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Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates 
and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper 
arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce 
a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult 
nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise 
from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, 
using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining dif-
ferent reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the 
availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage 
tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and 
the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future 
perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
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Introduction

One fundamental issue in Neuroscience is how the different 
lineages in the brain are established and what contributions 
sibling cells make to the nervous system and how they influ-
ence its behavior. The current belief is that there is large cell 
heterogeneity in the adult brain, raising the question as to 
how these different cell types are generated during devel-
opment. However, a fundamental question is whether this 
heterogeneity is ontogenically determined and if so, what are 
the physiological implications of this? Thus, lineage tracing 
has developed from the need to pursue all the progeny of 
specific neural progenitor cells (NPCs) to determine how 
complete neural networks are built and the contribution of 
specific progenitors to these networks.

Neural stem cells potential and heterogeneity

Neural stem cells (NSCs) are cells that self-renew and that 
can produce all the lineages present in the adult brain [1]. 
Thus, the cell diversity in the brain emerges as the progeny 
of NSCs progress into lineage-restricted NPCs, more com-
mitted cell populations with a more limited differentiation 
and proliferation potential [2]. The transition to a specific 
lineage and the consequent loss of potential takes place 
through symmetric or asymmetric cell divisions. Symmet-
ric divisions amplify the pool of progenitors, generating two 
identical siblings, whereas asymmetric divisions generate 
two different daughter cells one of which at least will be 
more committed to a certain lineage (Fig. 1a).

At early embryonic stages, the principal neural lineages 
are specified in the neural plate, a defined region of the ecto-
derm. In parallel, cells of other origins colonize the prospec-
tive brain, such as microglia (mesoderm) and blood vessel 
cells (endoderm). Initially, NSCs known as neuroepithelial 
cells (NECs) undergo symmetric cell divisions to amplify 
their pool and prior to generating bipolar radial glial cells 
(RGCs) [3]. These RGCs produce all the major cell types 
in the brain and they are often considered the NSCs of the 
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developing brain [4]. RGCs can either proliferate symmetri-
cally to maintain their pool or asymmetrically to generate 
intermediate progenitor cells (IPCs). RGCs or IPCs will then 
divide to generate neuroblasts, post-mitotic cells that are 
committed to generate mature neurons, or glial cells such as 
oligodendrocytes, astrocytes or NG2 cells [5]. RGCs form a 
complex cell population that displays region-specific gene 
expression in the developing nervous system [6]. NSCs are 
mainly located in the sub-ventricular zone (SVZ), a neu-
rogenic niche that covers different microdomains of the 
ventricular embryonic walls comprising the pallium, sub-
pallium and septum [7]. The neurogenic niche is considered 
as a heterogeneous pool of cells, with multiple progenitor 
types displaying either stem cell attributes or more restricted 
fates [8]. For example, multipotent NSCs that are capable of 
giving rise to all brain lineages may exist alongside tri- or 
bi-potent progenitors that have a more restricted potential 
[9–11]. NPCs that will contribute only one neural cell type 
could also be present in these neurogenic niches [12, 13] 
(Fig. 1b). In the brain, cell specification commences with 
neurogenesis, whereby neuroblasts give rise to the new 

neurons. Thereafter, astrogenesis occurs and ultimately, 
oligodendrogenesis commences that continues throughout 
perinatal stages [14]. This progression is regulated by intrin-
sic changes in gene expression but also, it is determined by 
interactions with environmental and developmental cues. 
Furthermore, the switch from neurogenesis to gliogenesis 
is driven by competition between downstream transcrip-
tion factors and growth factor signaling [15, 16]. Different 
patterning genes are responsible for boundary formation, 
events that can determine the identity and fate of the NPCs 
in diverse domains along the lining of the ventricular sur-
face [3].

