AT1 cells with an AT2 cell [18, 
21–23]. During this passage, it is presumed that PMNs 
use β2 (CD18)- and β1-integrins to interact directly with 
ECM components (i.e., fibronectin, vitronectin, laminin, 
collagen). That said, the identity and relative importance 
of specific integrin ligands during different pulmonary 
exposures, the existence and nature of haptotactic gradi-
ents (ECM-bound chemokine gradients) in the lung inter-
stitium, as well as the specific role of interstitial fibroblasts 
(as well as whether and how they retract to make space for 
emigrating PMNs) all remain poorly defined.

While paracellular egress of PMNs at the level of the 
alveolar capillary is generally held as the canonical path 
for PMNs in the inflamed lung, it is important to note 
that this has not been firmly established for all pulmonary 
exposures. Some studies have suggested that a substantial 

percentage of PMNs may emigrate transcytotically dur-
ing pneumonia (i.e., directly through the endothelial cyto-
plasm) [18]. Moreover, PMNs may in some settings emi-
grate from larger pulmonary vessels rather than capillaries 
[18, 24]. Although the course that PMNs follow when they 
infiltrate the walls of conducting airways during inflam-
matory airways diseases (e.g., bronchiolitis, bronchitis, 
bronchiectasis) is less well defined than it is for alveolar 
diseases (i.e., pneumonia, acute lung injury), it is thought 
that PMNs in this case egress from the bronchial arterial 
rather than pulmonary arterial circulation. As the bron-
chial arteries derive from the systemic circulation (i.e., 
proximal descending aorta), it is presumed that PMN emi-
gration into the airways may abide by mechanisms simi-
lar to those that have been worked out in extrapulmonary 
tissues such as the cremaster muscle rather than those 
worked out in the alveolus (discussed below). Moreover, 
the multicellular architecture of the airway wall, which 
varies in thickness and complexity along the length of the 
respiratory tract, almost certainly imposes different con-
straints on PMNs as they traverse into the airway lumen. 
The degree to which the specific PMN route into the lung 
is dependent on the type, deposition site, and dose of the 
exposure remains largely undefined.

Although most studies of pulmonary neutrophilia have 
simply quantified PMNs in bronchoalveolar lavage, advanced 
methods, typically involving pre-mortem intravenous injec-
tion of labelling antibodies, have been described that can dis-
tinguish intravascular and extravascular (interstitial) PMNs in 
the lung [3, 4, 6]. As up to 50% of intravascular PMNs may 
remain in the lung even after prolonged post-mortem vascular 
perfusion [3], techniques such as these are invaluable for char-
acterizing the stepwise passage of PMNs from bloodstream 
to alveolus. Using these methods, Reutershan and colleagues 
have shown that, in the first hour following LPS inhalation in 
mice, increased PMNs are sequestered within the pulmonary 
vasculature, that PMNs then diapedese into the interstitium 
starting at ~ 1 h and increasing to a plateau at 12–24 h, and 
that transepithelial migration (TEpM) into the alveolar lumen 
is delayed, starting after 2 h and reaching a peak at ~ 24 h [6]. 
PMNs alter their surface levels of multiple adhesion molecules 
as they pass through different intrapulmonary tissue compart-
ments (endovascular, interstitial, intra-alveolar), implying that 
specific adhesive interactions regulate compartmental check-
points along the journey [25].
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Cytokine and chemokine induction initiates 
PMN attraction to the infected lung

Importance of the IL‑17—ELR+ CXC chemokine axis

Cytokine/chemokine induction by sentinel airspace-res-
ident cells (alveolar macrophages, epithelial cells) upon 
detection of microbes and other pro-inflammatory stimuli 
is the key initiating event for PMN attraction to the lung 
(the sequence of events likely differs for PMN recruitment 
to the lung in response to systemic insults such as endotox-
emia but has not been as clearly defined). The transcrip-
tion factor nuclear factor (NF)-κB acts as a master regula-
tor for cytokine induction in the lung [26–29]. Important 
roles have been identified for several pro-inflammatory 
cytokines (i.e., TNFα, IL-1β, G-CSF) in PMN recruitment 
to the lung through upregulation of endothelial, epithelial, 
and PMN adhesion molecules, prolongation of PMN sur-
vival, and other mechanisms [30, 31]. The potential for 
complex cytokine interactions is suggested by IL-6-null 
mice, which have elevated airspace TNFα and increased 
alveolar neutrophilia following LPS inhalation [30, 31].

A central role for chemokines, in particular, Glu-Leu-
Arg (ELR)+ CXC chemokines (so named for their con-
served amino acid sequence) has been identified [31]. 
These chemokines, which include CXCL1, -2, and -5 
in mice and homologues for these plus IL-8 in humans, 
directly chemoattract PMNs via ligation of the receptor 
CXCR2 (and CXCR1 in humans). Indeed, LPS-induced 
alveolar neutrophilia is virtually abolished in CXCR2-
null mice, suggesting a critical requirement for this axis 
[32]. Whereas pro-inflammatory cytokines and most 
chemokines are thought to be generated predominantly 
by alveolar macrophages, CXCL5 and CXCL15, another 
ELR+ CXC chemokine with an as-yet poorly defined 
receptor, interestingly are produced by respiratory epithe-
lial cells (AT1, AT2, and Club cells for CXCL5 [33–35]; 
airway epithelial cells for CXCL15 [36]) and both play 
important roles in PMN recruitment to the lung [37–39]. 
Indeed, it has recently been reported that circadian fluctua-
tions in Club cell CXCL5 in response to clock gene-sensi-
tive regulation of the gene by endogenous glucocorticoids 
underlies circadian variations in the magnitude of alveolar 
neutrophilia triggered by inhaled LPS in mice [35].

Although isolated AT2 cells release cytokines and 
chemokines in  vitro upon LPS challenge [34], criti-
cal upstream roles for hematopoietic cell-derived IL-23 
and IL-17 have been identified in vivo in the potentia-
tion of pro-neutrophilic cytokines and chemokines. IL-17 
is required for intrapulmonary induction of CXCL2 and 
G-CSF and for early PMN recruitment to the lung follow-
ing infection with K. pneumoniae [40], a response that is 

likely driven, at least in part, by epithelial responsiveness 
to the cytokine via IL-17A and IL-17C receptors [41]. 
Co-administration of IL-17 and TNFα to the airspace of 
mice is sufficient to induce ELR+ CXC chemokines and 
G-CSF in the airspace as well as CXCL5-dependent alveo-
lar neutrophilia [42]. IL-17 can itself be acutely produced 
by several cell types in the infected lung, including Th17 
cells, γδ T cells, invariant NKT cells, and lymphoid tissue 
inducer-like cells [43–45]. Yet further upstream, IL-23 has 
been shown to be a potent activator of IL-17-producing 
innate cells [46, 47]. IL-23 is produced in the infected 
lung by dendritic cells and macrophages [48, 49], and is 
required for downstream induction of IL-17A and IL-17F, 
as well as IL-17-induced targets (G-CSF, CXCL1-, -2, -5), 
pathogen clearance, and survival during Gram-negative 
bacterial pneumonia [48]. Taken together, these reports 
identify a transcellular hierarchy of sentinel and messenger 
cytokines that ultimately induce effector chemokines and 
cytokines that act directly upon PMNs.

Additional chemoattractants that regulate PMN 
trafficking into the lung

The tripeptides N-acetyl proline-glycine-proline (PGP) and 
PGP are generated in the LPS-exposed airspace in a some-
what delayed fashion compared to ELR+ CXC chemokines 
and sustain PMN trafficking to the airspace through direct 
chemotactic activity upon CXCR1/2 [50, 51]. These so-
called ‘matrikines’ are generated by the sequential proteo-
lytic activity of MMP8/9 and prolyl endopeptidase upon col-
lagen in the lung [51], thus relaying local ECM damage in 
the inflamed lung as a feedforward neutrophilic signal. PGP, 
which is elevated in the airspace of acute respiratory distress 
syndrome (ARDS) patients [52] and correlates with disease 
severity in chronic obstructive pulmonary disease (COPD) 
[53], is degraded by leukotriene A4 hydrolase (LTA4H) [54, 
55], an enzyme better known for its generation of the pro-
inflammatory PMN chemoattractant LTB4.

