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Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy 
treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting 
in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby 
lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-
treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and 
still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage 
the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflam-
mation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based 
gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the 
role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better 
understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would 
facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible 
roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
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Abbreviations
ATP	� Adenosine triphosphate
Cx	� Connexion
CVD	� Cardiovascular diseases
CL	� Cytoplasmic loop
CT	� C-terminal tail
COX-2	� Cyclooxygenase-2
DNA	� Deoxyribonucleic acid
DSB	� Double-strand breaks
eNOS	� Endothelial nitric oxide synthase
EL	� Extracellular loop
Gy	� Gray

IR	� Ionizing radiation
IP3	� Inositol triphosphate
IL	� Interleukin
JNK	� C-jun N-terminal kinase
kDa	� Kilo-Dalton
LDL	� Low-density lipoprotein
MAPK	� Mitogen-activated protein kinase
MCP-1	� Monocyte chemotactic protein-1
NF-κB	� Nuclear factor kappa-light-chain-enhancer of 

activated B cells
NO	� Nitric oxide
NT	� NH2 termini
RIBE	� Radiation-induced bystander effect
ROS	� Reactive oxygen species
RNS	� Reactive nitrogen species
SSB	� Single-strand break
TGF	� Transforming growth factor
TNF	� Tumor necrosis factor
TM	� Transmembrane domain
VCAM-1	� Vascular cell adhesion molecule 1
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Introduction

Cardiovascular disease (CVD) is the leading cause of mor-
bidity and mortality worldwide, with 31% of all global 
deaths in 2016, according to the World Health Organization 
(WHO). The most common causes of CVD morbidity and 
mortality are myocardial infarction, stroke, coronary artery 
disease, and congestive heart failure [1]. Atherosclerosis is 
considered the major underlying cause of CVD development 
[2]. The progression of atherosclerosis and the risk of CVD 
are influenced by the presence of a combination of risk fac-
tors, such as dietary factors, tobacco use, physical inactiv-
ity, hypertension, age, gender, hyperlipidemia, and genetic 
predisposition [3]. Growing evidence indicates that exposure 
to ionizing radiation (IR) is also associated with an increased 
risk of CVD [4–12].

The medical use of IR plays a key role in cancer treatment 
with about 50% of cancer patients receiving radiotherapy for 
curative and/or supportive therapy during the course of their 
treatment [13]. Incidental IR exposure to the heart and large 
arteries occurs during radiotherapy for thoracic malignan-
cies such as breast cancer, head and neck cancer, Hodgkin’s 
lymphoma, and esophageal cancer [14]. Large-scale epide-
miological studies have established a link between high and 
medium doses of IR exposure (> 0.5 Gy) and the risk for 
CVD [5, 9, 11, 15–17]. In addition, meta-analyses of epide-
miological studies, and other experimental studies suggest 
that even low radiation doses (< 0.5 Gy) can generate car-
diovascular morbidity [7, 9, 18–23].

Radiation treatment is known to cause cellular effects 
such as oxidative stress, DNA damage, cellular Ca2+ over-
load, apoptosis, premature cell senescence and promotes 
inflammation which may induce vascular endothelium dam-
age, an early marker for atherosclerosis [24–30] (reviewed in 
[31, 32]). Cellular and molecular changes induced by radia-
tion exposure occur not only in directly irradiated cells, but 
also in neighboring non-irradiated cells, a process known 
as the ’radiation-induced bystander effect’ (RIBE) [33, 34]. 
Transmembrane connexin (Cx) proteins are critical modula-
tors of this process by forming gap junction channels that 
provide intercellular communication routes between neigh-
boring cells, and hemichannels, that mediate paracrine com-
munication pathway. While understanding of the molecular 
mechanisms of IR-induced atherosclerosis has increased, 
the role of intercellular communication, particularly the role 
of endothelial Cxs and their channels, in the development 
of radiation-induced atherosclerosis is still poorly defined. 
Here, we review the role of intercellular communication in 
radiation-induced atherosclerosis, with the focus on radia-
tion-induced bystander response and a possible role of Cxs 
in radiation-induced atherosclerosis.

Intercellular communication 
in atherosclerosis development 
and the response to ionizing radiation 
exposure

Radiation‑induced bystander effect (RIBE)

Biological responses in non-irradiated cells are defined 
as non-targeted effects [35], which may include genomic 
instability, bystander effects, and abscopal effects [35–37]. 
Radiation-induced genomic instability can be observed as 
a delayed and stochastic appearance of de novo gene muta-
tions, chromosomal aberrations, and reproductive cell death 
in the progeny of irradiated cells [38]. Bystander effect per-
tains to cells adjacent to irradiated cells, while the abscopal 
effect may reach further tissues outside of the irradiated vol-
ume, and it relies more on clinical observations in patients 
receiving radiotherapy [35, 39].

