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Abstract
Regulation of the differentiated identity requires active and continued supervision. Inability to maintain the differentiated state 
is a hallmark of aging and aging-related disease. To maintain cellular identity, a network of nuclear regulators is devoted to 
silencing previous and non-relevant gene programs. This network involves transcription factors, epigenetic regulators, and the 
localization of silent genes to heterochromatin. Together, identity supervisors mold and maintain the unique nuclear environ-
ment of the differentiated cell. This review describes recent discoveries regarding mechanisms and regulators that supervise 
the differentiated identity and protect from de-differentiation, tumorigenesis, and attenuate forced somatic cell reprogram-
ing. The review focuses on mechanisms involved in H3K9me3-decorated heterochromatin and the importance of nuclear 
lamins in cell identity. We outline how the biophysical properties of these factors are involved in self-compartmentalization 
of heterochromatin and cell identity. Finally, we discuss the relevance of these regulators to aging and age-related disease.
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Introduction: a short historic perspective

How differentiated cells maintain their identity is a funda-
mental question that researchers have been grappling with 
since the early days of modern biology. The “textbook view” 
was that the differentiated identity of cells is determined 
by sequential steps, and the term “terminal differentiation” 
was coined as a sign of an irreversible process (for reviews 
describing mechanisms of terminal differentiation see 
[1, 2]). It is now clear, however, that the differentiated state 
is plastic, enabling re-programming, de-differentiation, and 
trans-differentiation [3].

What maintains differentiated cell identity? Conard 
Waddington once compared differentiation to balls rolling 
downhill, where the balls (i.e. the differentiating cells) are 
funneled into specific valleys of irreversible fates [4, 5]. A 
large body of evidence suggests, however, that above the 
Waddington valleys is a molecular safety net that prevents 
the differentiated cells from wandering off into other valleys 

[6–8]. Identity supervision serves as a barrier, inhibiting 
spontaneous reprograming or trans-differentiation as well 
as tumorigenesis; its loss is a hallmark of aging, and results 
in metabolic disorders, such as diabetes, neurodegeneration, 
and cancer. Manipulation of the activity of central nodes 
within identity networks will enable better and more efficient 
reprogramming, which can be of high relevance to regenera-
tive medicine, aging biology, and cancer therapy/treatment.

The nucleus plays a central role in identity regulation. 
Sir J. Gurdon, who conducted nuclear transfer experiments 
as early as 1962, described the generation of adult frogs by 
transplanting a single nucleus from a somatic cell into a fer-
tilized egg whose nucleus was removed [9, 10]. Later on, the 
Weintraub laboratory forced expression of transcription fac-
tor MyoD in differentiated fibroblasts resulting in conversion 
to muscle-like cells and establishing a role for transcriptional 
regulation of cell identity [11]. In those exciting early days 
of myogenic differentiation, Blau and Baltimore postulated 
that both passive and active chromatin-related mechanisms 
within the cell nucleus are required for maintaining the dif-
ferentiated identity [12]. Indeed, returning to those pioneer-
ing experiments using global genome-wide studies, it was 
demonstrated that MyoD-induced trans-differentiation is 
accompanied by re-wiring and remodeling the 3D of the 
genome, forcing the expression of myogenic programs [13]. 
Over the years, additional transcription factors have been 
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shown to be required to maintain cell identity, including 
Pax5, a homeobox transcription factor that is required for B 
cell fate and identity. Elimination of Pax5 in fully differenti-
ated B cells resulted in their trans-differentiation to imma-
ture T cells and in the development of T cell lymphomas 
[14–17]. Moreover, Yamanaka and colleagues discovered 
that expression of four transcription factors (Oct4, Sox2, 
Klf4, c-Myc; OSKM) induced reprogramming of fibroblasts 
to form pluripotent cells (iPS), a discovery that was awarded 
the 2012 Nobel prize in physiology and medicine [18].

In addition to sequence-specific transcription factors, the 
regulation of large-scale chromatin and nuclear organiza-
tion is emerging as crucial for regulation of cell identity. 
Recent findings, presented below, suggest that cell identity is 
maintained at the level of high-order chromatin and nuclear 
organization involving both genetic and epigenetic players 
as well as biophysical forces that safeguard cell identity. The 
changes in cell identity supervision during aging and the 
relevance of these perturbations to aged-related disease are 
discussed.

Heterochromatin and cell identity

From a molecular perspective, the differentiated identity is 
maintained by two parallel mechanisms: one is the machin-
ery that enables the differentiated cell to express its unique 
gene signature (a topic outside this review), and the sec-
ond is the machinery that actively silences previous fates 
and irrelevant gene programs. While the silencing of gene 
expression also involves post-transcriptional mechanisms, 
such as RNA decay and protein degradation [19–21], the 
present review focuses on molecular connections between 
maintenance of cell identity, heterochromatin formation, and 
large-scale nuclear organization.

Traditionally, the genome is divided into two entities: 
euchromatin, which is characterized by an accessible and 
loose chromatin structure that is highly transcribed and 
expressed, and heterochromatin (HC), which is dense, com-
pact in structure, and less accessible and, therefore, genes 
within HC are rarely expressed [22, 23]. HC is divided into 
constitutive heterochromatin (cHC) and facultative hetero-
chromatin (fHC). HC is spatially distributed in the nucleus, 
and occupies the nuclear periphery, the vicinity of the nucle-
olus, and is also situated in and adjacent to centromeres and 
telomeres and contains repetitive elements and integration 
sites of foreign elements, e.g., retroviruses. Activation of 
these genomic entities is harmful to the genome as it may 
induce recombination and DNA damage, and so, silencing 
these structures in HC has evolved as a way to make these 
regions less accessible. HC is also localized to the vicin-
ity of the nucleolus, the largest substructure in the nucleus, 
containing hundreds of rRNA genes critical for ribosome 

biogenesis and cell growth. These large chromatin regions 
are repressive environments and are gene poor, less tran-
scribed, and are highly enriched for satellite DNA and silent 
genes (for detailed reviews see [24, 25]).

In contrast, fHC has a condensed structure that can 
change its organization under specific developmental con-
ditions. This flexible form of HC harbors silent genes, and 
may include regulatory elements, such as lineage and cell-
type specific enhancers [26, 27]. A recent study classified 
a functional type of HC termed sonication-resistant hetero-
chromatin (srHC) that is involved in gene silencing and cell 
identity ([28] and see detailed below). While all cell types 
share similar genomic regions of cHC, the identity of fHC 
and srHC varies for different cell types and developmen-
tal settings. In addition, while cHC is associated with the 
nuclear periphery, fHC can also be found in the nucleus 
interior [29].