Eicosanoids, bioactive lipids that are generated from ara-
chidonic acid (AA) released from membrane phospholipid 
by phospholipase A2, have been shown to play complex, 
collaborative roles in PMN trafficking to the lungs. PMN-
derived LTB4 and epithelial-derived hepoxilin A3 (HXA3) 
have, in particular, been firmly implicated in this regard. 
LTB4, a lipid that is synthesized by the sequential activi-
ties of 5-lipoxygenase (5-LO) and LTA4H upon AA, has 
long been known as a potent PMN chemoattractant that is 
upregulated in pro-inflammatory conditions [56] and more 
recently shown to chemoattract PMNs via the high-affinity 
BLT1 receptor [57]. PMN-derived LTB4 plays an impor-
tant role in PMN recruitment to the K. pneumoniae-infected 
mouse lung [58]. Cytosolic phospholipase A2-α-dependent 
LTB4 generation in PMNs amplifies TEpM in response to 
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bacterial infection [59]. Elevated LTB4 has been measured 
in the lungs of patients with COPD, asthma, and ARDS [60]. 
Although not all experimental interventions on the LTB4-
BLT1 pathway have succeeded in attenuating pulmonary 
neutrophilia in animal models, LTA4H inhibition and select 
BLT1 antagonists have been shown to have efficacy [60, 
61]. HXA3, a 12-LO-derived lipid, is produced by intesti-
nal (T84) and respiratory (A549, H292) epithelial cell mon-
olayers upon Gram-negative bacterial infection, generating 
an apical-to-basolateral gradient that drives PMN TEpM 
[62–64]. Respiratory infection of mice with P. aeruginosa 
also induces airspace HXA3 [64]. Interesting differences 
between LTB4 and HXA3 have been documented. LTB4 but 
not HXA3 induces PMN degranulation [62] and eosinophil 
TEpM [65]. It is thought that initial PMN TEpM triggered 
by epithelial HXA3 may subsequently be amplified by PMN-
derived LTB4 [66].

Role of extracellular matrix and endothelium 
in chemokine gradient formation

Chemokines released by alveolar macrophages and epithelial 
cells are thought to directionally chemoattract PMNs into 
the airspace through the formation of concentration gradi-
ents through lung tissue and into the vascular lumen. Nearly 
all chemokines bind to heparin sulfate, chondroitin sulfate, 
and other tissue glycosaminoglycans via a positively charged 
C-terminal domain, thereby establishing tissue-bound gra-
dients [67, 68]. Of interest, it has been shown that matrily-
sin (i.e., matrix metalloproteinase [MMP]-7) is required to 
generate a transepithelial gradient of CXCL1 in the lung 
by ectodomain shedding of syndecan-1, the predominant 
heparin sulfate proteoglycan on epithelia [69]. The relative 
potency of chemokines to induce PMN accumulation in the 
airspace may relate to their association-dissociation kinetics 
from tissue glycosaminoglycans. Thus, it was reported that, 
when instilled into the murine airspace, CXCL8 mutants 
deficient in heparin-binding appeared in plasma at higher 
concentrations than wild type protein and recruited more 
PMNs [70]. Similarly, CXCL1 was found to have a higher 
heparin association-dissociation constant than CXCL2, to 
appear in plasma more rapidly than CXCL2, and to attract 
more PMNs to the airspace [70]. Parallel findings were 
reported in rats [71]. Collectively, these findings imply dis-
tinct roles for CXCR2-active chemokines in spatiotemporal 
control of PMN trafficking to the lung, perhaps explaining 
why pulmonary chemokines are not fully redundant in vivo 
[31].

Of interest, CXCL5 was recently reported to antagonize 
CXCL1- and CXCL2-dependent PMN attraction to the 
mouse lung during E. coli pneumonia by competitive dis-
placement of the latter two chemokines from the scavenger 
protein duffy antigen receptor for chemokines (DARC) on 

circulating erythrocytes, thereby increasing plasma levels 
of CXCL1 and CXCL2, disrupting their gradients, and 
desensitizing PMN CXCR2 [39]. Further suggesting non-
redundancy of chemoattractants, evidence supports a ‘hier-
archy’ of responsiveness at the level of the PMN [72, 73], 
with bacterial-derived signals having increased priority over 
host-derived signals, perhaps to ensure accurate terminal 
targeting of PMNs to sites of infection. Thus, the bacterial-
mimetic chemoattractant formylated Met-Leu-Phe (fMLP) 
outcompetes IL-8 for PMN attraction, even at 1/1000th the 
concentration, and appears to do so through competitive 
phosphatase and tensin homolog (PTEN)-mediated suppres-
sion of Akt signaling [74, 75].

Ensuring delivery of chemokine gradients to the intravas-
cular PMN, endothelial cells transfer interstitial chemokines 
from their basolateral to the apical surface. Regulated tran-
scytosis rather than paracellular diffusion is thought to pre-
dominate [76]. Prior to overt chemoattraction, endothelium-
bound chemokines activate integrins on luminal PMNs, 
causing firm adhesion and arrest, to be further discussed 
below. Heparan sulfation on endothelial cells plays an impor-
tant role in these events, as mice with endothelial heparan 
sulfate deficiency have reductions in chemokine transcyto-
sis, endothelial display of chemokines, and PMN firm adhe-
sion and migration [77]. Endothelial DARC also mediates 
basolateral-to-apical transcellular transport of chemokines, 
supporting PMN emigration [78]. Endothelial DARC was 
found to transfer CXCL1, enhancing CXCL1-induced 
PMN transendothelial migration; thus, reduced PMNs were 
attracted to the airspaces of DARC-null mice after intratra-
cheal instillation of CXCL8 [79]. Studies using bone marrow 
chimeras to discriminate endothelial and erythrocyte DARC 
have suggested that both are required for intact PMN migra-
tion into the airspace in response to inhaled LPS, likely due 
to distinct roles in forming chemokine gradients [80]. By 
contrast, another group has reported that DARC-null mice 
have elevated airspace chemokines and PMNs after LPS 
inhalation and that this phenotype tracks with erythrocyte 
DARC deficiency [81].

Endothelial cells are themselves also an important source 
of chemokines for PMN recruitment to tissues, expressing 
CXCL1 in secretory granules basally [82] and upregulat-
ing it in response to cytokines [83, 84]. The finding that 
endothelial cells null for the common IL-6 family receptor 
subunit gp130 display increased surface CXCL1, causing 
inappropriate integrin-dependent PMN arrest and impaired 
PMN transmigration, indicates that endothelial cell-intrinsic 
chemokines play key roles in regulated, signal-dependent 
PMN traffic into tissues [85]. Of interest, PMN-derived 
chemokines have also been shown to provide feed-forward 
signals, augmenting further PMN recruitment to the lung 
[86]. In mouse models of acute lung inflammation, PMN 
CXCL10 signals in an autocrine fashion through its receptor 
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CXCR3 to augment further PMN chemotaxis as well as the 
PMN oxidative burst [87]. These findings may account for 
reports of PMN swarming-like behavior in the lung and 
other organs during inflammation [88]. Finally, a role for 
endothelial CXCR2 in PMN migration into the LPS-exposed 
lung, perhaps through induction of endothelial actin stress 
fibers, has also been suggested by bone marrow chimeric 
mice [32].

PMN‑endothelial interactions 
and transendothelial migration into the lung

Sequence of events preceding diapedesis: unique 
features in the lung

Work over the past several decades, much of it anchored by 
intravital microscopy of postcapillary venules in the cre-
master muscle and mesentery, has suggested a canonical 
sequence of events by which PMNs engage and then transit 
the endothelium as follows: selectin-dependent tethering and 
rolling, PMN activation, integrin-dependent firm adhesion, 
intraluminal crawling, and, finally, transmigration [89, 90]. 
The situation is different, however, in the lung, where PMNs 
leave the vasculature largely at the level of the alveolar capil-
lary. Here, it has been shown that PMN tethering and rolling 
likely do not occur, instead of being replaced by mechani-
cal sequestration as cytokine-induced PMN cytoskeletal 
stiffening due to F-actin polymerization provokes dramatic 
slowing of PMNs within the narrow-caliber capillaries [19, 
91–95]. Selectins have been shown to play no role in PMN 
recruitment to the lung under certain conditions, such as 
S. pneumoniae infection [10] despite being required for 
PMN emigration during Pneumococcal peritonitis [96, 97]. 
Although selectin-mediated tethering per se likely does not 
occur in alveolar capillaries, antibody blockade studies have 
nonetheless identified roles for E- and L-selectin, as well 
as the PMN common selectin counterreceptor, P-selectin 

glycoprotein ligand-1, in LPS-induced recruitment of PMNs 
to the lung [98]. L-selectin has also been shown to support 
PMN recruitment to the K. pneumoniae-infected lung, at 
least in part, through regulation of integrin signaling and 
integrin-dependent PMN migration [99]. Challenging the 
paradigm of non-adhesive, mechanical entrapment of PMNs 
within pulmonary capillaries during inflammation, a recent 
report identified a role for pulmonary capillary endothelial 
dipeptidase-1 in adhesive sequestration of PMNs during 
endotoxemia [100]. Moreover, another report found that 
heparanase promotes PMN sequestration in the lung during 
endotoxemia, likely by thinning the endothelial glycocalyx 
and exposing underlying adhesion molecules [101].