RIBE: experimental data

In vitro studies  Traditionally, it was accepted that expo-
sure to IR only affected directly irradiated cells. However, 
in 1992, Nagasawa et  al. reported that irradiating 1% of 
Chinese hamster ovary cells with α-particles led to genetic 
damage in more than 30% of cells [40]. This observation 
was later confirmed by others in human fibroblast cells [41]. 
This means that non-irradiated cells exhibit effects as a result 
of signals received from adjacent irradiated cells, a process 
known as radiation-induced bystander effect (RIBE) [34, 
42]. Since then, RIBE has been observed in several in vitro 
studies for different biological endpoints such as cell death, 
apoptosis, senescence, DNA damage, gene mutations, chro-
mosomal aberrations, genomic instability, cell differentia-
tion, cell cycle distribution, and gene expression (reviewed 
in [43, 44], and [45]). Bystander effects have mainly been 
studied in  vitro using various techniques (medium trans-
fer, co-culture method and microbeam irradiation which 
provided clear evidence of RIBE) [43, 46, 47], distinct cell 
types (normal and cancerous cells) [41, 48, 49], and differ-
ent culture systems (two and three-dimensional models) 
[49, 50]. RIBE has been reported to be induced both by 
high-LET irradiation [47, 51–53], as well as low-LET irra-
diation after high doses (> 2 Gy) [54–56], medium and low 
doses of exposure (> 2 Gy) [57–59], utilizing a variety of 
dose rates [60]. These studies showed that RIBE depends on 
radiation quality, radiation dose, and dose rate used. RIBE 
was also reported in response to fractionated irradiation 
exposure commonly used in radiotherapy, which appears to 
be dependent on cell type, dose/dose rate, and the interval 
between fractions [61, 62].
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High- and low-LET radiation experimental in vitro evi-
dence overall indicates that the classic bystander effect is 
detrimental for the cells [38, 51, 63–65]. However, non-
classic bystander effects have also been described, reporting 
increased survival of bystander cells after high dose irradia-
tion [66]. Moreover, the so-called radiation-induced adap-
tive response, which is the acquisition of radiation resistance 
induced by priming the cells with low dose irradiation [66, 
67] [68, 69], will also act to dampen the bystander effect.

In the context of radiation-induced atherosclerosis, an 
in vitro study was performed to investigate the crosstalk 
between irradiated macrophages and human umbilical vein 
endothelial cells. In this study, 3 Gy γ-irradiated macrophage 
cells were reported to trigger apoptosis and inflammatory 
responses in bystander endothelial cells via a p38-dependent 
pathway [70]. This involved VCAM-1, a pro-inflammatory 
molecule that enhances monocyte–endothelial adhesion and 
is a key event in initiating atherosclerosis [71], and MMP-9 
that plays an important role in endothelial dysfunction by 
triggering apoptosis and inflammation [70, 72].

Animal studies  Next to the extensive set of in  vitro 
bystander studies, several in  vivo animal studies reported 
RIBE using distinct radiation qualities, radiation doses and 
dose rates, where oxidative stress, apoptosis, DNA dam-
age, and genetic/epigenetic dysregulations were observed 
in bystander-shielded organs such as spleen and lung [44, 
73–76]. These studies indicated that oxidative stress plays 
an important role in RIBE in vivo since (pre)treatment of 
animals with antioxidants significantly reduced DNA dam-
age in shielded regions [75, 76]. Moreover, bystander effects 
in animals were shown to follow a distinct time scale with 
consequences persisting for several months after radiation 
exposure [77]. Camphausen et al. suggested that in  vivo 
bystander responses may result in an anti-tumor effect. 
They observed that fractionated γ-irradiation of mouse legs, 
5 × 10 Gy fractions, and 12 × 2 Gy fractions, slowed down 
tumor growth in the midline dorsum in a dose-dependent 
manner, an effect that was mediated by p53 [78]. Mancuso 
et al. provided proof-of-principle and mechanistic evidence 
for RIBE involvement in vivo [79, 80]. They reported tumor 
induction in bystander-shielded cerebellum of Patched 
homolog-1 heterozygous radiosensitive mice after X-ray 
exposure of the lower part of the body. It was furthermore 
demonstrated that gap junction intercellular communica-
tion, together with ATP release and connexin 43 upregula-
tion, were involved in transmission of oncogenic bystander 
signals to the central nervous system.