HC is characterized by specific posttranscriptional 
modifications and, specifically, by histone tail methyla-
tions, including histone 3 Lys 9 di- and tri-methylations 
(H3K9me2/3). These methylations are catalyzed by evolu-
tionarily conserved histone H3K9 methylases (HMT) the 
SET-domain-containing family of methyltransferases [30]. 
Once methylated, H3K9me regions are bound by one of the 
heterochromatin protein1 (HP1α, β, γ) proteins that recog-
nize the methylated histone and self-multimerize and gen-
erate inaccessible compact chromatin [31, 32]. Binding of 
HP1 to methylated histones subsequently recruits repressive 
complexes or assists in targeting these regions to the nuclear 
lamina. In some cases, like in neurospora, H3K9 methylation 
leads to the recruitment and activity of DNA methylases 
that methylate CpG dinucleotides, linking chromatin silenc-
ing with DNA methylation and transcriptional repression 
[33–37]. Moreover, binding of HP1 to these DNA methyl-
ated genes also regulates alternate pre-mRNA splicing [38].

H3K9me safeguard cell identity

Our understanding of the role of H3K9me3 in maintaining 
the differentiated identity has benefited from experiments of 
somatic cell reprogramming into iPSs. Reprogramming is an 
inefficient process, both when achieved by the expression of 
reprogramming factors (OSKM), and by somatic cell nuclear 
transfer (SCNT) [28, 39, 40]. This suggests that endogenous 
barriers that maintain the differentiated state exist and atten-
uate reprogramming. Indeed, during reprogramming, OSKM 
binding is not observed along mega-bases of genomic 
regions decorated with H3K9me3 methylation. These 
regions, which are termed differentiation bound regions 
(DBRs) (Fig. 1a) [40], contain numerous genes involved 
in pluripotency. The inability of reprogramming factors to 
bind to these regions impedes reprogramming. Reduction of 
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(a)

(b)

Fig. 1  H3K9me2/3-marked heterochromatin attenuates reprogram-
ing. a Reprogramming of fibroblast to iPs: Expression of Oct4, 
Sox-2, Klf-4, and c-Myc (OSKM) transcription factors in fibroblast 
results in generation of iPSs. H3K9me3-marked heterochromatin at 
developmentally bound genomic regions (DBR) prevent the bind-
ing of OSKM to these genomic regions. Eliminating H3K9me2/3 
methylases enables OSKM binding to DBR regions (DBR*) and 

enhances reprograming [40]. b Conversion of fibroblasts to hepato-
cytes (iHEP). Expression of hepatic “founding” transcription factors 
converts fibroblasts into hepatocytes. iHEP is inhibited by RBMX 
and RBMX-L RNA-binding proteins. RBMX and RBMX-L were 
identified as bound to H3K9me3-sonication-resistant heterochromatin 
(srHC). Their elimination during iHEP generation increased conver-
sion efficiency [28]
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H3K9me3 methylation by knockdown of H3K9me HMTs 
improved the binding of Oct4 and Sox2 to these regions and 
enhanced reprograming efficiency. Likewise, and upon dif-
ferentiation of ES cells during early embryogenesis, hetero-
chromatization of pluripotency-related genes like Oct3/4, 
Nanog, Stella and RX-1 prevents potential de-differentiation 
[41, 42].

Moreover, during cell specification, marking of chromatin 
regions by H3K9me3 prevents the expression of irrelevant 
genes. For example, T helper cells differentiate to either Th1 
or Th2 cells, where the expression of Th1-related genes is 
silenced by H3K9me3 methylation and HP1 binding in Th2 
cells. Genetic loss of H3K9me3 methylase (SUv3-9H1) or 
HP1 resulted in inappropriate expression of Th1 genes in 
Th2 cells [43]. Similarly, loss of H3K9me3 methylases in 
the brain resulted in impairment of neuronal identity and 
electrical activity [44]. In agreement with these reports, 
double knockout of the H3K9me3 methylases, suv39h1/2, 
resulted in increased chromosomal instability and high risk 
for tumor development. Extensive loss of H3K9me3 across 
large chromatin regions has been observed in cancer cell 
lines and cells undergoing epithelial-to-mesenchymal transi-
tion [45–47]. These findings are in accordance with global 
de-compaction of chromatin observed by pathological opti-
mized imaging (pathSTORM), and likely reflect early events 
of tumorigenesis [48]. Thus, HC and specifically regions 
marked by H3K9me3 maintain cell identity and serve as a 
barrier against spontaneous or experimental reprogramming, 
as well as tumorigenesis.

H3K9me and cell fate conversion

Does H3K9me3-marked HC protect against cell fate con-
version (trans-differentiation)? A seminal study by Becker 
et al. sheds light on this question. As a starting point, hetero-
chromatin was isolated based on its biophysical properties, 
independent of histone-tail modifications [28]. Specifically, 
when sonicated chromatin is resolved over sucrose gradient 
by ultracentrifugation, large chromatin fragments that fail to 
undergo sonication are localized to the middle of the gradi-
ent and enriched in DBRs. Fractions containing these regions 
are not typically collected in regular ChIP-seq assays, where 
only small fragments from the top of the gradient are used. 
These short fragments (200–600 bp) are mainly enriched 
in euchromatin, and specifically in promoter and enhancer 
regions. Thus, biophysical enrichment of heterochromatic 
regions enabled isolation of srHC, independent of histone-
tail modifications. Remarkably, srHC was greatly enriched in 
H3K9me3, mapping to DBRs. Moreover, proteomic analysis 

of the srHC and H3K9me3-enriched chromatin identified bona 
fide heterochromatic proteins, including several RNA-binding 
proteins, such as TDP43, that are associated with amyotrophic 
lateral sclerosis (ALS) and were previously shown to attenuate 
reprogramming [49].