CD18‑dependent and ‑independent PMN 
recruitment

Following the slowing of intravascular PMNs, firm adhe-
sion to the endothelium next initiates the steps leading to 
diapedesis. The heterodimeric β2-integrins, CD11a/CD18 
(αLβ2; LFA-1) and CD11b/CD18 (αMβ2; Mac-1) have been 
shown to play important roles in PMN trafficking to the lung 
and other tissues, in particular, mediating firm adhesion of 
PMNs to endothelium and facilitating PMN chemotaxis 
across ECM [102]. Of the two β2-integrins, antibody neu-
tralization studies have supported a more important role for 
Mac-1 in PMN recruitment to the lung [103]. Landmark 
reports by Doerschuk and colleagues revealed that pulmo-
nary exposures can be grossly categorized as eliciting alveo-
lar neutrophilia that is CD18 (i.e., β2-integrin)-dependent vs. 
CD18-independent, with most exposures favoring but not 
completely relying upon a single pathway (e.g., LPS-induced 
neutrophilia is ~ 80% CD18-dependent) [104–108] (Table 1).

Studies revealing that CD18-dependent stimuli like LPS 
upregulate the CD18 ligand ICAM-1 on pulmonary capillary 
endothelium, whereas CD18-independent stimuli such as 
Pneumococcus do not [109] have suggested that PMN inte-
grin interactions with endothelium are critical. That said, the 

Table 1  Inhaled exposures 
eliciting alveolar neutrophil 
accumulation through 
CD18-dependent vs. CD18-
independent mechanisms

The cited reports measured alveolar neutrophilia in mice, rats, rabbits, or guinea pigs with either CD18 
deletion (mice) or antibody neutralization of CD11 or CD18 β2-integrin components. Partial effects on neu-
trophilia using the latter method may not decisively distinguish between technical (i.e., dosing) and biologi-
cal causes
**Partially CD18-dependent

CD18-dependent stimuli CD18-independent stimuli

E. coli LPS [104, 105, 111] S. pneumoniae [104, 105]
P. aeruginosa [105, 107] CXCL1 [111]
E. coli [279] HCl (ipsilateral lung) [104, 280]
HCl (contralateral lung) [280] S. aureus** [279]
IgG immune complexes [281] Group B Streptococcus [282]

Hyperoxia [283]
IgG immune complexes [281]
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presence of integrin ligands in the pulmonary interstitium 
and on respiratory epithelial cells (discussed below) sug-
gests that integrins also regulate important post-endothelial 
checkpoints during the journey of PMNs to the alveolus. 
Indeed, the recent finding that mice with the abrogation of 
high-affinity β2-integrin activation have increased pulmo-
nary interstitial PMNs during P. aeruginosa pneumonia 
suggests that activated integrins may slow PMN migration 
into or through the extravascular space in the lung [110]. 
Moreover, alveolar neutrophilia elicited by CXCL1, as 
well as the CD18-independent component of LPS-induced 
neutrophilia, are both mediated by the β1-integrin CD29, 
which appears to play a predominant role in the movement 
of PMNs from interstitium into alveoli (i.e., TEpM) [111]. 
Of interest, CD29/CD49e (i.e., very late activation antigen 
[VLA]-5) and CD29/CD49f (VLA-6) heterodimers regu-
late CD18-independent PMN trafficking to both LPS and 
CXCL1, whereas heterodimers of CD29 with CD49b (VLA-
2) and CD49d (VLA-4) are utilized only in trafficking to 
CXCL1 [111]. VLA-4 also mediates a minor portion of the 
CD18-independent PMN trafficking to Pneumococcal pneu-
monia [112]. By contrast, PMN integrin β3 is reportedly not 
involved in PMN recruitment to the lungs in Pneumococcal 
pneumonia [113]. Finally, non-integrin PMN adhesion pro-
teins such as CD47 have also been shown to regulate PMN 
trafficking to the lung during E. coli pneumonia [114], as 
further discussed below.

PMN diapedesis

Although LFA-1 and Mac-1 both bind to ICAM-1 (and other 
ligands), recent studies have shown that they serve distinct 
functions in PMN transendothelial migration. In CXCL2-
treated postcapillary venules imaged by time-lapse intravital 
microscopy, it was found that LFA-1 mediates initial PMN 
adhesion and that this is followed by Mac-1 (PMN)-, Vav-1 
(PMN)-, and ICAM-1 (endothelial)-dependent intraluminal 
crawling, often perpendicular to or against the flow of blood, 
to optimal emigration sites [115, 116]. Wild type PMNs 
crawled to intercellular junctions and emigrated paracellu-
larly most (~ 86%) of the time, whereas only ~ 39% of Mac-
1-null PMNs emigrated paracellularly, with the remainder 
emigrating transcellularly, and over a longer period of time 
[115]. Although PMNs generally appear to favor the paracel-
lular route [23, 117], prolonged stimulation of endothelium 
with TNFα may increase transcellular migration in a manner 
dependent upon upregulation of and signaling by ICAM-1 
[118]. The existence of transcellular migration in vivo has 
been supported by studies using serial section transmission 
EM and scanning EM [119–122]; however, to what extent 
and under what contexts this occurs in the lung is poorly 
understood.

Whether transmigrating via the paracellular or transcel-
lular route, PMNs are engaged by concentrated patches of 
ICAM-1 presented upon microvilli-like projections from 
the endothelial surface; these patches subsequently further 
recruit VCAM-1, tetraspanins, and actin, ultimately form-
ing enveloping structures that have been described as ‘dock-
ing structures’ or ‘transmigratory cups’ [123, 124]. These 
dome-like, enveloping structures are thought to preserve 
endothelial barrier integrity during PMN transit [124]. Of 
interest, intravital two-photon imaging has also revealed 
that focal collections of intravascular monocytes support 
PMN transendothelial migration into the lung [7]. Platelets 
interacting directly with PMNs via P-selectin have also been 
shown to facilitate PMN recruitment to the LPS-exposed 
lung [98, 125], although the mechanism remains somewhat 
obscure.

PMNs transiting the paracellular route engage in multiple, 
sequential molecular interactions with junctional endothe-
lial proteins, including platelet/endothelial cell adhesion 
molecule (PECAM)-1 (also known as CD31), ICAM-2, 
junctional adhesion molecules (JAM)-A and -C, and CD99. 
Molecules that regulate PMN transendothelial migration are 
catalogued in Table 2. Homophilic interaction between PMN 
and endothelial PECAM-1 is an early event in junctional 
engagement by PMNs; PECAM-1 antagonism blocks PMN 
passage through endothelial junctions, although PECAM-
1-dependence of PMN transmigration appears to vary by 
genetic background in mice [126, 127]. Moreover, it is 
reported that PECAM-1 does not play a role in PMN emigra-
tion from pulmonary capillaries in response to either E. coli 
(a CD18-dependent exposure) or S. pneumoniae (a CD18-
independent exposure) [128]. Endothelial JAM-A serves as 
a ligand for PMN β2-integrins, supporting LFA-1-dependent 
transmigration [129]. JAM-A deletion or blockade reduces 
LPS-induced airspace neutrophilia, but increases PMNs in 
lung digests, suggesting impaired trafficking from vascula-
ture to alveolus [130]. JAM-C also mediates PMN transmi-
gration in a Mac-1-dependent manner [131] and has been 
shown to support alveolar neutrophilia in the LPS inhalation 
model [132].