In humans  Clinically, it is well known that local radio-
therapy for different types of cancer may induce distant 
effects known as “abscopal effects” [42, 81, 82]. The first 
study (1954) that suggested non-targeted abscopal effects, 

reported a decrease in the bone marrow cellularity of chil-
dren that received X-irradiation to their spleen for chronic 
granulocytic leukemia treatment [83]. Since then, several 
studies reported abscopal effects in cases where radio-
therapy was combined with immune checkpoint inhibitors 
or immunotherapeutic agents that enhance the immune 
response in general [84–86]. Abscopal effects may in prin-
ciple be clinically useful to extend the radiation effects to 
tumor cells outside the radiation field [81] but they may as 
well be harmful when reaching distant healthy cells and tis-
sues [5], effectively restricting their application.

The occurrence of secondary cancers in patients treated 
with radiotherapy, e.g. the development of lung, sarcoma 
and melanoma cancers after prostate cancer radiotherapy 
[87, 88], is well established. Another example is the high 
incidence of secondary lung cancer in ovarian, rectal, and 
cervical cancer patients treated with radiotherapy [89, 90]. In 
addition, as previously stated, several studies have reported 
an increased risk for non-cancerous diseases such as CVD 
in radiotherapy-treated patients [18]. Due to individualized 
dose calculation advancements and the prescribed targeted 
technical approaches in radiotherapy, it is speculated that 
scattered radiation cannot be the sole trigger explaining the 
high incidence of secondary cancer as well as non-cancer 
side effects after radiotherapy. RIBE is postulated to play 
a role in the development of these post-radiotherapy side 
effects [91, 92].

RIBE: underlying molecular mechanisms and the possible 
link to atherosclerosis

Although RIBE has improved our understanding of the non-
targeted effects after radiotherapy, its molecular mechanisms 
are complex and not fully understood. Two main routes were 
reported to underly bystander signals: (i) direct cell-to-cell 
communication, often mediated by gap junctions and (ii) 
paracrine release of soluble messengers/factors from directly 
irradiated cells to the extracellular environment [93, 94]. 
Paracrine release can be mediated by vesicular release mech-
anisms in general, exosome release in particular, and by the 
opening of large pore channels such as connexin hemichan-
nels [95, 96]. Given the prominent role of ATP release in 
bystander signaling, paracrine purinergic communication 
through P2X and P2Y receptor families may take a central 
stage [97–99].

The bystander effect induced by IR involves diverse 
signaling molecules. Oxidative stress molecules, including 
reactive oxygen and nitrogen species are the main culprits 
in activating DNA damage and apoptosis in bystander cells 
[100, 101]. Oxidative stress also plays a crucial role in the 
pathophysiology of atherosclerosis, since it is associated 
with activation of inflammatory and apoptotic pathways 
that contribute to endothelial cell injury (Fig. 1) [102, 103]. 
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In addition to oxidative stress, IR also triggers the release 
of various cytokines (e.g. TNF-α, TGF-β, IL-1, IL-2, IL-6, 
and IL-8) largely—but not exclusively—derived from non-
irradiated lymphocytes and macrophages [33, 34, 104, 
105]. It is well recognized that atherosclerosis is a chronic 
inflammatory disease, and elevation of these cytokines in 
non-irradiated bystander cells may impact the time course 
of atherosclerotic alterations (Fig. 1) [71]. Therefore, irradi-
ated cancer cells as well as endothelial cells during thoracic 
radiotherapy, may induce oxidative stress and inflammation 
in non-irradiated endothelial cells in the cardiovascular sys-
tem and lead to endothelial injury, which may set the path 
for atherosclerotic development.

Besides ROS and inflammation, there is substantial evi-
dence that NF-kb and MAPK signaling pathways, as well 
as signaling by intracellular calcium ions (Ca2+), cycloox-
ygenase-2 (COX-2), extracellular ATP, nitric oxide (NO) 
and p53 protein are involved in bystander effects in non-
targeted cells after radiation exposure [33, 63, 106–110]. 
Epigenetic modulation was also reported to play a role in 
bystander responses, since changes in DNA methylation and 

in miRNAs expression have been observed in non-irradiated 
tissues [77, 111, 112]. In addition, cellular senescence has 
been proposed to contribute to RIBE, since senescent cells 
express a particular senescence-associated secretory phe-
notype that, together with ROS, may activate NF-kb lead-
ing to a DNA damage response, mitochondrial dysfunc-
tion, and inflammation in bystander cells [113–115]. RIBE 
can also be mediated by the cysteine protease cathepsin B, 
based on observations in C. Elegans, which is regulated by 
a p53 homologue and acts through insulin-like growth factor 
receptor signaling resulting in inhibition of cell death and 
increased embryonic lethality [116].