To directly study the role of srHC/H3K9me-bound proteins 
in cell conversion, the Zaret laboratory shRNA-eliminated fifty 
srHC-associated factors upon direct fibroblast conversion to 
hepatocytes (iHEP; Fig. 1b; [28]). Among the strongest hits 
of the screen were the RNA-binding proteins RBMX and 
RMBMX/L. RBMX was previously identified as a regulator 
required for maintenance and protection of sister chromatid 
cohesion [50]. It was also required for limiting HIV provi-
rus production by binding downstream to the HIV pro-viral 
long terminal repeats, maintaining its silencing [51]. Loss of 
RBMX or RBMX/L proteins alone did not lead to spontane-
ous cell conversion but rather accelerated fibroblast conver-
sion upon expression of hepatocyte-converting factors (e.g. 
FOX3A, HNF1A, HNF4A), enhancing the expression of bona 
fide hepatic genes. Like in the case of iPS reprogramming, 
loss of SUV39H1 accelerated iHEP conversion. Moreover, 
RBMX and RMBMX/L1 were required to globally maintain 
H3K9me3 and, together with SUV39H1, were essential for 
maintaining srHC. Indeed, the ectopic gene signature emerg-
ing for loss of SUV39H1 highly overlapped with that of loss of 
RBMX/L1 during iHEP. Future studies will be needed to test 
a possible link between the RNA-binding function of RBMX 
and RBMX-L, the identity of RNA molecule, and the mecha-
nisms involved.

Using a similar approach, in search for additional genes that 
attenuate conversion of fibroblasts to iPS or trans-differenti-
ation, Cheloufi et al. identified the histone CAF-1 chaperone 
complex (ChAF1a, ChAF1b) and the SUMO-conjugating 
enzyme UBC9 as such factors [52]. CAF1 is a histone chap-
erone required for replication-dependent nucleosome assembly 
[53]. It is also involved in heterochromatin maintenance and 
epigenetic memory, along with the histone de-methylase LSD1 
and the SETDB1 H3K9 methyltransferase. CAF-1 elimination 
decreased HC, resulting in increased accessibility of regula-
tory regions, such as enhancers, and facilitated binding of Sox2 
to genes involved in stemness and promoted their expression. 
Indeed, CAF-1 limited trans-differentiation of B cells into 
macrophages or fibroblasts [52]. Moreover, the SUMO path-
way was shown to be required to stabilize and protect various 
cell fates; loss of SUMOylation globally affected chromatin 
states, including a decrease in H3K9me3-marked heterochro-
matin [54]. Collectively, these studies demonstrated that both 
nuclear factors linked to H3K9me-enriched heterochromatin 
and the SUMO pathway are critical for maintaining cell iden-
tity [52, 55, 56].
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Anchoring H3K9me3 heterochromatin 
to the nuclear periphery

Recent studies in C. elegans shed light on the nuclear 
organization of H3K9me2,3-marked heterochromatin. 
H3K9 methylations are required In C. elegans to anchor 
and silence repeat-rich heterochromatin at the nuclear 
periphery. Only double null mutants of met-2 and set-
25 (DKO), which catalyze the methylations of H3K9, 
were unable to anchor repeat-containing sequences to the 
nuclear periphery [57]. Experiments in DKO worms lack-
ing H3K9 methylation resulted in the incorrect positioning 
of chromosome arms and failure in dosage compensation 
[58, 59]. Thus, H3K9 methylations have multiple roles in 
heterochromatin positioning as well as in chromosomal 
and nuclear organization.

The C. elegans genome codes for several proteins that are 
“readers” of H3K9me2, 3 (LIN-61, CEC-3/EAP-1, CEC-4, 
HPL-1, HPL-2) [60]. Using an in vivo screen to identify 
proteins that are required to internalize a heterochromatic 
reporter of engineered repeats, Gonzales-Sandoval identi-
fied the chromodomain-containing protein CEC-4 as being 
required for anchoring of H3K9me-decorated heterochro-
matin to the nuclear periphery, but not for transcriptional 
silencing. High-resolution imaging studies suggested that 
CEC-4 is localized to the vicinity of the nuclear lamina, but 
independently of the sole C. elegans lamin protein (LMN1), 
and that it binds to mono-, di- and tri-methylated H3K9. 
When muscle differentiation was forced in the developing 
larva, the majority of cec-4 mutants failed to fully commit 
to muscle fate, likely due to the inability to silence other 
fate programs (Fig. 2a) [61]. In agreement, Loss of CEC-4 
suppressed the muscle phenotype associated with a point 

Fig. 2  Mechanisms of anchor-
ing heterochromatin to nuclear 
lamina. a In C. elegans, histone 
methylases SET-25 and MET-2 
di and tri methylate H3K9. 
Subsequently, H3K9me2/3 is 
anchored to the nuclear lamina 
by the direct binding of CEC-4, 
resulting in sequestration of 
heterochromatin in the nuclear 
periphery [58]. b In verte-
brates, H3K9me2/3-marked 
heterochromatin is bound by 
HP1. HP1 is recognized and 
binds to PRR14. PRR14 also 
has a lamina-binding domain 
that is required for anchoring 
H3K9me2/3 heterochromatin 
to the nuclear lamina, likely in 
a phosphorylation-dependent 
manner [85]

(a)

(b)
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mutation (LMN-Y59C) mimicking human Emery-Dreifuss 
muscular dystrophy (EDMD) in a C. elegans model [62], 
thus suggesting a connection between the H3K9me hetero-
chromatin-anchoring machinery and lamin.

In line with these observations, Cabianca et al. studied 
differentiated intestinal cells and discovered a second indi-
rect machinery safeguarding heterochromatin, in addition 
to CEC-4-dependent anchoring [63]. A screen performed 
in the background of CEC-4 null mutants identified that 
MRG-1, the worm ortholog of human MRG15, limits the 
binding of the CBP/p300 factors, preventing the spread of 
transcriptional activating histone marks, such as H3K27 
acetylation into heterochromatin. Mapping the binding of 
MRG-1 via ChIP-seq and its comparison with the modEN-
CODE database, revealed that MRG-1 binding is enriched 
in euchromatic regions marked by H3K36me2/3. Indeed, 
loss of met-1 or mes-4 (the histone methylases that catalyzes 
H3K36me2/3) in the cec-4 mutant background resulted in 
displacement of an artificial repeat reporter from hetero-
chromatin, similar to that observed upon loss of MRG-1.
This demonstrates that the positioning of heterochromatin 
in differentiated cells involves the activity of MRG-1 and 
H3K36 methylases in euchromatin regions. Interestingly, the 
shRNA-mediated loss of dMES-4 in differentiated entero-
cytes (ECs) in the Drosophila midgut resulted in a loss of 
the differentiated identity of mature enterocytes, a decline 
in the expression of EC genes, and the ectopic expression 
of the intestinal stem cell marker Delta on the surface of 
EC-like cells [64].