PECAM-1, JAM-A, and CD99 not only localize to the 
junctional surface of endothelial cells, but also to a con-
tiguous, invaginated subjunctional intracellular structure of 
interconnected tubules and vesicles, the so-called ‘lateral 
border recycling compartment’ (LBRC) [133]. Microtubule-
dependent surface recycling of LBRC molecules is required 
for PECAM-1 homophilic interactions with PMNs and for 
transendothelial PMN migration [133, 134], and relies on a 
transient increase in cytosolic free calcium ion concentra-
tion in endothelial cells [135, 136]. Endothelial transient 
receptor potential canonical family member six (TRPC6), a 
cation channel, appears to underlie this event [137]. Homo-
philic interactions between PMN and endothelial CD99 are 
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required for the completion of paracellular transmigration 
[138, 139]. Finally, PMNs that have passed through the 
paracellular barrier are thought to migrate short distances 

along the basal lamina to sites of a low density of collagen 
IV and laminin that correspond to gaps in pericyte coverage 
where they exit into the interstitium in a manner involving 

Table 2  Adhesion molecules that regulate neutrophil transendothelial migration

+ molecule expressed, regulates transmigration, – molecule expressed, does not regulate transmigration, ? molecule expressed, role undefined, 
ND not determined
*Not involved in transendothelial migration within lung [128]
a Denote no or limited available evidence for expression in the indicated cell type

Transendothelial migration

PMN endothelium PMN-endothelium interac-
tion site

Model Ref

CD11a/CD18 (LFA-1) + a Apical, lateral Primary cell [284, 285]
CD11b/CD18 (Mac-1) + a Apical, lateral Primary cell [284–286]
CD11c/CD18
(p150/95)

+ a ND Primary cell [285]

CD18-independent integrins + a ND Primary cell [287, 288]
PECAM-1 (CD31) – +/–* Lateral Primary cell, peritonitis, 

dermatitis, pneumonia
[127, 128, 289]

CD44 + +/– ND Cremaster muscle, peritoni-
tis, dermatitis

[155, 156]

CD47 + + Lateral Primary cell, pneumonia [114, 290, 291]
ICAM-1 (CD54) ? + Apical, lateral, basal Primary cell [118, 123, 284, 286, 292, 293]
CD55 + + ND Cell-free system, primary 

cell
[193, 294–298]

E-selectin (CD62E) a +/– Apical Primary cell, peritonitis, 
lung inflammation, lung 
injury, pneumonia

[10, 90, 98, 285]

P-selectin (CD62P) a +/– Apical Peritonitis, lung inflamma-
tion, lung injury, pneu-
monia

[10, 16, 90, 98]

L-selectin (CD62L) + a Apical Primary cell, cremaster 
muscle, peritonitis, lung 
inflammation, lung injury, 
pneumonia

[16, 90, 98, 99, 299]

CD99 +/– + Lateral Primary cell, cremaster 
muscle, peritonitis

[138, 139, 300]

ICAM-2 (CD102) ? + Apical, lateral Cremaster muscle, peritonitis [301–303]
VCAM-1 (CD106) a + Apical Primary cell [123, 304]
PSGL-1 (CD162) + ? Apical Intestine, cremaster muscle, 

peritonitis, lung inflam-
mation

[98, 305–307]

JAM-A (CD321) + +/– Lateral or interaction- inde-
pendent

Primary cell, peritonitis, 
cremaster muscle, cardiac 
ischemia reperfusion

[129, 308–310]

JAM-C (CD323) a + Lateral Primary cell, peritonitis, 
cremaster muscle

[131, 311]

ESAM a + Lateral Cremaster muscle, peritonitis [312]
RAGE ? + ND Cremaster muscle, peritonitis [183, 313, 314]
Dipeptidase-1 a + Apical Systemic inflammation [100]
Carbohydrate + + Apical, lateral Primary cell, cremaster mus-

cle, peritonitis, dermatitis, 
hepatitis

[315–317]

Heparanase ? + Interaction- independent Lung injury [101, 318]
MIF ? + Interaction- independent Lung injury [142, 319]
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interactions between leukocyte LFA-1 and pericyte ICAM-1 
[140, 141]. It was recently shown that endothelial cell-
derived macrophage migration inhibitory factor (MIF) sig-
nals in a paracrine fashion to its receptor CD74 on pericytes, 
thereby reducing pericyte contractility and augmenting 
PMN passage into the lung interstitium and alveolar space 
in response to LPS inhalation [142].

Vascular endothelial (VE)-cadherin is a type I trans-
membrane protein exclusively localized in endothelial 
cells, where it is concentrated at adherens junctions 
and contributes to endothelial barrier integrity through 
homophilic cell–cell interactions [143, 144]. VE-cad-
herin clearance from the site of PMN transmigration by 

internalization and/or lateral displacement, involving site-
specific phosphorylation, is thought to be required for effi-
cient PMN transmigration [117, 145–147]. VE-cadherin 
phosphorylation is regulated by its complexation with VE-
protein tyrosine phosphatase (PTP), and it has been shown 
that LPS inhalation triggers dissociation of VE-PTP from 
VE-cadherin in the lung, thereby promoting PMN recruit-
ment [148]. Moreover, mice engineered to stabilize VE-
cadherin through a fusion construct with α-catenin were 
found to have a significant reduction in LPS-induced PMN 
recruitment into the airspace, confirming a role for VE-
cadherin junctional disassembly in PMN diapedesis from 
pulmonary vessels [149].
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1. PMN adhesion 2. PMN paracellular 
migration

3. Postmigration 
retention/detachment

Tight 
junction
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Desmosome
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Occludin
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Fig. 1  Transpithelial migration of neutrophils into the airspace. The 
transepithelial passage of neutrophils (PMNs) from the pulmonary 
interstitium into the airspace involves the sequential steps of adhe-
sion, paracellular migration, and post-migration adhesion/detach-
ment, as illustrated. Initial adhesive events of PMNs with the basal 
aspect of epithelial cells may be regulated by PMN CD11b/CD18 
interactions with fucosylated proteins and other poorly character-
ized molecules. Paracellular migration involves serial interactions 
of PMNs with epithelial junctional proteins, as shown. Finally, api-
cal adhesion is thought to regulate PMN antimicrobial and migratory 

functions in the airspace and, potentially, to provide positive feedback 
signals that augment further PMN entry into the paracellular space. 
The degree to which specific epithelial adhesion proteins are pre-
sented by alveolar epithelial type 1 (AT1) vs. AT2 cells is unclear. As 
discussed in the text, the contribution of some of the adhesion mol-
ecules depicted to PMN transepithelial migration in the lung has been 
largely extrapolated from studies conducted in intestinal systems. 
Molecules shown in the red font have been confirmed to regulate 
PMN transepithelial migration in the lungs
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Transepithelial migration (TEpM)

Neutrophil adhesion molecules and surface 
receptors that modulate TEpM

After passage through the interstitium, PMNs arrive at the 
subepithelial zone, where TEpM commences. This process, 
comprised of the three sequential steps of epithelial adhe-
sion, paracellular migration, and postmigration retention/
detachment, involves multiple engagements between PMN 
integrins and their counterpart adhesion molecules on epi-
thelial cells (Fig. 1; Table 3). CD11b/CD18 (Mac-1) appears 
to be the predominant β2 integrin regulating PMN transit 
in most cases of TEpM. Antibody blockade of CD11b or 
CD18 efficiently inhibits PMN adhesion or transmigration 
across airway epithelium [150–152]. In a recent study in 
which PMNs were fractionated from different compartments 
of lung during inflammation, peak surface expression of 
CD11b was found on interstitial PMNs, with a decline upon 
PMN entry into the airway, suggesting a role for CD11b in 
support of PMN TEpM [25]. In contrast to Mac-1, CD11a/
CD18 (LFA-1) has been shown in a few reports to play a role 
in PMN adherence to cytokine-stimulated or virus-infected 
bronchial or nasal airway epithelial cells [152, 153]. How-
ever, this LFA-1-mediated PMN attachment may impact epi-
thelial cell injury more than PMN TEpM [153]. Addition-
ally, as discussed earlier, lung-specific PMN recruitment can 
also be regulated through CD18-independent mechanisms 
[104, 108, 154], and β1 integrin CD29 in conjunction with 
various forms of CD49 in this regard has been recognized as 
mediating PMN trafficking from the interstitium into alveo-
lus in response to select exposures [111].

Non-integrin adhesion molecules expressed on PMNs 
such as CD44, CD47, CD172α (signal regulatory pro-
tein, SIRPα), Junctional Adhesion Molecule-Like protein 
(JAM-L), as well as surface receptors such as triggering 
receptor expressed on myeloid cells-1 (TREM-1) have also 
been identified as key regulators of TEpM. These proteins 
are discussed individually below and also in Table 3.

CD44 is a transmembrane glycoprotein that serves as a 
receptor for multiple ligands including hyaluronan, osteo-
pontin, and MMPs, mediating cellular adhesion and mobil-
ity. Interestingly, CD44 was shown to interact with E-selec-
tin [155] and is required for PMNs to adhere or migrate 
through endothelium [156]. On the other hand, in models 
of pneumonia and lung injury, the presence of CD44 was 
shown to impair PMN transit from parenchyma to the bron-
choalveolar space, resulting in diminished BAL neutrophilia 
[157–159]. This suggests that CD44 may be a negative regu-
lator of PMN migration across lung epithelium.