Several in vitro and in vivo studies have indicated a role 
for p53 protein, NF-kb, and MAPK signaling cascades in the 
pathogenesis of atherosclerosis (Fig. 1). It was reported that 
activation of MAPK and NF-kb signaling mediates crucial 
mechanisms involved in the pathogenesis of atherosclerosis 
such as endothelial cell activation, inflammation, intimal 
smooth muscle cell proliferation, and T-lymphocyte dif-
ferentiation [117–121]. It was also reported that foam cell 
formation in the atherosclerotic lesion depends on JNK2 

Fig.1   Molecular mechanisms 
responsible for radiation-
induced endothelial cell damage 
and the development of athero-
sclerosis
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and p38α MAPK activation [122, 123]. Additionally, it was 
observed that endothelial-specific NF-kb inhibition pro-
tected mice from atherosclerosis development by reducing 
the expression of vascular adhesion molecules, cytokines 
and chemokines and preventing macrophage recruitment to 
atherosclerotic plaques, hence strongly reducing atheroscle-
rotic plaque formation [121]. Activation of p53, in response 
to oxidative stress and DNA damage, was also reported 
to induce apoptosis and premature senescence in vascular 
endothelial and smooth muscle cells [124, 125]. Moreover, 
activation of the NF-κb pathway and sustained inflamma-
tion has been illustrated in irradiated arteries of patients that 
were treated with radiotherapy [126].

As such, a possible explanation of the cardiovascular 
effects after thoracic radiotherapy is through the radiation 
doses received in the heart region, which is estimated to be 
in the order of 1–20 Gy [5, 18, 127–131]. These doses may 
damage the endothelium directly to initiate the atheroscle-
rosis process, which may expand via bystander signaling to 
non-irradiated endothelial cells [55] (Fig. 2).

Irradiated cancer or endothelial cells during thoracic 
radiotherapy may produce bystander responses to non-irradi-
ated endothelial cells in the cardiovascular system via three 
main routes: (i) by direct cell-to-cell communication via 
Cx-based gap junctions, (ii) by paracrine release of soluble 
factors (e.g. ATP, released via vesicular mechanisms or Cx 
hemichannels) to the extracellular environment and (iii) by 
exosomes, which may use Cxs to interact with their targets 
[132]. Not all the cells are affected by bystander signaling 
(fade pink cell). Macrophages may be important mediators 
in the bystander response, by regulating cytokine release to 
bystander cells. Reactive oxygen and nitrogen species (ROS/

RNS), signaling cyclooxygenase-2 (COX-2) together with 
signal transduction through p53, MAPKs and NF-κb may be 
involved in bystander responses in non-targeted endothelial 
cells after radiation exposure. Eventually, these signaling 
molecules may participate in endothelial cell dysfunction by 
triggering DNA damage, apoptosis, senescence, mitochon-
drial dysfunction and inflammation.

Intercellular communication and the role 
of connexins in atherosclerosis

Connexins and their channels

As delineated before, gap junctions and hemichannels play 
an important role in communicating bystander signals. Both 
gap junctions and hemichannels are composed of a trans-
membrane protein called connexin (Cx) (Fig. 3). There are 
21 human Cx isoforms (20 in the murine genome), which 
exist in either phosphorylated or non-phosphorylated forms. 
The nomenclature of Cx is based on their molecular weight, 
which ranges from 25 to 62 kDa [34]. Each Cx protein 
consists of four transmembrane domains (TM1-4). These 
domains are connected by two extracellular loops (EL) that 
regulate docking processes and cell–cell recognition. The 
proteins have a cytoplasmic carboxy-terminal tail (CT), 
amino-terminal tail (NT), and a short cytoplasmic loop 
(CL) linking TM2 and TM3. Six Cx proteins oligomerize 
to form a hemichannel; two opposed hemichannels from 
adjacent cells form a gap junction channel by the interac-
tion of conserved domains on the extracellular loops of 
hemichannels [133]. The life cycle of Cxs is characterized 
by various steps, including Cx trafficking to the cell surface, 

Fig. 2   Pathways of radiation-induced signaling potentially leading to bystander endothelial dysfunction
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hemichannel formation, gap junction assembly, gap junction 
plaque formation, and closure of the cycle by gap junction 
disassembly through internalization and degradation (Fig. 3) 
[134]. Cxs are expressed in a tissue- and cell-specific man-
ner, with Cx43 being the most abundant and widespread 
isotype in mammals. Cx43 is also a major isotype in the car-
diovascular system and is especially abundant in ventricular 
cardiomyocytes [135, 136]. Apart from the cardiovascular 
system, Cx43 has also major functions in brain astrocytes 
and vascular endothelial cells, the kidneys and the reproduc-
tive organs [137].