In humans, NSD2, the ortholog of MES-4, has a tumor-
suppressive function and is deleted or mutated in Wolf-
Hirschhorn syndrome, which involves a cranio-facial pheno-
type, intellectual disability, and high incidence of leukemias 
(T-ALL). NSD2 loss is also characteristic of pediatric B cell 
lymphomas [65–67]. Taken together, heterochromatin con-
finement to the nuclear periphery is mediated by multivalent 
interactions and multiple pathways that together supervise 
cell identity and prevent tumorigenesis.

Nuclear periphery, lamins, and cell identity

The formation of repressive chromatin and the regulation of 
gene expression are tightly connected to the nuclear periph-
ery and to nuclear lamins. Nuclear lamins are type-V inter-
mediate filaments that generate a network in the nucleus, 
which, in most cases, is dense and associated with hetero-
chromatin below the nuclear membrane, and is sparser in 
the nucleus interior, where euchromatin dominates [68, 69]. 
One interesting exception to this organization is observed 
in rod cells of nocturnal animals, where the organization 
is inverted and heterochromatin is confined to the nucleus 
interior [70–72].

Type A lamins (lamin A and C) are encoded by the 
LMNA gene and are generated by alternative splicing. Type 
B lamins are encoded by the lamin B1 and lamin B2 genes. 
The C. elegans genome contains a single lamin gene and the 
Drosophila genome encodes a single type A lamin, termed 
lamC, and a single type B lamin, lamDm0 [73]. Nuclear 
lamins interact with a variety of proteins, termed nuclear 
envelope trans-membrane proteins (NETs) that either the 
outer or the inner nuclear membranes, which are continuous 
with the endoplasmic reticulum membrane; their contribu-
tion to gene regulation is emerging [74, 75]. Type A lamins 
are highly expressed in fully differentiated somatic cells, 
while type B lamins are expressed in almost all cell types. 
Lamins have transcriptional and non-transcriptional roles 
that are hard to separate; Lamins greatly contribute to the 
physical rigidity of the nucleus, their role in gene expression 
regulation and genome organization is the focus of many 
studies.

In the nucleus, genomic regions associated with lamins 
are organized in a distinct manner and form lamin-associated 
domains (LADs), mainly at the nuclear periphery, where 
chromatin is in proximity to the nuclear lamina [76–80]. 
LADs were originally identified by the Van-Steensel labo-
ratory, who used the DamID technique to fuse Drosophila 
LamDm0 to bacterial DNA adenine methylase, which meth-
ylates adenine in  GmATC sequences [81–84], thus enabling 
identification of genomic regions in close proximity to 
lamin. Extensive LAD studies have demonstrated that most 
LADs are relatively gene-poor, and that genes that present 
within LADs or are targeted to LADs are less expressed 
[77, 85]. In addition, it was found that LADs tend to repli-
cate late and are characterized by H3K9me2/3 modifications. 
LADs are large, ranging from 10 Kb to 10 Mb in size and 
occupying about one-third of the human genome. Indeed, 
multiple 3-C, 4-C, and Hi-C chromosome conformation cap-
ture studies unveiled that LADs mostly occupy chromosome 
territories associated with the “inactive” B compartment of 
the nucleus, and not the “active” A compartment (see glos-
sary and [78]).

Similar to HC, LADs can be categorized as constitu-
tive LADs (cLADs) and facultative LADs (fLADs) [80]. 
cLADs are highly identical between cell types in both mice 
and humans, and likely reflect a rigid scaffold anchoring of 
the genome [86]. In contrast, fLADs are specific for cell type 
and developmental stage; for example, many genes are found 
to move in and out of LADs during muscle differentiation, 
in correlation with their expression [87].

It is not fully clear how chromatin is anchored to LADs. 
However, the huge size of LADs (encompassing thousands 
of nucleosomes), together with genetic experiments, sug-
gests the existence of multiple interactions that are only 
partly dependent on H3K9me [88]. Interestingly, and in rem-
iniscence of CEC-4 in C. elegans, the human PRR14 protein 
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that binds HP1 may be involved in anchoring chromatin to 
LADs in a phosphorylation-dependent mode. PRR14 has 
separate HP1-binding and lamin-binding domains and likely 
links H3K9me2/3 HP1-bound and enriched HC to LADs 
(Fig. 2b) [89]. PRR14 is required for myogenic differen-
tiation of C2C12 myoblasts and for the stability of HP1α 
laminA/C proteins [90]. However, other lamin interactors, 
such as lamin B receptor (LBR), which spans the nuclear 
membrane, likely play a role in tethering HP1-coated-
H3K9me chromatin to type B lamins. Indeed, loss of both 
LBR and laminB1, along with reduced HC-containing LAD 
were observed in cells undergoing senescence [91]. Moreo-
ver, during X-chromosome inactivation, LBR interacts with 
Xist RNA and is required to localize the X-chromosome to 
the nuclear lamina [92, 93].

The regions between LADs, termed inter-LADs (iLADs), 
are highly transcribed, are associated with active and elon-
gating Pol-II, and are in the vicinity of transcription factories 
and splicing speckles. The borders of LADs and iLADs are 
highly enriched with H3K27me3, which is a histone mark 
associated with fHC and polycomb repression [62, 77]. 
Early reports suggest that LADs and nuclear pore complexes 
(NPC), which span the nuclear membrane and are hubs for 
transcription and DNA repair [94], should be considered 
separate entities Figs. 3 and 4.

A recent study in Drosophila cells identified significant 
binding (~ 20%) of two NPC proteins Nup93 and Nup107 
within LADs [95]. Nup93-bound regions were associated 
with polycomb-repressed chromatin regions and LADs. 
Moreover, in some cases, the peak binding of Nup93 within 
LADs was correlated with low signal of lamin-binding, sug-
gesting a unique chromatin environment within the LAD 
itself. Additional studies will be necessary to further under-
stand this observation, and to determine whether this asso-
ciation of Nup subunits to LAD sub-regions reflects binding 
of isolated subunits or entire NPCs.