CD47 is a transmembrane immunoglobulin superfamily 
member expressed on diverse cell types, including PMNs 

and epithelia. Although perhaps best-known as a self-rec-
ognition marker that protects host cells from phagocytic 
clearance, CD47 has also been shown to participate in 
PMN trafficking to the lung. Experimental evidence to 
support this notion showed that CD47 deletion on PMNs 
significantly reduced their recruitment into pneumonic 
lung tissues [114]. However, the molecular mechanisms 
underlying CD47 regulation of TEpM have thus far largely 
been investigated in the setting of the intestinal epithelium. 
Preincubation of PMNs with anti-CD47 blocking antibod-
ies was demonstrated to reduce the rate of PMN crossing 
of colonic epithelium, in part through changes in protein 
tyrosine phosphorylation, an event downstream of CD47 
ligation [160]. In addition, a cis interaction between CD47 
and its ligand CD172α on the plasma membrane of PMNs 
was found to be critical to CD47-mediated PMN migration 
across epithelial monolayers [161]. In addition to CD172α, 
a recent report showed that PMN CD47 could also associ-
ate directly with Mac-1 to facilitate TEpM through activa-
tion of integrin adhesive function [162].

Despite its status as a cognate ligand for CD47, studies 
suggest that CD172α has a role in PMN TEpM somewhat 
distinct from that of CD47. Unlike the ubiquitous expression 
of CD47, CD172α is primarily restricted to myeloid cells 
and is detectable on nearly all lung-recruited PMNs with 
a further increase in expression on interstitial and alveolar 
PMNs [25]. Although it has long been believed that CD172α 
on PMNs executes its role in TEpM through simple trans 
interactions with epithelial CD47, a recent study has chal-
lenged this. It was shown in an in vitro model that functional 
blockade of CD172α attenuates PMN TEpM, whereas antag-
onism of epithelial CD47 delays TEpM, suggesting distinct 
mechanisms [160, 161]. Moreover, a recent study clearly 
demonstrated that epithelial CD47 is not required for PMN 
TEpM in vivo; recruitment of PMNs was normal in mice 
with CD47 exclusively deleted in the intestinal epithelium 
[162]. Evidence from both studies indicates that CD172α 
may have other as yet unclarified functions to control PMN 
TEpM through mechanism(s) independent of engagement 
of epithelial CD47.

TREM-1 is another immunoglobulin superfamily member 
displayed on the surface of PMNs, monocytes, and mac-
rophages. In addition to its originally identified function as 
an amplifier of pro-inflammatory signaling by pattern recog-
nition receptors, TREM-1 has been shown to be required for 
PMN migration through respiratory epithelium [163]. Mech-
anistically, TREM-1 supports NOX2-dependent superoxide 
production through regulation of the PI3K/AKT signaling 
pathway, and PMN-derived reactive oxygen species (ROS) 
support PMN mobility [164]. ROS-supported PMN TEpM 
has also been demonstrated in both in vitro transmigration 
assays using human A549 lung epithelial cells and in vivo 
murine models, where inhibition of ROS significantly 
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reduced leukotriene B4-mediated PMN trafficking into the 
airway [165]. However, direct evidence to link TREM-1 to 
ROS-mediated PMN TEpM is still lacking.

Although additional PMN adhesion molecules have been 
shown to regulate PMN TEpM, most of these others have 
been verified in only intestinal and not pulmonary model 
systems to date. An example, mentioned above, is JAM-L. 
Interestingly, during TEpM, in addition to PMN membrane-
bound JAM-L, cleavage of JAM-L from the PMN surface 
is reported to create a soluble form (sJAM-L) that enables 
binding to coxsackie adenovirus receptor (CAR) on the tight 
junction of epithelial cells. This interaction opens up CAR-
dependent epithelial cell-to-cell contact that is believed to 
facilitate PMN influx across the epithelial barrier to the 
intestinal lumen [166].

Epithelial adhesion molecules and their regulators 
that modulate TEpM

The journey of PMNs from the basolateral side of epithe-
lial cells, ultimately into the airspace lumen, relies upon 
multiple, sequential specific adhesive interactions of PMN 
adhesion molecules with cognate ligands that are localized 
to restricted regions of the epithelial plasma membrane, as 
displayed in Fig. 1.

PMN adhesion

PMN-expressed CD11b/CD18 (Mac-1) is thought to regu-
late all three steps of TEpM (adhesion, paracellular migra-
tion, and postmigration retention/detachment) through 
engagement with a series of ligands localized to restricted 
regions of the epithelial membrane. However, despite the 
documentation of > 30 Mac-1 ligands to date [167, 168], lit-
tle is known about the identity of the specific Mac-1 ligands 
expressed on the basolateral aspect of respiratory epithelial 
cells that impact PMN-epithelial interactions during TEpM. 
It has been shown that the extracellular domain of CD11b 
has unique lectin-like structures that allow for its association 
with epithelial cell surface glycan, in addition to engaging 
epithelial ligands through protein–protein interactions. In 
studies of the intestine, Zen et al. identified fucoidin as one 
of a few carbohydrates that can directly bind to Mac-1 and 
inhibit T84 intestinal epithelial cell adherence to immobi-
lized Mac-1 isolated from human PMNs. Treatment of T84 
cells with fucosidase or a proteoglycan biosynthesis inhibi-
tor resulted in a significant reduction of epithelial adhesion, 
suggesting that fucosylated proteoglycans serve as epithelial 
ligands that interact with Mac-1 in mediating PMN adhesion 
[169]. Additionally, epithelial galectins, a class of animal 
lectin proteins with an affinity for β‐galactose-containing 
saccharides, have been proposed to play a role in carbohy-
drate-dependent PMN adhesion [170]. Along these lines, 

expression of galectins-1, 3, or 9 is induced in the respira-
tory epithelium during infection/inflammation, correlating 
with increased PMN infiltration into the lung [171, 172]. 
Moreover, human PMN Mac-1 is highly decorated with 
carbohydrate moieties such as sialyl Lewis X [173], which 
contains a terminal β‐galactose glycan that can be recog-
nized by galectins.

PMN paracellular migration

Following initial adherence to the epithelial surface, PMNs 
continue their journey by entering the space between epithe-
lial cells, where they interact with various lateral membrane 
adhesion molecules to facilitate their apical movement. One 
such family of laterally expressed adhesion proteins are the 
JAMs. JAMs belong to the cortical thymocyte marker for 
Xenopus family, which comprises classical members JAM-
A, JAM-B, and JAM-C as well as subgroup members such as 
JAM-4, JAM-L, CAR, CAR-like membrane protein (CLMP), 
and endothelial cell-selective adhesion molecule (ESAM). 
Of these, the lung epithelium primarily expresses JAM-A, 
JAM-C, CAR, and CLMP [174–178]. The tight junction-
associated protein JAM-A has recently been implicated 
in the regulation of PMN TEpM. Using a murine in vivo 
vascularized proximal colonic segment model, Flemming 
et al. showed that intestinal epithelium-targeted deletion of 
JAM-A enhanced intestinal permeability and simultaneously 
impaired PMN trafficking across colonic epithelium [179]. 
Intriguingly, the mechanism by which JAM-A mediates 
PMN TEpM may be β2 integrin-independent, as JAM-A is 
a ligand for LFA-1 [129] but not Mac-1, and there is no 
clear evidence, to the authors’ knowledge, that LFA-1 plays 
a role in PMN TEpM. More recently, Luissint et al. provided 
evidence that the reduction of PMN transmigration into the 
colonic lumen in JAM-A-deficient mice might be due to 
increased gut permeability that impairs macrophage-depend-
ent PMN recruitment [180]. In an acute lung injury model, 
JAM-A deficient mice also had diminished PMN recruitment 
into the airspace with increased interstitial PMN accumu-
lation, suggesting a similar role for JAM-A in mediating 
PMN transmigration across the epithelium in the lungs as 
that observed in the intestines [130]. In contrast to JAM-A, 
JAM-C serves as a component of desmosomes at the lateral 
side of intestinal epithelial cells, where it regulates PMN 
TEpM through direct binding to PMN Mac-1 [181]. JAM-C 
has also been shown to regulate monocyte migration across 
influenza A virus-infected murine primary alveolar epithe-
lial cells (AECs) [175]. Although not yet formally demon-
strated to our knowledge, a similar role for JAM-C in PMN 
TEpM appears likely. As discussed above, CAR, another 
tight junction epithelial protein, enables PMN TEpM via 
interaction with JAM-L expressed on PMNs or sJAM-L. 
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CAR-dependent PMN TEpM has been documented in both 
the intestinal and respiratory systems [176, 182].