The physiological role of Cxs has been demonstrated by 
gene knockout studies and human diseases associated with 
Cx mutations. For instance, Cx43-knockout mice die at birth 
due to cardiac malformation, illustrating the crucial role of 
this specific isotype in development [138]. Moreover, Cx43 
deletion in mice has a major impact on the gene network 
and dysregulates genes involved in the differentiation and 
function of vascular cells and in vasculogenetic/angioge-
netic signaling pathways, therefore interfering with normal 
development of coronary arteries [139, 140]. The deletion 
of one allele of Cx43 in Cx40-knockout mice exhibited car-
diac malformations and led to neonatal death [141]. The 
simultaneous ablation of Cx37 and Cx40 caused vascular 
abnormalities in intestine, skin, stomach, lung, and testis 
[142]. Polymorphisms of Cx37 were reported to be associ-
ated with coronary artery disease, including atherosclerosis, 
and myocardial infarction [143–145]. These observations 
highlight the role of Cxs in the development of the vascula-
ture and for maintaining vascular homeostasis.

Next to the physiological role of Cx proteins, cell–cell 
communication via gap junctions and hemichannels may 
become disturbed as cause or consequence under pathologi-
cal conditions [34]. Gap junctions permit passive diffusion 
of atomic ions (e.g. Ca2+, Na+, Cl− and K+) and of small 
(molecular weight below ~ 1.5 kDa) hydrophilic molecules 
(e.g. ATP, glucose, glutamate, IP3 and glucose) and other 
second messenger molecules between adjacent cells [146]. 

Gap junctions are usually open to promote crosstalk between 
the cells and to facilitate the propagation of chemical and 
electrical signals between the cytoplasm of neighboring 
cells, thereby serving as a key mechanism in the synchro-
nization of physiological signals [146–148]. In the heart, 
gap junction channels facilitate action potential conduction 
along conductive tissues as well as between cardiomyocytes, 
and synchronize the atrioventricular contraction cycle [148, 
149]. In the vascular wall, gap junctions in endothelial cells, 
smooth muscle cells and between these cells facilitate elec-
trical and chemical signaling, thereby coordinating vasoac-
tive responses [148–150].

Unlike gap junctions, plasma membrane hemichannels 
may facilitate cell–cell communication via paracrine sign-
aling. Hemichannels normally remain closed to prevent 
leakage of substances that could deplete the cell from cru-
cial metabolites or harm neighboring cells [151]. Opening 
of hemichannels has been demonstrated to play a role in 
physiology, e.g. in bone where they promote periosteal 
remodeling processes [152] (reviewed in [153]), or in brain 
where they may contribute to gliotransmitter release, either 
as channel facilitating gliotransmitter passage, or as a chan-
nel that allows (non-selective) Ca2+ entry triggering release 
through other pathways [154]. However, most of the evi-
dence currently available links hemichannel opening to 
pathological conditions [135, 138, 155–159]. Hemichannels 
can open in response to several signals, including membrane 
potential changes, intracellular Ca2+ elevation, mechanical 
stimulation and stress-associated stimuli such as oxidative 
stress, ischemic or pro-inflammatory conditions and radia-
tion exposure [95, 155, 160–164]. Once hemichannels are 
open, evidence from various experimental approaches indi-
cates they facilitate the passage and loss of intracellular 
prostaglandin E2, NAD+, IP3, glutathione, ATP and K+, and 
the entry of Ca2+ and Na+ [151, 155, 160–162, 165]. This 
may lead to downstream responses including NO produc-
tion, cell proliferation, cell death, NLRP3 inflammasome 
pathway, and inflammation [34, 95, 134, 166–172]. Some 