NET proteins and tissue‑specific anchoring 
of chromatin to the nuclear periphery

The above observations suggest a general role for H3K9 
methylations and lamins in the tethering of genomic regions 
to the nuclear periphery. Elimination of all lamins from 
mouse embryonic stem cells revealed, however, that they 
are dispensable for lamina-associated domain organization 
in cells [96]. While this may be relevant only in the case of 
embryonic mouse stem cells, it strongly suggests that chro-
matin is tethered to the nuclear periphery by proteins other 
than lamins.

Among tissue-specific anchoring proteins, there are 
nuclear envelope proteins associated with inner nuclear 
membrane (INM), as well as transmembrane proteins 

collectively termed NET (for reviews on NET, see Wong 
et al. [74] and Talamas and Capelson [97]). NET proteins 
are involved in many cellular functions including nuclear 
migration, signaling, cell cycle regulation, and genome 
organization [98]. Some NET proteins, such as LEM-domain 
proteins, are localized only to the INM. Other INM NET 
proteins, such as SUN-domain proteins, form a complex 
with Nesprin proteins that reside in the outer nuclear mem-
ber (ONM), and together form a complex, termed LINC, that 
conveys cytoplasmic signals and mechanosensory informa-
tion to the nucleus.

Remarkably, proteomic analyses expanded our view on 
NET proteins by identifying hundreds of novel NET pro-
teins. A comparison of these proteomic studies performed 
on different cell types revealed that the NET proteome is 
highly cell/tissue-specific. This cell/tissue-specific expres-
sion is important, for example, for selective docking of 
chromosomes near the nuclear periphery. In liver cells, NET 
proteins NET29, 39, 45, and 47, but not other NET proteins 
tested, were able to reposition chromosome 5 to the nuclear 
periphery. In contrast, kidney cells do not express NET47 
and in the majority of these cells, chromosome 5 is localized 
more to the nuclear interior. Similarly, NET 29 and 39, but 
not others NET proteins, were required for repositioning of 
chromosome 13 [99, 100].

Other examples of NET proteins tethering the genome to 
the nuclear periphery are the LEM-domain proteins, Emerin 
and LAP2 β [101]. Localized to the inner nuclear mem-
brane, they contact the genome indirectly by binding to the 
bridging protein BAF that binds to chromatin. For example, 
LAP2β prevents the expression of cardiac genes maintaining 
the identity of cardiac progenitors [102]. In muscle progeni-
tor cells, Emerin tethers differentiated genes to the nuclear 
periphery, maintaining stemness [103, 104]. Moreover, 
high-resolution DamID mapping, combined with transcrip-
tional analysis during myogenic differentiation, revealed 
that gene repositioning was regulated by muscle-specific 
NET proteins, impacting the expression of a large number 
of developmental genes during myogenesis. Importantly, the 
cell-specific expression of NET proteins may explain why 
pathologies associated with lamins or NET proteins are only 
manifested in specific cells and tissues.

Lamins in the nuclear interior and cell 
identity

DamID and ChIP-seq-based LAD mapping of LaminB and 
LaminA/C yielded highly similar results [105], with both 
localizing mostly to peripheral LADs. Recent studies, how-
ever, suggest a repressive function for lamins in the nucleus 
interior, specifically LamA/C [29]. For example, in the case 
of adipocyte differentiation, the binding of lamin A/C was 
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(a)

(b)

(c)

Fig. 3  Lamin actively silences gene expression. a During adipo-
cyte differentiation, adipocyte fate genes are expressed. Conversely, 
LaminA/C binds to the vicinity of transcriptional start sites and pre-
vents the expression of other fate genes, albeit the observation that 
histone tails within the regulatory regions of these genes are marked 

by activating histone mark, such as H3K4me3. b Loss of LamDm0 
in fat body cells during aging results in ectopic activation of immune 
gene signature and in systemic inflammation. c Aging ECs flip lamin 
organization, reverting to a stem-like configuration
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sufficient to prevent the expression of genes with histone 
marks associated with gene activation (e.g., H3K4me) [106].

Moreover, during in  vitro adipocyte differentiation, 
LamA/C formed a unique type of LAD that is associ-
ated with H2B-acetylgluscosamine-enriched chromatin 
(H2B112GlcNAC), suggesting a chromatin-related nutrient-
sensing machinery during differentiation [107].

The organization of LamA/C in the nucleus interior is 
likely different from its tight peripheral association with 
the nuclear lamina. In the nucleus interior, it is observed 
microscopically like a “veil” and is easily extracted [29]. 
This may be partly due to the association of LamA/C with 
LAP2α (thymopetin, TMPO) an abundant nuclear protein, 
as loss of LAP2α resulted in depletion of LamA/C from 
euchromatin [108].

Regulation of the differentiated identity 
is sequentially molded by lamin networks

In many somatic cells, both types of lamins are co-expressed, 
with each generating distinct networks that do not mix [68]. 
During mouse embryogenesis, however, a lamin-B receptor 
(LBR) network tethers HC to the nuclear periphery, prevent-
ing premature differentiation. Subsequently, and during dif-
ferentiation, this network is replaced by a LamA/C-depend-
ent tethering mechanism that enhances differentiation, 
preventing expression of stem cell genes. Loss of both LBR 
and LamA/C results in inverted organization in which HC 
is localized in the nucleus interior [70, 80].

The active role of lamins in supervising the identity 
of stem cells and differentiated cells was studied in sev-
eral Drosophila tissues. For example, loss of LamDm0 in 
female-derived fat body cells, led to detachment of testis 
(male)-specific gene clusters from the nuclear lamina and 

to their ectopic expression [109]. The active and sequential 
role of lamins in the regulation of cell identity was also 
studied in Drosophila enterocytes (ECs) [110]. The distri-
bution of lamins in the Drosophila midgut is differential; 
in intestinal stem cells (ISCs), the dominant lamin is the 
B-type lamin, LamDm0. Upon differentiation, LamDm0 
levels decline and the level of LamC increases and is the 
dominant lamin in ECs. The switch in lamin gene expres-
sion is directly regulated by the HES-related transcription 
factor Hey, which binds to enhancers in the lamin genes, 
repressing the expression of stem-cell lamin, LamDm0, 
and enhancing the expression of the differentiated LamC 
[110]. Genetic experiments, together with DamID pro-
filing, established that in stem cells, LamDm0 binds to 
hundreds of EC genes, preventing their expression and 
maintaining stemness. Loss of LamDm0 in ISCs resulted 
in ectopic expression of EC genes, e.g., the EC founder 
transcription factor Pdm1. Moreover, forced expression of 
LamDm0 in ECs suppressed the expression of the entire 
EC gene program. Likewise, in differentiated ECs, LamC 
silenced the expression of stem cell-related and irrelevant 
gene programs, and its elimination in ECs resulted in 
ectopic expression of stem cell genes, such as the Notch 
receptor Delta. Thus, each lamin actively shapes a unique 
nuclear organization, preventing the expression of specific 
gene programs. It remains, however, to be determined how 
the different sets of genes are distinguished in each cell, 
and the molecular mechanism linking each lamin to its 
repressed targets also remains to be identified. Remark-
ably, loss of identity in ECs due to the elimination of either 
Hey or LamC, has an impact on the entire tissue, including 
a pathological regenerative response of stem cells, mis-
differentiation, loss of tissue integrity, and reduced organ-
ismal viability. Thus, a Hey-lamin network establishes and 
supervises EC identity.