The receptor for advanced glycation end products 
(RAGE), a member of the immunoglobulin superfamily that 
can bind to Mac-1 [183] among other ligands, may also have 
a role in PMN TEpM in the lungs. In addition to its role as a 
pattern recognition receptor in the innate immune response, 
RAGE has been reported to be a ligand for β2 integrins, sug-
gesting potential for direct roles in leukocyte recruitment. 
Under inflammatory conditions, RAGE is upregulated and 
localizes to the lateral membrane of intestinal epithelial 
cells near apical adherence junctions. Functional blockade 
of RAGE inhibits T84 cell adhesion to Mac-1 and prevents 
PMNs from crossing T84 epithelial monolayers, suggesting 
RAGE may serve as an epithelial adhesive ligand for PMN 
Mac-1 during TEpM [184]. Given the cellular location of 
RAGE at the lateral aspect of epithelial cells, but close to 
apical junctions, its function is likely more similar to JAM-C 
and CAR (in regulating PMN paracellular migration) than 
to that of proteins that support initial PMN adhesion. How-
ever, in the lungs, RAGE expression is prominent in alveolar 
epithelial type 1 (AT1) cells and has been reported to pre-
dominate on basal membranes of AT1 cells [185, 186]. Anti-
RAGE antibody treatment or deletion of RAGE attenuates 
PMN recruitment and accumulation in the lung parenchyma 
and airspace [187–189]. Further studies are needed to clarify 
to what extent this arises from defective PMN TEpM, as 
RAGE possesses additional immunoregulatory functions.

Postmigration retention/detachment

After migrating paracellularly, PMNs emerge at the apical 
epithelial surface. Their subsequent retention or detachment 
is determined by multiple adhesive interactions. ICAM-1, a 
member of the immunoglobulin superfamily, is one of the 
best-characterized ligands for β2 integrins. Proinflamma-
tory stimuli upregulate ICAM-1 on the surface of tracheal, 
bronchial, and alveolar epithelial cells, where the expression 
appears to be restricted to the apical surface. Of interest, 
apical ICAM-1 has been shown not only to promote PMN 
adhesion and locomotion on the apical surface of epithelium, 
thereby supporting PMN antimicrobial function, but also 
to augment PMN TEpM [190]. The latter occurs through 
myosin light-chain kinase-dependent changes in epithelial 
permeability to PMN traffic, thus suggesting a feedforward 
mechanism for PMN TEpM.

An additional epithelial adhesion molecule that regu-
lates PMN detachment from the apical side of epithelium 
is CD44v6, an alternative splice isoform of CD44 [191]. 
Although the details of how CD44v6 is regulated to engage 
with PMNs are unclear, it has been reported that post-trans-
lational glycosylation of CD44v6 with sialyl Lewis A is 
required for its interaction with PMNs [192]. In addition, 

the decay-accelerating factor, CD55, is another anti-adhesive 
protein on the apical membrane of epithelium [193]. How-
ever, its counter-ligand on PMNs remains unidentified, to 
our knowledge.

A new epithelial regulator of PMN TEpM in the lung

In addition to the relative paucity of studies to date that have 
demonstrated roles for TEpM-regulatory epithelial adhesion 
molecules specifically in the lung, the question has remained 
of whether the expression of different adhesion molecules 
is coordinated in respiratory epithelium. Recently, our lab-
oratory identified epithelial membrane protein 2 (EMP2), 
a tetraspan membrane protein highly expressed by AT1 
cells, as a master regulator of PMN TEpM into the airspace 
[194]. Prior to our report, EMP2 had been identified as a 
lipid raft-resident protein that supports the recruitment of 
select integrins (α6β1, αvβ3), adhesion molecules (ICAM-
1), and signaling proteins to lipid rafts, and that downregu-
lates caveolins [195–197]. Despite its high expression in 
the lung, where it is expressed at the protein level in AT1 
cells, but not AT2 cells nor alveolar macrophages [198], no 
function had been established for EMP2 in lung biology. 
We found that EMP2-null mice have reduced recruitment of 
PMNs into the airspace in response to inhalation of LPS and 
reduced neutrophilic lung injury during bacterial pneumo-
nia. In the case of LPS, an excess of interstitial PMNs was 
found in EMP2-null mice, suggesting defective TEpM. AT1 
cells from Emp2−/− mice had dysregulated surface display 
of multiple adhesion molecules (CD47, ICAM-1, β3 inte-
grin). EMP2-silenced epithelial cell cultures recapitulated 
this altered display and were defective in supporting trans-
migration of PMNs. The defective adhesion protein display 
and TEpM of EMP2-deficient epithelia were both rescued 
by silencing of caveolin-2. Taken together, this suggests that 
EMP2 coordinates the proper display of multiple adhesion 
molecules that support PMN TEpM through repression of 
caveolin proteins in trans. Given the high expression of 
EMP2 in the lung and its potential tractability to inhaled 
therapeutics, these findings suggest exciting potential for 
EMP2 as a target in neutrophilic lung disease.

Considerations for intervening upon PMNs 
in acute and chronic lung disease

The canonical, and, presumably, the evolutionary function 
of PMN recruitment to the lung is pathogen killing during 
an acute respiratory infection. In this context, PMN-derived 
proteases, oxidants, antimicrobial peptides, and extracellu-
lar traps contribute to the clearance of bacteria from the 
alveolus. Of interest, although cell depletion studies have 
confirmed a critical role for PMNs in host survival during 
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bacterial pneumonia [199], increased PMN recruitment 
to the lungs during pneumonia can in some instances be 
harmful. Thus, mice null for the transcription factor p53, 
the lipid transporter ABCG1, the cytokine IL-10, or the 
phosphatase PTEN all have increased pulmonary neutro-
philia during Gram-negative bacterial pneumonia; despite 
enhanced bacterial clearance from the lung, these animals 
all exhibit increased mortality likely due to exacerbated lung 
injury [200–203]. Conversely, mice with myeloid deficiency 
of PTEN have reduced PMN recruitment to the lung during 
pneumococcal pneumonia with unaltered pathogen burden 
but improved survival [204]. Recently, our group reported 
that mice null for EMP2 have improved survival during bac-
terial pneumonia in the setting of a reduced transepithelial 
influx of PMNs into the airspace lumen; interestingly, at 
high bacterial inocula, this airspace PMN deficit was associ-
ated with improved pathogen clearance [194]. Others have 
also shown that PMNs may compromise pulmonary host 
defense in other contexts, via enhancement of Pseudomonas 
biofilm generation [205] and promotion of bacterial coloni-
zation in the lung [206].

Collectively, these studies indicate that PMN recruitment 
to the lungs during pneumonia may be dissociable from both 
pathogen clearance and host survival. This suggests that 
there may be an optimal magnitude or kinetics of pulmo-
nary neutrophilia during infection and/or that qualitative fea-
tures of pulmonary neutrophils, such as their intrapulmonary 
localization, local programming, function, or interactions 
with other cell types may be as important as PMN number. 
Further suggesting context-dependent roles for the PMN 
in lung infection, both beneficial and deleterious functions 
have been reported for PMNs during influenza pneumonia 
[207]. The degree and timing of neutrophilia, type of influ-
enza virus, and age of the host may be key determinants 
[86, 208]. Emerging reports that PMN extracellular traps 
may drive pathogenesis in COVID-19 pneumonia also sug-
gest mixed roles for the PMN in pulmonary defense against 
SARS-CoV-2 [209].

Although numerous publications have shown that PMNs 
can injure the lung in both acute and chronic settings, further 
complicating our expectations for this cell type are reports 
that PMNs also mediate lung repair. Thus, PMNs activate 
β-catenin-dependent epithelial repair in the LPS-challenged 
lung during their transit across the epithelium [210] and also 
promote re-epithelialization after acid-induced lung injury 
[211]. PMN-derived MMP9 plays an important role in repair 
following ventilator-induced lung injury, likely through the 
processing of extracellular matrix [212]. PMNs also par-
ticipate in transcellular biosynthetic circuits that generate 
specialized pro-resolving lipid mediators [213] and suppress 
lung inflammation via transfer of miR-223 to pulmonary epi-
thelial cells [214]. Apoptotic PMNs sequester chemokines 
during resolution of inflammation [215] and also program 

efferocytic macrophages to resolve lung inflammation [216]. 
Indeed, PMN depletion reportedly exacerbates lung inflam-
mation and injury induced by influenza virus [217]. Taken 
together, these reports suggest that PMNs are not monotonic 
with respect to either pulmonary host defense or lung injury, 
and that selective or even context-dependent strategies may 
thus be necessary to intervene upon them in lung disease. 
Layered on top of this consideration are reports that multi-
ple PMN functions, including chemotaxis, respiratory burst, 
degranulation, and phagocytosis are dysregulated in chronic 
lung diseases such as COPD and bronchiectasis [218, 219].

Therapeutic avenues for controlling PMN 
traffic to the lungs: past and ongoing trials

Multiple therapeutic strategies for modulation of PMN traf-
fic to the lungs have been tested to date, including inhibi-
tors of adhesion molecules, chemokines, and intracellular 
signaling molecules, as discussed in the sections that fol-
low. It is important to note that few of these strategies have 
been lung-selective or even PMN-selective and that inhibi-
tion of PMN trafficking to the lungs, as with other tissues, 
may carry untoward effects on host defense. In addition, in 
many cases, the full collateral impact of these strategies on 
the antimicrobial functions of PMNs remains to be defined.