New approaches in single-cell transcriptome technol-
ogy have provided novel data regarding cell heterogeneity, 
addressing the varied gene expression in different brain 
populations. Specifically, a compilation of molecular mark-
ers has been described in the neurogenic niche, expressed in 
either active or quiescent NPCs under physiological condi-
tions and after brain insult [17–19]. In these studies, cells 
from the SVZ have been identified based on the expres-
sion of particular antigenic markers. Thus, the identity and 

Fig. 1  a Lineage specification of stem cells throughout development 
occurs through symmetric and asymmetric divisions. b Scheme of the 
different progenitor potentials of the neuroepithelial cells (NECs) that 
may coexist in the developing brain. Committed progenitor cells can 
only give rise to one neural cell type, whereas multipotent progenitors 
can contribute to all lineages. c Graphical representation of the dif-
ferentiation of NECs to neuroblasts. The gradual maturation of these 
cells is reflected in the morphological and molecular changes accom-
panying their lineage transitions. d Scheme of the prospective (pink) 

and retrospective (blue) reconstruction lineage approaches. Prospec-
tive lineage tracing targets specific progenitors to trace their progeny, 
whereas retrospective analyses reconstruct the lineage tree from the 
descendants to the progenitor. e Lumping errors are the result of con-
sidering non-clonally related cells as part of the same clone, whereas 
splitting errors take place when sibling cells are considered as inde-
pendent clones due to methodological shortcomings. NEC neuroepi-
thelial cell, NSC neural stem cell, NPC neural progenitor cell
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dynamics of NPCs have been assessed by considering the 
whole population of ventricular progenitors that express a 
specific combination of different markers. However, cells 
expressing selected markers but that are isolated from dif-
ferent areas display distinct self-renewal and differentiation 
capacities, and they have a distinctive gene expression profile 
[20]. Thus, no single molecular marker can unambiguously 
define separate populations. Lineage transition between 
NPCs and their progeny is achieved by gradual cell matura-
tion, and thus, the expression of the same molecular markers 
in diverse cell types may overlap at distinct moments in their 
maturation (Fig. 1c). In the adult neurogenic niche of the 
SVZ, NSCs have classically been defined as GFAP (Glial 
Fibrillary Acidic Protein) expressing cells with a particular 
morphology [21], although this protein is also expressed by 
the surrounding astrocytes [22]. Furthermore, CD133 (or 
prominin1) is a transmembrane glycoprotein expressed by 
the cilia of the adult NSCs in the SVZ [23], and it is also a 
molecular marker expressed in ependymal cells populating 
the same surface [24]. Nestin has been considered to be a 
typical marker to identify NSCs, although it is still expressed 
in the IPC population [25]. Another molecular marker used 
to identify embryonic and adult NSC populations is CD24, 
which is also expressed in some neuroblast populations, 
albeit at different levels [26]. Thus, cell diversity studies 
should be based on the potential of single progenitors rather 
than that of NPCs pools, requiring finer analyses at the indi-
vidual cell level.

Together, defining NPC populations using specific mark-
ers has some limitations, as it is often impossible to precisely 
define these complex and heterogeneous cell populations 
solely in this manner. Accordingly, clonal analysis and line-
age tracing has become crucial to further understand the 
biology of NSCs and their lineage progression [27, 28].

The onset of lineage tracing

Due to the large heterogeneity within the neural progenitor 
pool, clonal analysis is particularly important when study-
ing stem cell biology. This concept arose at the end of the 
nineteenth century with the studies of Whitman and col-
laborators on leech embryos [29], and it is still the subject 
of intense study today. Cell lineage tracing facilitates the 
definition of ontogeny, fate and cell behavior in specific tis-
sues or organisms. In the brain, lineage tracing allows the 
cell progeny of a single neural progenitor to be identified 
and tracked, and the clonal relationships among co-habiting 
cells to be defined in the adult. Labeling all the progeny of 
a specific progenitor or cell population may reveal specific 
patterns of progenitor proliferation, migration and differ-
entiation. Different prospective and retrospective method-
ologies have been developed to study cell lineages in the 
brain (Fig. 1d). Prospective lineage tracing strategies require 

an initial population of interest to be targeted that will be 
followed over time, whereas retrospective analysis aims to 
reconstruct lineage trees from the descendants based on a 
non-bias selection of the progenitors. The principal draw-
back when designing clonal methods are the potential lump-
ing and splitting errors (Fig. 1e). Lumping errors arise from 
considering cells generated from different progenitors as part 
of the same clone. By contrast, cells that are part of the same 
lineage could be treated as non-sibling cells due to methodo-
logical issues, leading to splitting errors.