Fig. 3   Molecular architecture 
of Cxs, hemichannels, and gap 
junctions. Cx proteins consist 
of four TMs, two ELs, one CL 
and a cytoplasmic NT and CT. 
Gap junctions are composed of 
12 Cx proteins, organized as 
two hexameric hemichannels of 
two apposed cells. Cx connexin, 
TM transmembrane domain, EL 
extracellular loop, CL cytoplas-
mic loop, NT NH2 terminus, CT 
COOH terminus [133]
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of the released messengers, e.g. ATP, may function as a par-
acrine messenger of bystander signaling thereby expanding 
radiation-induced biological effects [34, 55, 167]. In addi-
tion, open hemichannels may allow direct passage of ROS 
because of the small size (< 1000 Da) of most oxidative 
stress-inducing molecules and can cause cellular injury or 
death [160]. Increased hemichannel opening activity was 
observed in several inflammatory diseases and blocking 
these channels inhibited the inflammation [171, 173–177]. 
In addition, specific blocking of hemichannels was suggested 
to improve gingival wound healing [178], decrease amounts 
of liver lipids and inflammatory markers in non-alcoholic 
steatohepatitis in mice [179], reduce cardiac arrhythmogen-
esis in Duchenne muscular dystrophy mice [180, 181] and in 
MYL-4-related atrial cardiomyopathy and fibrillation [180, 
182–184], reduce dopamine neuron loss and microglial acti-
vation [185], provide neuroprotection in stroke [186], and 
protect against seizures in rodents [187].

Connexins and atherosclerosis

The endothelial cells of the vascular system’s major arteries 
express three prominent Cx isotypes, namely Cx37, Cx40 
and Cx43, with Cx43 being the most abundant isoform. 
In addition, Cx45 is expressed in the endothelium of the 
large arteries only. The smooth muscle cells that surround 
the vascular endothelial cells present mainly Cx43, Cx40 
and Cx45. Five different Cx isotypes (Cx31.9, Cx37, Cx40, 
Cx43, and Cx45) are expressed in the heart, with Cx43 being 
the predominant connexin in ventricular myocardium. The 
turnover of these Cx proteins is very fast with a half-life 
ranging from one to five hours. Consequently, Cx proteins 
can quickly respond to several conditions due to the plastic-
ity of their expression and the fast dynamics of the formed 
hemichannels and gap junctions [188]. Therefore, changes 
in Cx expression may directly be translated to changes in 
bystander response (Fig. 2).

Proatherogenic Cxs  There is growing evidence that Cx pro-
teins play an important role in atherosclerosis development. 
Cx43 is normally absent in the aortic endothelium of healthy 
individuals; however, it can be detected at the plaque shoul-
der region, which is located close to areas of plaque necrosis, 
a region known to be prone to plaque rupture, and at branch-
ing sites of the arterial tree, which are highly susceptible to 
atherosclerosis development [189, 190]. High Cx43 expres-
sion was reported at regions of disturbed blood flow in rat 
aortic endothelial cells, and increased Cx43 expression was 
also observed in various in vivo studies using a model that 
simulates human arterial shear stress [191–194]. It is known 
that a hemodynamic-shear stress environment plays a criti-
cal role in atherogenesis by promoting a pro-inflammatory 
phenotype in the endothelium [195]. Upregulated Cx43 gap 

junctions between intimal smooth muscle cells were also 
reported in human coronary artery specimens at regions of 
intimal thickening and early atheromatous lesions compared 
to healthy vessels [196]. It has been reported that endothelial 
Cx43 expression regulates monocyte‑endothelial adhesion, 
which is a crucial initiator of atherosclerosis development, 
as increased Cx43 expression enhanced the expression 
level of cell adhesion proteins, including VCAM-1 [197]. 
Decreased Cx43 expression was reported to reduce ather-
osclerotic lesion formation as well, and to reduce inflam-
mation in low-density lipoprotein receptor-deficient mice, 
hence to reduce atherosclerosis progression by half [198, 
199]. Collectively, these observations suggest that Cx43 is 
a proatherogenic protein that may stimulate atherosclerosis 
development.

Next to the alterations in Cx43 expression and gap junc-
tion function during atherosclerosis development, dysfunc-
tional hemichannels have also been suggested to take part 
in the process. Cx43 hemichannel activity was significantly 
increased in endothelial cells exposed to pro-inflammatory 
conditions (IL-1β/TNF-α) and high glucose levels, known 
to cause vascular dysfunction, leading to increased ATP-
dependent Ca2+ dynamics [200]. In this study, they showed 
that inhibiting Cx43 hemichannels prevented endothelial 
ATP release [200] which induces vascular inflammation 
and atherosclerosis in mice via the activation of purinergic 
Receptor Y2 [201].