(a) (b) (c) (d)

Fig. 4  a–d Expression of lamins in young and old midguts. Confocal 
microscopy images of young (4 days) and old (4 weeks) adult-derived 
midguts immuno-stained as indicated. DAPI (blue) marks DNA and 
arrows points to cells shown in insets (a, b) in young adults, LamC 
(red) is homogenously expressed in all ECs, and its level is reduced 

in aged ECs. c, d Lamin Dm0 (red), the stem cell-related lamin, is 
expressed only in progenitor cells in young guts, but is ectopically 
expressed in polyploid EC-like cells in old guts. The precent of poly-
ploid cells (PPCs) that are positive for the indicated protein in the fig-
ure is presented. The figure is adopted from [109]
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Supervising cell identity in the context 
of aging

Aging is intimately linked to loss of cell identity and is 
associated with age-related diseases, including increased 
susceptibility to infection [111]. It is characterized by a 
plethora of cellular changes, including aberrant signaling, 
such as in the mTOR pathway, mitochondrial dysfunction, 
and rewiring of metabolic networks with effects on both 
the tissue and the organism level.

In the nucleus, aging is associated with changes in the 
epigenome, the function of nuclear pores, and large-scale 
re-organization of the nucleus affecting nuclear lamins and 
intranuclear organelles [112, 113]. These changes can be 
envisioned as a lowering of the height differences between 
the valleys and hills depicted by Waddington. Transcrip-
tionally, it is reflected in the reduced expression of cell-
specific programs, loss of silencing, and increase in tran-
scriptional noise [114, 115]. For example, genome-wide 
mapping established that open chromatin regions that are 
active in dividing young cells, become increasingly/more 
closed upon aging, while regions of compact HC become 
more accessible.

These changes are likely due to a decline in the activity 
and levels of identity supervisors, leading to aging chroma-
tin that is more homogeneous [116]. Among the changes 
observed are relaxation of cHC and the ectopic expression 
of transposable elements (TEs) that has the potential to 
induce DNA damage [117, 118]. The ability to silence 
TEs has been linked to the function of lamin in Dros-
ophila, where depletion of LamDm0 from the fat body of 
young adult larvae resulted in decreased HC levels and re-
expression of TEs [119]. Similarly, laminA/C are required 
for silencing LINE-1 TE in vertebrate cells [120]. More-
over, maintaining cHC structure requires interaction of 
lamins with nuclear-cytoskeleton organizers that together 
shape a cell-specific nuclear state. One such organizer is 
Washout (wash), a member of the Wiskott–Aldrich syn-
drome family of proteins, that are well-known to regulate 
cytoplasmic signaling, as well as membrane–cytoskeletal 
interactions, including the formation of branch-actin fila-
ments [121, 122]. Nuclear Wash is required for large-scale 
nuclear organization; wash-deficient Drosophila cells 
exhibit a wrinkled nuclear morphology and disruptions 
of intranuclear organelles similar to those observed in 
laminopathic cells. Wash interacts directly with the type 
B lamin, LamDm0, and is required for cHC integrity. Loss 
of wash results in increased chromatin accessibility and 
changes in the distribution of repressive histone marks.

How HC is maintained in the context of aging is the 
subject of extensive studies. At the level of the HC-asso-
ciated histone tail modification, normal aging correlates 

with a reduction in H3K9me levels in HC, increase in 
H3K9me3 outside HC and redistribution HP1 [123]. 
Studies of accelerated aging syndromes, such as HGPS (a 
mutation in LamA gene) and Warner syndrome, suggest 
mechanistic explanations for the loss of HC in aging stem 
cells [124, 125].

For example, differentiating mesenchymal stem cells 
(MSCs) derived from Werner syndrome (WRN) patients, 
a pre-mature aging syndrome, exhibit epigenomic aging 
phenotypes [126], including global reduction in H3K9me3 
levels, changes in chromatin architecture, and prema-
ture cellular senescence [127]. WRN helicase, which is 
mutated or silenced in WRN syndrome, directly inter-
acts with the H3K9 methylase SUV39H1, HP1, and the 
LamA/C-binding protein LAP2β. In aging cells, reduc-
tion of SUV39H1 levels is observed together with the 
appearance of a WRN-like chromatin landscape. Replac-
ing SUV39H1 with a catalytically inactive SUV39H1 in 
wildtype MSCs, mimicked WRN phenotypes. Thus, WRN 
helicase is a regulator of cell identity that protects from 
premature aging, in part by regulation of H3K9me3-asso-
ciated HC via regulation of a lamin-associated protein.

The active role of lamins in supervising cell identity 
in the context of aging was recently investigated in both 
Drosophila adult midgut and immune tissues. In midgut 
aged enterocytes, the level of Hey protein decreases, lead-
ing to a decline in the level of LamC and, as a result, 
to the ectopic expression of stem cell genes, including 
LamDm0, and to subsequent silencing of the EC signature. 
Indeed, the phenotype observed upon acute loss of Hey in 
young ECs is highly similar to that observed in aged ECs. 
Remarkably, expression of Hey, or to a limited extent, of 
LamC, in aged ECs restores lamin organization and sup-
pressed aging phenotypes [110, 128].