Some of the first complete lineage tracing studies were 
achieved by direct microscope observation of lineage pro-
gression using either organisms with a small number of 
cells, or by isolating NPCs and tracking their divisions 
in vitro [30]. A ground breaking achievement in the field 
was the tracing of the entire lineage tree of the nematode 
C. elegans [31] by time-lapse microscopy. However, direct 
observation in vivo is not usually viable due to the opac-
ity of the tissue or the aim of studying a larger organism. 
Nevertheless, direct observation of embryonic development 
in vivo through an intravital window can be combined with 
different cell labeling approaches, and this has permitted 
the monitoring, manipulation and live imaging of mouse 
embryos [32]. The incorporation of non-toxic chromogens 
into living cells, referred to as vital dyes, was one of the 
first methods used to visualize cells over time. The principal 
advantage of fluorescent vital dyes is that they are easily 
administered in vivo and they do not require post-processing 
to be visualized. Among the initial fluorescent dyes widely 
used were the fluorescent retrograde markers like Fast Blue 
(a cytoplasmic marker) and Diamidino Yellow (a nuclear 
marker). These dyes not only produced retrograde labeling 
of groups of cells but they could also be injected simul-
taneously to detect double labeled cells [33]. In addition, 
lipophilic carbocyanine fluorescent dyes like DiI and DiO 
have been used for anterograde and retrograde neuronal trac-
ing in vivo, and in fixed tissue [34, 35], offering a detailed 
view of the cell’s morphology. The labeling of proliferative 
cells by incorporating a nucleoside analog like 5-Bromo-
2′deoxyuridine (BrdU) can be also used to study cell lineage 
and fate potential [36, 37] However, a drawback in these 
approaches is the dilution of the tracer, triggering the con-
secutive loss of labeling that is most evident in actively pro-
liferating cells [38].

The discovery of the green fluorescent protein (GFP) [39] 
and of β-galactosidase encoded by the E. coli LacZ gene 
[40] revolutionized lineage tracing, taking over from the use 
of vital dyes. Reporter genes encoding these proteins were 
introduced to target cells by lipofection [41] or electropora-
tion [42], and viral particles carrying these reporters could 
infect cells, integrating the desired recombinant DNA into 
the host genome to allow cell tracing [43]. Retroviruses have 
been used widely to trace cell lineages [44–46]. The reporter 
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genes are introduced via retroviral vectors that integrate 
into the genome of dividing target cells and they are conse-
quently transferred to all their progeny. The first viral tracing 
methods focused on targeting a limited number of sparse 
progenitor cells to ensure that the labeled cells populating 
the same area would pertain to the same clone. Serial dilu-
tion of the viral particles can be used to target fewer isolated 
progenitors. However, an increment of the number of trace-
able lineages and a stronger lineage analysis was obtained 
using retroviral libraries that include DNA barcoding [47]. 
These barcodes can be read after cell sorting or laser dissec-
tion, permitting a reconstruction of the lineages. Neverthe-
less, the use of retroviral labeling can be compromised by 
epigenetic silencing and the inability to transfect quiescent 
or non-mitotic cells [48].

Tracking cells from their progenitors to their final destina-
tion and fate has been made possible through the develop-
ment of some important genetic tools that have made per-
manent cell labeling feasible. In particular, the Cre-LoxP 
[49] and Flp-FRT [50] recombination systems represented 
an important advance to study cell progeny. The incorpora-
tion of a tamoxifen-inducible version of this technology in 
transgenic mouse lines expanded the possibilities of under-
taking cellular studies in genetically modified organisms 
(GMOs) [51]. Transgenic mouse lines that are susceptible 
to inducible-Cre recombination under the control of specific 
promoters can drive the expression of a fluorescent reporter 
(FR) to fate map neural progenitors in vivo [52]. This has 
been achieved by administering low doses of tamoxifen and 
depending on the lineage of interest, transgenic mice encod-
ing different FRs under the control of specific promoters 
have been generated, exhibiting particular advantages and 
disadvantages [53].