Targeting adhesion molecules needed for PMN 
entry into lungs

Given the crucial role of adhesion molecules in the regu-
lation of PMN migration to inflamed tissues, inhibition of 
these molecules holds promise as a strategy for curtailing 
the exacerbated inflammation in neutrophilic acute/chronic 
lung diseases. As discussed above, adhesion molecules that 
facilitate PMN recruitment to the lungs/airways include 
those on (1) PMNs—L-selectin, β2 integrin, α4 integrin; 
(2) endothelium—E-selectin, P-selectin, ICAM-1, VCAM-
1, PECAM-1; (3) epithelium—CD47, ICAM-1, β3 integrin; 
and (4) platelets—P-selectin. Deficiency of these molecules 
in humans or mice has been reported to attenuate PMN 
migration, supporting the potential of these molecules as 
drug targets. Select adhesion molecules have been tested as 
therapeutic targets to date, with mixed results.

The therapeutic potential of an inhaled pan-selectin 
antagonist, TBC-1269 (Bimosiamose), was investigated in 
patients with COPD and in an ozone-induced human airway 
inflammation model. The individuals receiving the treatment 
showed slightly reduced airway inflammation (sputum IL-8, 
MMP9). However, this marginal effect was mainly attrib-
uted to a reduction in recruited macrophages, not PMNs 
[220, 221]. Additional selectin antagonists, including the 
pan-selectin inhibitor GMI-1710 (Rivipansel) as well as a 
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humanized monoclonal antibody against P-selectin SelG1 
(Crizanlizumab) and E-selectin-specific inhibitors GMI-
1271 (Uproleselan) and GMI-1687 have been/are being 
examined in trials for diseases such as sickle cell disease 
or hematological malignancies (multiple myeloma, acute 
myeloid leukemia). Whether they can be applied to respira-
tory diseases needs further investigation.

Although integrin and ICAM-1 antagonists have mostly 
been investigated in non-respiratory diseases, these agents 
may have the potential for repurposing for lung inflamma-
tion. Efalizumab (Raptiva) and Natalizumab (Tysabri) are 
humanized monoclonal antibodies against β2 and α4 inte-
grins on PMNs. Unfortunately, clinical trials of these two 
drugs in psoriasis, multiple sclerosis, or Crohn’s disease 
were terminated early due to reports of progressive mul-
tifocal leukoencephalopathy [222]. In contrast to the anti-
integrin agents, ICAM-1-targeting biologics including the 
monoclonal antibody BI-505 (Bersanlimab) and antisense 
oligodeoxynucleotide ISIS 2302 (Alicaforsen) appear to 
have an improved safety profile. Nonetheless, Bersanlimab 
was found to be ineffective in multiple myeloma [223], and 
alicaforsen did not deliver a positive result in Crohn’s dis-
ease [224, 225]. A modified version of alicaforsen formu-
lated for topical application that was thought promising for 
ulcerative colitis also failed to meet the primary endpoint 
in recent trials [226–228]. A new line of a human antibody, 
MSH-TP15, was recently developed to target ICAM-1 [229]; 
further confirmation of its safety and efficacy in clinical 
practice is awaited.

While, to date, most anti-adhesion molecule strategies 
have been designed with the PMN and/or endothelium in 
mind, strategies targeting the pulmonary epithelium (i.e., 
TEpM) carry promise for a lung-selective effect. Along 
these lines, as discussed above, our laboratory recently 
reported that EMP2, a protein highly expressed by the alveo-
lar epithelium, regulates epithelial surface display of mul-
tiple adhesion proteins. Downregulation of EMP2 reduced 
PMN TEpM into the inflamed airspace without an untoward 
effect on antibacterial host defense [194]. Our preliminary 
study also showed that airway delivery of an anti-EMP2 
biologic reduced airspace neutrophilia induced by LPS in 
wild-type mice. This finding suggests the exciting potential 
for lung-directed (i.e., inhaled) anti-EMP2 therapeutics in 
neutrophilic lung disease.

Targeting chemoattractant receptors needed 
for PMN entry into lungs

An oral CXCR2 antagonist, AZD-8309, developed for the 
treatment of COPD was tested in healthy individuals chal-
lenged with inhaled LPS. Despite an initial positive result 
showing a ~ 80% reduction in sputum PMNs compared to 
placebo as well as decreased PMN elastase activity [230], 

the development of this drug was reportedly discontinued 
in 2007.

AZD-5069 is a selective CXCR2 antagonist that was 
shown to be well tolerated and without overt increased risk 
for infection. Its efficacy was investigated in trials for moder-
ate‐to‐severe COPD, bronchiectasis, and severe asthma. A 
significant decrease in PMN counts in sputum or lung tissues 
was observed; however, the diminished neutrophilia did not 
translate into improved disease outcomes [231–234].

Another selective and reversible CXCR2 antagonist, 
GSK1325756 (Danirixin), has also been tested in patients 
with COPD. However, no clear benefit was observed with 
treatment and an increase in pneumonia occurrence was 
observed in participants receiving the highest dose [235]. 
GSK1325756 was also tested for safety and efficacy in influ-
enza when co-administered with oseltamivir, a standard anti-
viral therapy. No severe adverse events were reported, but 
the efficacy data was inconclusive due to the limited number 
of participants in the study [236, 237].

SB-656933 (Elubrixin) is another compound developed 
to target CXCR2 that has shown inhibition of airway neu-
trophilia induced by ozone challenge in healthy volunteers 
or in subjects with cystic fibrosis (CF) [238, 239]. However, 
whether this agent will improve lung function and clinical 
symptoms remains to be demonstrated.

Among all CXCR2 antagonists examined in clinical trials, 
SCH527123 (MK-7123; Navarixin) is one of a few which 
also targets CXCR1 and has been shown to impact disease 
outcomes. Treatment with SCH527123 at a dose of 50 mg in 
COPD patients for 6 months decreased airway neutrophilia 
and resulted in a significant improvement in lung function 
(forced expiratory volume in 1 s [FEV1]) compared to pla-
cebo. Of note, the beneficial effect was only seen in active 
smokers [240]. The same dose of SCH527123 administered 
to patients with severe asthma also reduced airway PMNs 
and reduced asthma exacerbations [241]. However, severe 
neutropenia was observed in both trials, and the develop-
ment of this drug for lung diseases was evidently terminated.

Formyl peptide receptors (FPRs), in particular, FPR1 and 
FPR2, are another family of G protein-coupled receptors 
expressed on PMNs that induce PMN chemotaxis, among 
other cellular functions. FPRs recognize N-formylated 
peptides derived from bacterial or mitochondrial proteins 
during acute infection or tissue injury. An elevated level 
of mitochondrial-derived formyl peptides with FPR activ-
ity has been detected in bronchoalveolar lavage fluid and 
serum of ARDS patients [242]. Moreover, recent work has 
suggested FPR1-mediated PMN homing to injured lung may 
also be involved in the development of pulmonary fibrosis 
[243]. These data suggest that targeting FPRs might be an 
attractive approach to manage neutrophilic lung diseases. 
Several natural and synthetic compounds with FPR antago-
nism have been reported [244, 245]. However, thus far, these 
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antagonists have been tested only in preclinical models; fur-
ther investigation is necessary to explore their potential for 
clinical use.

After satisfactory results in phase Ib trials, the LTB4 
receptor antagonist BIIL 284 BS was tested in a randomized, 
double blind, multicenter, placebo-controlled phase II trial 
of pediatric and adult patients with CF [246]. Unfortunately, 
the trial was terminated early when a planned interim analy-
sis revealed a significant increase in pulmonary-related seri-
ous adverse events in adults receiving the drug, in particular, 
increased respiratory signs and/or symptoms associated with 
pulmonary exacerbation. A study of the agent in a mouse 
model of P. aeruginosa lung infection confirmed reduced 
pulmonary PMNs but higher bacterial overgrowth and bac-
teremia [247].