Another characteristic of aging is immune senescence, 
which is associated with activation of immune responses 
in the absence of a pathogenic challenge [129]. In aging 
Drosophila, factors secreted from the fat body (homolog 
of vertebrate liver) elicit systemic inflammation, as well 
as hyperplasia in the midgut [130, 131]. In young adults, 
the ability to prevent such aberrant activation of immune 
genes requires LamDm0 within fat body cells. During 
aging, LamDm0 levels decline, resulting in a decrease 
in H3K9me-marked HC and HP1 levels, and in ectopic 
expression of immune-related genes, including secreted 
factors that mediate systemic inflammation. Along these 
lines, an age-dependent decrease in LamB1 levels was 
observed in keratinocytes, as well thymic epithelial human 
cells [132, 133].

The regulation of cell identity by lamins is also conserved 
in humans. The ability of cells to divide in vitro is limited by 
a cellular aging process called replicative senescence. Rep-
licative senescence is associated with changes in chromatin 
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organization, cell cycle arrest, and an increase in metabolic 
activity and cytokine production [134].

Remarkably, loss of lamin B1 in proliferating fibro-
blasts induced cellular senescence and was accompanied 
by changes that are highly similar to cells undergoing 
senescence, including large-scale changes in the chromatin 
landscape and in gene expression [135–137]. Interestingly, 
over-expression of lamin B1 also induced cellular senes-
cence, suggesting that a delicate balance of LamB1 levels 
is critical for maintaining cell identity [138]. Thus, lamins 
are required to actively maintain cellular identity, and their 
decline with age alongside dis-regulation of lamin expres-
sion have systemic and organismal manifestations beyond 
the differentiated cell itself.

Numerous mutations in lamin genes and nuclear lamina 
proteins are associated with a group of diseases collectively 
termed laminopathies, which affect the muscular, skeletal, 
adipose, and neuronal tissues, as well as the heart and skin 
[139, 140]. A prominent example is a single-nucleotide 
mutation in the lamin A gene (C1824T) that leads to a splice 
variant of lamin A, which is permanently farnesylated, gen-
erating a protein called Progerin, which is the cause of the 
Hutchinson–Gilford progeria (HGPS), a premature aging 
syndrome [141, 142].

Interestingly, this single-nucleotide mutation and the 
progerin splice variant are also sporadically present in physi-
ological wild-type aged cells [124, 143, 144].

Analyzing the changes in histone tail modification 
patterns in HGPS fibroblasts revealed global and rapid 
reduction of H3K9me3, specifically in the vicinity of the 
nuclear lamina, along with a decrease in HP1 that binds to 
H3K9me3 [125, 145]. Moreover, these changes were also 
observed in HeLa cancer cells upon expression of Progerin. 
Taking advantage of iPS technology, the Izpisue laboratory 
recapitulated the nuclear defects, including lamina disor-
ganization and HC loss [145]. This study established that 
HGPS-derived iPSs do not express Progerin and are indis-
tinguishable from iPSs derived from control fibroblasts in 
all that pertains to epigenetic, nuclear lamina organization, 
and proliferation parameters analyzed. However, upon sev-
eral passages, these cells exhibit nuclear disorganization and 
a decrease in H3K9me3, as observed in HGPS fibroblast. 
Moreover, differentiation of HGPS-iPSCs to smooth mus-
cle cells leads to premature senescence phenotypes that are 
observed in aged smooth muscle and vascular endothelial 
cells. In addition, using gain- and loss-of-function experi-
ments were used to establish the central role of Progerin in 
these premature aging-related phenotypes.

These data experimentally substantiated the idea intro-
duced by Goetzman and Foisner that laminopathies originate 
at the level of somatic stem cells, such as MSCs, which give 
rise to bone, muscle and cartilage, but are manifested upon 
differentiation and over time [146]. Indeed, focusing on adult 

stem cells, Scafidi and Misteli observed that immortalized 
human Progerin-expressing mesanchimal stem cells change 
their cellular identity and differentiation potential, in part 
by activating the Notch/HES pathway and remodeling HC, 
including HP1γ and nuclear lamins [147].

Ikagami et al. [148] recently observed that in fibroblasts, 
Ser22-phosphorylated lamin A/C in the nuclear interior was 
required for the binding of lamin to enhancers that were also 
co-bound by c-Jun. Remarkably, in Progeria-derived fibro-
blasts the binding of p-Ser22-LamA/C was reduced at these 
sites. Moreover, ectopic p-Ser22-LamA/C binding, c-Jun 
recruitment, and gene activation near Progeria-related genes 
was observed [148].

Along this line, the Foisner group generated an endothe-
lium-specific HGPS mouse model with selective endothe-
lial Progerin expression. These transgenic mice exhibited 
deregulated activity of a major cardiac transcription factor 
termed mechanoresponsive myocardin-related transcription 
factor-A (MRTFA) and developed myocardial and perivas-
cular fibrosis, left ventricular hypertrophy, and premature 
death [149].

De-regulated and elevated levels of inflammatory mark-
ers were observed in a progeria mouse model [150], whose 
pathological consequences were recently shown to be ame-
liorated by genomic editing that reduced the level of Prog-
erin [151, 152]. At the gene-expression level as well as phe-
notypically, HGPS patients exhibit upregulation of NF-κB 
activity and elevated level of cytokines. HGPS patients par-
tially benefited from treatment with farnesylation inhibitors 
[17, 153, 154].

Biophysics of cell identity

Molecular mechanisms were described that regulate HC-
dependent silencing involved in the regulation of cell iden-
tity. Chromatin partitioning is, however, also determined by 
the self-assembly of proteins, the biophysical properties of 
macro-molecules, such as viscous chromatin, and the nucle-
oplasm environment. These forces determine intra-nuclear 
domains, nuclear bodies, and the segregation of chromatin 
loops, including euchromatin and HC. They govern gene 
regulatory regions, such as super-enhancers, and accessi-
bility of the transcriptional machinery and repressive com-
plexes [155–160]. For example, Hi-C studies, together with 
microscopy and polymer simulation, provided evidence for 
the self-organization of HC in both conventional somatic 
cells and in rod cells, in which the organization of HC is 
inverted [71].