Atheroprotective Cxs  In contrast to Cx43, Cx37 and Cx40 
proteins play an atheroprotective role. Endothelial Cx37 and 
Cx40 are almost absent in advanced atherosclerotic plaques 
while present in healthy arteries [190, 202, 203]. Besides, 
it has been reported that Cx40-deficient mice, with a coin-
cident reduction in Cx37, are associated with lower eNOS 
expression levels in the aortic endothelium, leading to a 
reduced NO release and smaller endothelium-dependent 
relaxations of the aorta [204]. Therefore, decreased NO bio-
availability has been linked to an increased susceptibility to 
atherosclerosis [205]. In another study, it was observed that 
ApoE-/-mice lacking Cx37 gene (GJA4) developed more 
aortic lesions than ApoE-/-mice that express Cx37 at nor-
mal levels [206]. In  vivo and in  vitro approaches showed 
increased recruitment of monocytes and macrophages to 
the atherosclerotic lesions and increased leucocyte trans-
migration. Therefore, they suggested that Cx37 may inhibit 
atherosclerosis development by tempering leukocyte adhe-
sion [206]. Additionally, a downregulated endothelial Cx37 
was observed in response to shear stress, which is known to 
induce endothelial dysfunction [207]. A recent study dem-
onstrated decreased Cx37 expression in response to oxidized 
LDL, a major component of hyperlipidemia and contributor 
to endothelial injury, in the human monocyte cell line THP-
1, which was associated with increased monocyte–endothe-
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lial adhesion, thus potentially promoting atherosclerosis 
development [208].

Related to Cx40, it was observed that endothelial-spe-
cific deletion of Cx40 increased CD73-dependent leuko-
cyte–endothelium adhesion, thereby potentially promoting 
the atherosclerotic process [209]. This study further reported 
that Cx40-mediated gap junctional communication between 
endothelial cells generated anti-inflammatory signals that 
may contribute to a quiescent non-activated endothelium, 
thus protecting against atherosclerosis. A recent study 
reported lowered Cx40 expression in mice carotid arter-
ies under oscillatory shear stress, which was associated 
with NF-kB activation [210]. They further revealed a novel 
function of IkBɑ-Cx40 interaction involved in controlling 
NF-kB-mediated endothelial cell activation by shear stress 
in atherogenesis.

Despite these interesting observations discussed above, 
the relation between altered Cx expression and the athero-
sclerotic process is not entirely clear yet, especially with 
respect to the question whether Cxs are causally or conse-
quentially linked to the atherosclerotic process. For instance, 
a study reported that TGF-β, a major inflammatory compo-
nent in the atherosclerotic process, induced upregulation of 
Cx43 in endothelial cells [211]. In addition, it was found that 
the atherosclerosis-associated inflammatory markers, TNF-ɑ 
and INF-γ, increased Cx43 expression in monocytes [212]. 
TNF-ɑ treatment also increased Cx43 at the mRNA level, 
while it reduced Cx37 and Cx40 mRNA in human umbili-
cal vein endothelial cells (HUVEC) [213]. In line with this, 
endothelial Cx40 deletion in mice induced spontaneous ath-
erosclerotic plaques in the aortic sinus, without introducing 
a high-cholesterol diet [209], which support the important 
role of Cx proteins in initiating the atherosclerotic process.

Response of connexins and their channels 
to ionizing radiation exposure

Cx expression and channel activity have been shown to rap-
idly change upon intra- and extracellular modifications or 
in response to stimuli, including ionizing radiation, thereby 
changing the extent of intercellular communication [188, 
214–218]. Alterations in Cx43 expression were reported in 
response to low or high doses of IR, and high-LET as well 
as low-LET radiation exposure. For instance, upregulated 
Cx43 expression was reported after exposure to 10 mGy 
of α-particles as well as 4 Gy of γ-rays in normal human 
skin fibroblasts, mouse embryo fibroblasts, and rat liver 
epithelial cells, which was associated with a correspond-
ing increase in gap-junctional intercellular communication 
[219]. Upregulation of Cx43 was also observed upon in vivo 
exposure of cardiac myocytes to heavy-ion irradiation 
[220–222]. Gamma-ray radiation was furthermore found to 
induce Cx43 upregulation in mouse skin [223] and human 

neonatal foreskin fibroblasts irradiated with single low doses 
of IR [216]. Similarly, X-rays (5 Gy) increased Cx43 gene 
expression and protein level in the bEnd3 endothelial cell 
line derived from mouse brain capillaries. However, umbil-
ical vein hybrid endothelial cells (EA.hy926) responded 
oppositely, displaying transient Cx43 downregulation after 
5 Gy X-ray exposure, suggesting that Cx43 modulation in 
response to radiation exposure may be cell-line dependent 
[224]. A recent study also observed that low doses of γ-rays 
(10–20 cGy) enhanced Cx43 expression and gap-junctional 
coupling in U87 glioma cells, and induced Cx43 overexpres-
sion in tumor cells of varying origin [215]. Interestingly, 
B16-melanoma cells showed Cx43 hemichannel opening in 
response to 0.5 Gy γ-rays, as concluded from ATP release 
measurements [95]. The mechanisms responsible for Cx43 
alteration in response to IR are not known yet; post-irra-
diation oxidative stress has been proposed [219], and the 
nuclear factor of activated T cells (NFAT) together with 
activator protein (AP1) transcription factors were shown to 
be responsible for the major activation of the Cx43 promoter 
in response to gamma irradiation [216].