In addition, early lineage tracing studies used chimeric 
mice generated from tetraparental embryos enabled the ori-
gin of many structures in the body to be determined [54]. 
Moreover, transplanting labeled cells from GMOs into wild 
type animals has also been used to trace cell lineages [55, 
56], although one shortcoming of this approach is that the 
grafted cells may not behave as they do under physiological 
conditions [57].

Multicolor lineage tracing

The employment of GMOs and the incremental growth of 
reporters led to the idea of combining different fluorescent 
proteins to track sibling cells (Fig. 2). Initially, a few fluo-
rescent variants of GFP were combined to stain neurons 
individually [58] but undoubtedly, the true revolution in 
multicolor lineage methods commenced with the appear-
ance of the Brainbow technology [59]. Brainbow trans-
genic mice undergo stochastic recombination of up to four 
FRs that are driven by the Cre-LoxP system, giving rise 
to multicolor mosaics in which single cells can be easily 
identified. Modified versions of this methodology are still 
being developed [60, 61] and they produce vivid images, 
that allow an extremely detailed visualization of the mor-
phologies of individual labeled cells. Hence, this is a very 
effective method for cell mapping but not for lineage trac-
ing. However, this technology has had a tremendous impact 
on the field of lineage tracing, leading to a new wave of 
methods in which the stochastic combination of FRs is used 
to generate unique barcodes in NSCs that can be inherited 
by all their progeny. This method was originally designed 
for mice, although the combinatorial use of fluorescent pro-
teins has been remodeled to fate mapping in Drosophila 

Fig. 2  Timeline of multicolor lineage methods. Diagram of the most 
relevant approaches using combinations of fluorescent reporter pro-
teins for fate mapping. The different strategies are represented by a 
circle for genetically modified organisms like mice, zebrafish or Dros-

ophila. A hexagon shows the strategies based on recombinant viral 
particles, and the square represents those approaches involving the 
use of DNA constructs encoding the different fluorescent reporters



1975Deciphering neural heterogeneity through cell lineage tracing  

1 3

melanogaster (Flybow, d-Brainbow, Raeppli) [62–64] and 
Zebrafish (Zebrabow) [65, 66]. The nuclear expression 
of more than one fluorophore per cell has generated new 
modifications of the Brainbow-like technique in Drosophila 
(nBitbow) [67]. Other clonal methods isolate recombination 
in stochastic cells involving different transgenic lines, such 
as the mosaic analysis with double markers (MADM) [68, 
69], and this technology has also been modified to D. mela-
nogaster (twin-spot) [70]. The principal drawback of these 
techniques, besides the requirement for GMOs, is the small 
range of combinations to accurately define daughter cells, 
and the susceptibility to clonal splitting or lumping errors. 
Moreover, visualizing the fluorescent signal in some of these 
transgenic mice requires immunostaining [28], an important 
limitation due to the lack of antibodies to specifically recog-
nize these FRs. Thus, to extend multicolor lineage tracing 
to different organisms or even to in vitro assays, recombi-
nant viral particles or DNA plasmids have been designed. 
Recombinant lentiviruses encoding different FRs have been 
generated to contribute to the multicolor mosaic for lineage 
tracing (LeGo) [71, 72]. New approaches involve recom-
binant DNA constructs that encode different FRs, and that 
can be transfected into the cells of interest, have allowed all 
the progeny of single cells to be traced (StarTrack, CLONE, 
MAGIC, iON) [73–76]. To resolve the timing of the birth of 
each cell within the same clone, lineage progression could 
be determined post hoc by the expression of a predetermined 
sequence of fluorophores in sibling cells in Drosophila 
(CLADES) [77]. These methods are based on transposable 
elements that are integrated into the genome, allowing the 
stable inheritance of the same barcode by all cell progeny, 
and avoiding plasmid loss as a consequence of cell division. 
The combinatorial use of integrable FRs does not require 
post-processing to visualize the signals due to the bright and 
stable expression of these proteins, thereby representing an 
accessible and convenient technique to use in vivo. More-
over, injection of the reporter proteins in vitro or in vivo 
facilitates the targeting of progenitor cells at a single-cell 
level, avoiding the need to produce GMOs. New advances 
in microscopy have produced progress in multicolor lineage 
tracing [78], expanding the possibility of performing lineage 
tracing in any organism and lineage, and enabling studies of 
cell heterogeneity.