At the heart of this “self-organization” phenomenon is a 
process termed phase-separation and formation of localized 
condensates [161]. One type of separation is liquid–liquid 
phase separation (LLPS), which generates liquid droplets 
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that are formed when a homogeneous solution de-mixes into 
separate phases, generating membranelles, which are orga-
nelle-like regions that sequester and concentrate proteins and 
nucleic acids. In many cases, LLPS is initiated by the focal 
concentration of proteins containing intrinsically disordered 
regions (IDR), [162, 163]. In this regard, and highly related 
to cell identity, HP1 was demonstrated to mediate LLPS 
and HC [157, 164, 165], and reviewed in [166]. It appears 
that the N-terminal hinge domains of HP1A and HP1α har-
bor IDR regions, enabling LLPS and the formation of HP1 
droplets. Both studies suggest that the local binding of HP1 
molecules to H3k9me3, inoculates a seed that leads to drop-
let formation in a process that is still not fully understood. 
Moreover, the binding of the yeast ortholog of HP1, Swi6, 
to nucleosomes induces conformational changes, resulting 
in the formation of distorted nucleosomes with aberrant 
conformation, enhancing phase separation in these regions 
[166]. HP1 droplets tend to fuse, enabling the entry of nucle-
osomal DNA but not of the transcription factor TFIIB into 
these droplets, likely preventing active transcription over 
extensive genomic regions.

While the above explanations for the establishment and 
spreading of HP1-dependent HC are attractive, this view was 
recently challenged [167]. Erdel et al. found that HP1 only 
weakly forms liquid droplets in mouse fibroblasts. They sug-
gest an alternative view according to which HC compaction 
can switch between two binary states depending on the pres-
ence of a transcriptional activator, without involving HP1 
droplets and LLPS. Thus, these differences likely indicate 
that we are in the early days in which the biophysics and 
biology of HP1 meet.

Another recent example of LLPS-dependent transcrip-
tional repression involves the developmental co-repressor 
Groucho (Gro)/TLE 142 [168]. Gro in Drosophila and 
Ciona, and TLE/Grg1-4 in vertebrates, are co-repressors 
that interact with multiple transcription factors, includ-
ing Hey and other HES-related TFs. Gro/TLE regulates 
“transcriptional memory” cell fate and identity [169, 170]. 
Groucho/TLE proteins contain a large IDR region, and to 
impose repression, they oligomerize and generate a compact 
chromatin structure [171]. Treen et al. discovered that Gro 
generates a droplet-exclusion mechanism through its WD40 
domain and LLPS, establishing transcriptional repression 
during embryogenesis. These droplets are likely involved 
in the formation of compact chromatin and hinder access 
of transcriptional activating factors from gene regulatory 
regions. It is interesting to note that Gro-mediated repres-
sion is dependent and enhanced by its SUMOylation [172]. 

Thus, it would be interesting to investigate the contribution 
of SUMOylation to Gro-dependent LLPS.

Collectively, these pioneering studies suggest that, once 
determined by genetic factors, the biophysical properties 
of these proteins and the local nuclear environment self-
generate chromatin and nuclear compartmentalization that 
safeguard cell identity.

Future directions

As postulated by Blau and Baltimore [12], regulation of 
cell identity requires continuous supervision. The devel-
opment of powerful genomic and imaging techniques has 
enabled researchers to better understand the genomic and 
large-scale organization of chromatin and nuclear structure 
in 3D. Likewise, the roles of long non-coding RNA in gene 
regulation, chromatin organization, and cell identity are 
emerging [173]. Biophysical studies have highlighted the 
importance of the intrinsic properties of proteins, chroma-
tin, and the nucleoplasm in the formation of intranuclear 
compartments. The current challenge is to understand how 
these layers of regulation are interconnected and integrated 
into cell identity control. It is important to consider that 
regulation of cell identity is dynamic, as the differenti-
ated cells must adjust to their ever-changing environment. 
Thus, molecular sensors that can relay these changes to the 
nucleus and regulate the activity of identity supervisors 
likely exist and remain to be discovered. These sensors 
will likely include genes involved in post-transcriptional 
modifications. Indeed, lamins are subjected to posttran-
scriptional modifications, such as phosphorylation, ubiq-
uitination, and SUMOylation, which likely affect their 
function and stability [174]. In this regard, the power of 
genome editing and functional screens will help discover 
critical nodes of regulation.

Finally, observations that epigenomic aging pathways 
are conserved and that aging phenotypes can be suppressed 
by re-expression of identity supervisors, are promising 
[175–177]. Indeed, a recent study demonstrated that the 
mortality rates of HGPS patients decreased upon treatment 
with farnesylation inhibitors [178]. One can, therefore, 
envision that small molecules and drugs protecting the epi-
genome and nuclear organization will enable attenuation 
of aging, reduce aging-related diseases, and significantly 
improve quality of life in aging individuals [112, 179].
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Glossary

A and B compart-ments in the 
nucleus  On a large-scale, chromosomes, are spatially organized in the nucleus in relatively fixed chromosomal ter-

ritories. Within chromosomes, two domains can be observed: The A compartment, which is associated with 
“active” gene transcription, and the “inactive” B compartment. The separation to A and B compartment is based 
on Hi-C studies. Regions within each compartment self-associate and tend to have multiple contacts. These 
regions are multi-Mb size; the A compartment is rich in genes and CG, enriched by histone marks associated 
with gene activation, and tend to localize to the nucleus interior, while the B compartment tends to be poor in 
genes, rich in LADs, and localized to the nuclear periphery [180].

Chromosome capture 
analysis   Chromosome capture analysis (3-5C and Hi-C) comprises two techniques that enable to map organization of 

chromatin and interactions between genomic regions. They enable to measure interactions between linearly 
distant regions, offering a visualization of the 3D organization of the nucleus [181].

Euchromatin  A loose structure of chromatin that is more accessible, gene-rich, and active in transcription, and is located 
mostly in the nucleus interior.

Hetero chromatin  
(HC)  A compact and dense structure of chromatin that is less accessible for transcription, has lower activity, 

and is localized to the nuclear periphery.
cHC   Constitutive heterochromatin is a form of HC that is located mainly in centromeric and telomeric regions. It contains 

highly repetitive sequences and is transcriptionally inactive.
fHC  Facultative heterochromatin is a flexible form of HC that can be organized differently under specific cell 

conditions including development context.
srHC  A functional type of HC that is significantly enriched in H3K9me3 and is transcriptionally repressed. Its 

identity varies in different cell types.
LAD  Lamina associated domains are domains in which the nuclear lamina is associated with the chromatin. 

LADs are gene poor or harbor less-expressed genes.
cLAD  Constitutive LADs have a conserved genomic position from mouse to human in the different cell types.
fLAD  Facultative LADs are less compact LADs, richer in genes and are cell-type specific.
iLAD  Inter-LADs are regions between LADs that are highly transcribed and positioned away from the nuclear 

lamina.
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