Although there is growing evidence indicating the sen-
sitivity of Cx43 in response to radiation exposure, there is 
lack of data regarding Cx modulation in endothelial cells, 
the primary target site for atherosclerosis development, in 
response to IR exposure. Moreover, knowledge on radi-
ation-induced alterations in endothelial Cx37 and Cx40 
is very limited. We found that exposure of immortalized 
coronary artery and microvascular endothelial cells to 
low and high doses of X-rays, delivered as a single or 
fractionated dose, dose-dependently decreased atheropro-
tective Cx37 and Cx40, while increasing proatherogenic 
Cx43, over a 14 day observation period (Fig. 4). Single 
and fractionated irradiations were also shown to induce 
an increase in gene expression and protein levels of the 
proatherogenic Cx43 in both coronary artery and micro-
vascular endothelial cells, which was persistent until 
14 days after exposure [164]. Similar alterations in Cx 
expression levels have been reported in the literature in 
endothelial cells covering atherosclerotic plaques [134, 
189, 190, 202]. Thus, Cx alterations observed in our study 
may promote susceptibility to atherosclerosis after IR 
exposure. Next to Cx alterations, single and fractionated 
exposures increased gap junctional communication and 
induced acute and long-lived Cx43 hemichannel opening 
persisting over 72 h after IR in coronary artery and micro-
vascular endothelial cells [164]. As delineated before, 
excessive hemichannel opening is considered a patho-
logical condition, since it results in loss of cell-essential 
metabolites and ATP leakage that act in a paracrine man-
ner on surrounding cells. In turn these messengers, with 
ATP as the principle actor, can activate downstream cel-
lular processes including propagating intercellular Ca2+ 
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waves, oxidative stress responses, apoptosis, NLRP3 
inflammasome pathway activation and inflammation 
(50–52), which are to known to be involved in the patho-
genesis of radiation-induced atherosclerosis. Moreover, 
radiation-induced increased endothelial gap-junctional 
coupling and hemichannel function may spread radia-
tion damaging responses to neighboring cells, possibly 
amplifying endothelial cell damage (Fig. 2) [46, 55, 166, 
214, 219, 225–227]. Together, these findings suggest a 
possible mechanism of radiation-induced atherosclero-
sis (Fig. 4), which may guide us in further improving 
our understanding of Cx proteins as a potential target to 
prevent radiation-induced cardiovascular complications. 
Interestingly, we found that the Cx43 hemichannel-inhib-
iting peptide TAT-Gap19 mitigated radiation-induced 
endothelial cell damage by reducing oxidative stress, 
cell death, premature cell senescence and pro-inflamma-
tory and pathological factors like IL-1β, IL-8, VCAM-1, 
MCP-1 and endothelin-1 in immortalized coronary artery 
and microvascular endothelial cells [228]. Therefore, tar-
geting Cx43 hemichannels may hold potential to protect 
against radiation-induced endothelial cell damage.

Conclusion

Growing evidence indicates an excess risk of radiation-
related side effects such as late occurring cardiovascular 
diseases, especially atherosclerosis. However, the exact 
pathophysiological mechanisms underlying radiation-
induced atherosclerosis are not completely understood, 
possibly resulting in improper radiation protection. Ioniz-
ing radiation induces cellular effects such as DNA damage, 
oxidative stress, inflammation, apoptosis, and premature 
cell senescence which may induce endothelial cell dys-
function, a primary marker for atherosclerosis. Intercel-
lular communication through gap junctions and hemichan-
nels, which propagate radiation-induced bystander effects, 
may modulate the endothelial response to ionizing radia-
tion, and therefore the atherosclerotic process. Although 
Cxs were shown to be altered by radiation exposure and 
to play a role in atherosclerotic development, current evi-
dence linking the two processes is still lacking. More stud-
ies are needed to clarify the role of Cxs and their channels 
in radiation-induced atherosclerosis, possibly leading to 
new opportunities for targeting connexins and its channels.

Fig. 4   Summary scheme of 
X-ray effects on endothelial 
connexins (Cxs) and their chan-
nels [164]
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