Our laboratory has developed a stochastic clonal analysis 
method called StarTrack, which allows the progeny of single 
cells to be traced and analyzed thereafter. The StarTrack 
methodology was an attempt to develop a genetic in vivo lin-
eage-tracing method that could track all the neural progeny 
of individual GFAP cells [73]. It is based on the transfection 
of cells (by electroporation) with a combination of recom-
binant DNAs encoding six different FRs that are expressed 
in different cell compartments (cytoplasm or cell nucleus). 
This produces inheritable marks that permit the long-term 

in vivo tracking of the different neural cells generated dur-
ing embryonic development to their final fate in the adult 
brain. Due to the use of an ubiquitous promoter, the UbC-
StarTrack methodology enables the progeny of embryonic 
and postnatal neural progenitors to be tracked in mice, irre-
spective of their fate [79]. Recently, to specifically track the 
descendants of NG2 progenitors, the promoter of either the 
transposase or transposon constructs was adapted accord-
ingly [80, 81]. Novel methods based on vector integration 
show high efficiency in terms of stable integration and the 
transmission of unique fingerprints to their descendants, 
which can be followed through several cell divisions and 
along different lineages through postnatal or adult stages. 
Furthermore, these strategies can be extrapolated to perform 
clonal and functional analyses in different animal models or 
in vitro assays. The increase in the number of FRs expressed 
in different compartments augments the number of possible 
combinations available in these integrable multicolor meth-
ods. For example, the use of six different fluorophores in two 
different cell compartments (e.g., nuclear and cytoplasmic) 
leads to a total of 4095 possible color codes. In addition, the 
number of copies of each reporter could be resolved by ana-
lyzing the intensity of fluorescence in each cell [79], helping 
to minimize possible splitting and lumping errors.

In summary, multicolor image-based lineage tracing 
methods are among the most reliable methods to define 
lineage trees. By combining them with state-of-the-art 
approaches like cell type-specific optogenetic manipulations, 
single-cell transcriptomic analysis, cell ablation, live-cell 
imaging, patch-clamp recordings, two-photon microscopy, 
in vivo and brain slice preparations, they may help us to 
better understand how lineages are derived in the brain. In 
addition, they provide a more functional readout of the spe-
cific characteristics of clonally related cells derived from 
the same NPC, adding information regarding their spatial 
relationships.

Single‑cell sequencing and CRISPR to address cell 
lineage tracing

Next-generation sequencing (NGS) provides us with a pow-
erful tool to sequence the whole genome and it opens a win-
dow to complete the study of whole organisms, elucidating 
their genomic, transcriptomic, epigenomic and proteomic 
profiles. NGS contributes to lineage tracing through both 
whole genome sequencing and whole-exome sequencing. 
It has revealed somatic mutations that accumulate in cells 
after replication that can be traced to define lineage pro-
gression [82]. These analyses focused on individual cells, 
revealing the intricate cell heterogeneity at the single-cell 
level. Single-cell RNA sequencing (scRNA-seq) is one of 
the most powerful tools to identify patterns of cell expres-
sion and intrinsic molecular profiles. However, single-cell 
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transcriptomic analysis lacks information regarding onto-
genic and spatial tracing. Genomic barcoding using viral 
libraries, followed by the isolation and sequencing of single 
cells, has facilitated the fate mapping of neural cells, help-
ing to understand their ontogeny and their lineage potential, 
and complementing classical barcoding methods [83, 84]. 
Similarly, the combination of classic barcoding techniques 
and scRNA-seq could help understand the complex biologi-
cal systems underlying physiological events and pathological 
conditions.