Targeting PMN migration through interventions 
on PMN‑intrinsic signal transduction

Phosphodiesterase 4 (PDE4) is a cytoplasmic enzyme that 
catalyzes the hydrolysis of cAMP and thereby regulates 
PMN migration and other functions (chemokine/cytokine 
synthesis, ROS release, degranulation). Inhibiting PDE4 
with the small molecule roflumilast was recently shown to 
reduce PMN chemotaxis to CXCL1 and LTB4 through acti-
vation of EPAC1 and Rap1 in a cAMP-dependent manner 
[248, 249]. These findings mechanistically support the use 
of oral roflumilast, an agent which was approved by the FDA 
in 2011 for the treatment of COPD, particularly for patients 
with symptoms of bronchitis and frequent exacerbations. It 
was shown in these patients that roflumilast effectively sup-
presses sputum neutrophilia, improves FEV1, and reduces 
exacerbation rate. A series of additional PDE4 inhibitors 
designed for inhaled delivery have since been developed, and 
some have advanced into clinical trials [250]. Among these, 
CHF6001 has shown promising anti-inflammatory effects in 
COPD [251] and in atopic asthmatics, where it resulted in 
attenuation of the late asthmatic response in patients after 
allergen challenge [252]. Importantly, given the local deliv-
ery of CHF6001 to lungs, the observed drug effects may be 
more restricted [253], thus minimizing side effects caused 
by systemic agents.

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that 
regulate several core cellular functions, including prolifera-
tion, differentiation, survival, metabolism, and motility. As 
discussed above, PI3Ks have been shown to play an impor-
tant role in PMN chemotaxis. Several studies have shown 
potential for preclinical PI3K pan-inhibitors and PI3Kδ 
inhibitors to reduce airspace neutrophilia and other inflam-
matory measures in mouse models of allergic asthma [254]. 
A recent study showed that an inhaled prodrug PI3K inhibi-
tor, CL27c, reduced airway inflammation, including airspace 
neutrophilia in a mouse model of asthma and also reduced 

neutrophilic inflammation and lung fibrosis induced by bleo-
mycin [255]. Of interest, impaired PMN directional migra-
tion in healthy older adults, a potential cause of increased 
bystander tissue damage, has been linked to increased PI3K 
signaling and shown to be correctable by inhibition of PI3Kγ 
or PI3Kδ [256]; a similar correctable deficit in directional 
chemotaxis was also noted in PMNs from COPD patients 
[218]. Although these studies suggest the potential for PI3K 
inhibition as a strategy for modulating or optimizing PMN 
traffic to the lung in humans, it remains unclear whether the 
pleiotropic actions of PI3K inhibitors will complicate their 
development as lung disease therapeutics.

Targeting PMN migration with statins

HMG-CoA reductase inhibitors (i.e., ‘statins’) are widely 
used for cardiovascular disease prevention and treatment. 
In addition to their well-known cholesterol-reducing effects, 
statins also possess broad-spanning effects on inflammation 
and have been shown to inhibit PMN migration to the lung 
in mice and humans [257–261]. Despite their therapeutic 
potential in neutrophilic lung disease, negative results were 
obtained in two large-scale randomized controlled trials in 
ARDS: HARP-2 and SAILS [262, 263]. More recent post-
hoc analyses of these trials found that statin therapy pro-
vided a survival benefit in the subgroup of ARDS patients 
with hyperinflammatory features [264]. Statins have also 
shown mixed results in studies of COPD [265], but may ben-
efit a subset of COPD patients with cardiovascular disease 
or exhibiting a high level of C-reactive protein, a marker for 
systemic inflammation [263, 266, 267]. It has been shown, 
somewhat paradoxically, that simvastatin may correct the 
deficient directional PMN migration observed in patients 
with COPD [265] and also in healthy, older human sub-
jects, especially during infections such as pneumonia [268, 
269]. Statins have also been shown to potentially augment 
the release of antibacterial PMN extracellular traps [270]. 
Collectively, these studies indicate a potential for statins as 
PMN-targeting agents in human lung disease, but suggest 
that patient subphenotyping, potentially involving biomark-
ers and/or studies of PMN function, may be required to opti-
mize the selection of patients.

Targeting PMN retention in inflamed lungs 
through the CXCR4/CXCL12 axis

CXCR4/CXCL12 is a well-defined signaling axis that regu-
lates PMN retention in the bone marrow. Administration 
of granulocyte colony-stimulating factor (G-CSF), which 
reduces CXCR4 expression on PMNs, or the CXCR4 
antagonist, AMD3100 (plerixafor), to disrupt the engage-
ment between CXCR4 and CXCL12 on bone marrow stro-
mal cells, results in rapid release of PMNs from the bone 
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marrow to the circulation. Interestingly, growing evidence 
suggests that CXCR4/CXCL12 may also regulate PMN 
activities within the lungs. In the setting of lung infection/
injury, extravascular PMNs reportedly regain CXCR4 sur-
face expression, allowing them to accumulate in inflamed 
areas where there is increased expression of CXCL12 [271]. 
Blockade of this pathway suppresses PMN accumulation, 
perhaps partially due to enhancement of PMN ‘reverse trans-
migration’ [271, 272]. High CXCR4 presentation has been 
reported on lung-infiltrated PMNs from several unresolved 
human chronic lung inflammatory diseases [273]. Appli-
cation of AMD3100 locally in diseased lungs to intervene 
upon CXCR4/CXCL12 may thus have the potential for alle-
viating PMN retention during resolution of inflammatory 
lung diseases.

Other strategies

Less selective anti-inflammatory strategies that impact 
PMN migration to the lung, including macrolides and anti-
cytokine biologics have also been tested [274]. In addition 
to strategies for modulating PMN trafficking to the lung, 
several PMN effector molecules have also been targeted over 
the years in an effort to mitigate neutrophil-mediated inflam-
mation in the lungs and other organs. Examples include 
PMN elastase inhibitors, myeloperoxidase inhibitors, and 
MMP inhibitors [274, 275]. Due to their robust infiltration of 
the inflamed lung, PMNs have themselves also been tested in 
preclinical models as vehicles for nanoparticle drug delivery 
to the lung [276].

A final complication for therapeutic development that is 
worth noting is that PMNs can undergo marked functional 
and phenotypic changes after recruitment to the airspace. 
This is particularly well documented in the CF airway, where 
PMNs exhibit enhanced degranulation and oxidant genera-
tion (potentially exacerbating lung injury) but impaired bac-
terial killing [277]. This PMN phenotype, recently coined 
‘GRIM’ (granule releasing, immunomodulatory, metaboli-
cally active), can be mimicked in vitro by inducing PMN 
TEpM with CF airway secretions [278]. Tractable model 
systems such as this carry promise for identifying the molec-
ular component(s) of CF sputum that reprogram airspace 
PMNs as well as for facilitating therapeutic screens.

Conclusions

The lung has unique anatomic features that reflect the 
mandates of gas exchange, in particular, a highly complex, 
redundant, narrow-caliber capillary network that is separated 
by just one cell layer (the alveolar epithelium) from the envi-
ronment. Perhaps as a consequence, the lung shares a unique 
relationship with the circulating PMN. In health, PMNs, in 

numbers that far exceed that in the peripheral circulation, 
reside within the lung vasculature, patrolling the extensive 
endovascular surface for bacteria and then completing their 
life cycle. During infection, rapid and robust recruitment of 
PMNs through the pulmonary endothelium and then epi-
thelium into the airspace needs to be balanced with the risk 
of collateral PMN-mediated tissue damage. Although sev-
eral molecular checkpoints at the level of the endothelium 
and epithelium have been identified in the PMNs journey 
to the airspace, fundamental questions remain for the field 
(see "Box: outstanding questions"). Layered on top of this, 
emerging studies that have challenged the traditional mono-
lithic view of the PMN as a simple vector of degradative 
cargo suggest that a more nuanced understanding of the 
PMN in pulmonary homeostasis will be required. Taken 
together, these studies suggest, in principle, the exciting 
opportunity to manipulate both the intrapulmonary locali-
zation and local programming of the PMN to therapeutic 
benefit. In upcoming years, it is expected that research ques-
tions centered on the PMN and on the lung will reciprocally 
and fundamentally enrich our understanding of the biology 
of the other.

Box: outstanding questions

What are the local niche signals in the lung that sequentially 
program the tissue-compartmental localization and function of 
PMNs during pneumonia and its resolution?

Do pulmonary interstitial fibroblasts directly and/or indirectly 
regulate the transendothelial and transepithelial passage of PMNs 
in the lung?

Are there distinct subsets of PMNs that subserve destructive, anti-
microbial, and repair roles in the lung?

How do intrapulmonary PMNs and the lung microbiota recipro-
cally interact during health and chronic lung disease?

Are there therapeutic strategies that can be leveraged to selectively 
intervene upon PMN traffic to the lung in isolation from other 
organs?

Are there molecular strategies that can be leveraged to selectively 
manipulate PMN number within the pulmonary intravascular, 
interstitial, and intra-alveolar compartments?

What is the relative importance of interstitial vs. intra-alveolar 
PMNs to host defense during pneumonia?

How does transepithelial traffic of PMNs impact intrapulmonary 
compartmentalization and clearance of pathogens during pneu-
monia?

What role does efferocytic clearance of apoptotic PMNs play in 
pathogen killing in the infected lung?
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