Several other strategies have been introduced in recent 
years, including the implementation of CRISPR technol-
ogy to drive genome editing and DNA targeting (Fig. 3). 
The CRISPR/Cas9 was used to perform cell lineage tracing, 
in theory enabling the entire organism to be reconstructed 
at the single-cell level using RNA or DNA sequencing. 

MEMOIR (mutagenesis with optical in situ readout) was 
the first method based on CRISPR technology that produced 
dynamic cell records and lineage reconstruction, combin-
ing barcoded recording elements (scratchpad) altered by 
CRISPR–Cas9 genome editing and in situ readouts by seq-
FISH RNA imaging [85] (Fig. 3a). The limitation of this 
system is the lower capacity to detect edited mutations rela-
tive to those that used scRNA-seq. One of the first studies 
to implement CRISPR for phylogenetic analyses in mice 
was MARC1 (mouse for actively recording cells). These 
mice can accumulate genomic mutations that can be used 
to reconstruct the lineage tree of cells based on the hom-
ing guide RNA (hgRNA) and CRISPR/Cas9 nuclease [86]. 
In addition, zebrafish has been the animal model used to 
develop LINNAEUS (Lineage tracing by Nuclease-Acti-
vated Editing of Ubiquitous Sequences) [87], in which 

Fig. 3  Timeline of the use 
of CRISPR/Cas9 for lineage 
tracing. a In situ mutagenesis 
involved the accumulation 
of multiple integration target 
sites (called barcoded scratch-
pads) visualized by smFISH. 
This strategy is a good tool to 
address the lineage dynamics 
of a cell population. b In vivo 
lineage mapping using CRISPR/
Cas9 is based on multiple 
integration/deletion at a target 
site that allows the lineage 
trees of the different cells to 
be reconstructed taking into 
account their genomic tags (yel-
low cassettes). c Going further, 
the inducible Cas9 activity 
(blue circle) and the incorpora-
tion of transcriptomic analysis 
improves these mouse models, 
enabling cell lineages and fate 
mapping to be analyzed at the 
single-cell level
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lineage trees of zebrafish larvae and adult cells were recon-
structed by combining multiple genomic mutations and tran-
scriptome profiling (Fig. 3b). However, the first study to 
infer a large-scale lineage potential was called GESTALT 
(genome editing of synthetic target array for lineage tracing), 
revealing lineage relationships during germ layer pattern-
ing in zebrafish. GESTALT employed embryos carrying an 
array of ten different targets that created an inheritable bar-
code permitting cell lineage trees to be reconstructed [88]. 
Nevertheless, this system was not able to distinguish the 
spatial location of different cell types and it was restricted 
to early developmental studies. Subsequently, scGESTALT 
was developed to improve this system, combining CRISPR/
Cas9 barcode editing for large-scale lineage tracing with 
cell characterization using transcriptomic analyses [89]. 
This new approach enabled cell editing to be performed 
at multiple points and at later developmental stages, and 
accordingly it has been established as a powerful tool that 
enables simultaneous lineage tracing and cell sequencing 
in vivo [90]. These approaches permit the single-cell clonal 
dynamics and the transcriptomic profile of cells to be studied 
(Fig. 3c). Importantly, the clonally related cells located in 
the same area presented similarities in their transcriptomic 
profile. More recently, a new mouse line has been obtained 
using CRISPR/Cas9 genome editing based on lineage trac-
ing, called CARLIN (CRISPR array repair lineage tracing: 
[91]). This revolutionary tool can be used to modify and 
detect DNA sequences in single cells line, and it could even 
record the history of specific stimuli, including the line-
age related effects of exposure to external stimuli, stress or 
pathogens. One of the advantages of CARLIN is the induc-
ible activity of Cas9 to generate barcodes at embryonic and 
adult stages. In conclusion, several models of CRISPR/Cas9 
barcoding have shown this is a powerful tool to study fate 
mapping. However, cell loss or weak RNA expression are 
among the technical problems encountered when using these 
methods [92]. Nevertheless, the evolution of CRISPR-Cas9 
technology along the new sequencing approaches offers very 
useful approaches to define fate maps in complex organisms.

Insights into the lineage tracing of neural cells 
from clonal methodology

Several methods have been proposed to examine line-
age progression in different biological models in vivo or 
in vitro. However, their use to determine the relationships 
of lineages usually requires an arduous analysis. Some 
approaches for lineage tracing in the brain focus on the 
sparse labeling of cell clones to ensure the lineage connec-
tion among cells that are situated intimately in the brain 
(Fig. 4a). The injection of diluted viral particles to trace a 
minimal number of progenitors facilitates the study of the 
integration of neural clones into different cortical systems 

[93–95]. Moreover, administering low doses of tamoxifen 
to inducible Cre-LoxP GMOs favors the characterization 
of NSC potential [96]. Random Cre-LoxP recombination 
in sparse progenitor cells during development reveals a 
common origin of pyramidal neurons and astrocytes [97]. 
However, these methods have some drawbacks, such as 
the ambiguous labeling of single NPCs, the impossibility 
of tracing lineages that undergo diverse migratory path-
ways and the difficulty for inter-clonal studies. Moreover, 
the independent basal recombinase activity of inducible 
Cre lines may interfere with such tamoxifen-based lineage 
tracing methods [98].

Other clonal methods rely on the recombination of few 
fluorophores for lineage tracing (Fig. 4b), such as mosaic 
analysis with dual markers that have been used to determine 
important features of NPC potential and lineage progression 
in vivo [27, 99, 100]. These approaches help characterize 
sibling cells at a single-cell level, although only a few codes 
are generated for unequivocal cell identification and sparse 
labeling is still required.

More recently, the use of fingerprints to accurately tar-
get a single NPC and that can be inherited by their entire 
progeny has revolutionized the field (Fig. 4c). With these 
methods a larger number of clones can be assessed, allowing 
inter- and intra-clonal relationships to be studied, as well as 
identifying clonal relationships within long-distance migra-
tory cell populations, such as adult generated interneurons 
[11]. Progenitor barcoding can be achieved by expressing 
multiple FRs, retroviral libraries or with genetic tags, such 
as those assembled by the CRISPR-Cas9 or Polilox system 
[101]. The huge improvement in sequencing technologies 
and genome editing tools over recent years has enriched 
the lineage tracing field. These techniques enable phyloge-
netic lineage trees to be created and linked to transcriptomic 
information at a single-cell level. The developing central 
nervous system (CNS) contains many spatially segregated 
germinal zones, with progenitors that generate distinct cell 
types. The fate of embryonic progenitors lining either the 
ventricular surface or the ependymal layer of the develop-
ing brain can be traced, and post-natal or adult NPCs in the 
brain can be also included in the lineage tracing analysis. 
Clonal methods have demonstrated that these progenitors 
may be committed to a specific cell lineage or that they may 
give rise to more lineages. RGCs are considered the major 
progenitor cell type throughout the CNS. However, new 
sub-types of NPCs occupy the SVZ, such as apical or basal 
RGCs, or apical and subapical IPCs [102]. Lineage trac-
ing has shown that RGCs produce glial cells through IPCs 
or astrocytes by direct transformation [103, 104]. In addi-
tion, embryonic RGCs give rise to sibling ependymal cells 
and adult NSCs that remain in the lateral ventricles [105]. 
Postnatal NPCs have varied multipotentiality, which differs 
from that of restricted progenitors specified to only generate 
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a determined lineage, or of bi-potent NPCs that generate 
sibling cells of two different lineages [11].

Single-cell analyses has provided huge advantages when 
studying cell heterogeneity and cell dynamics in NSC popu-
lations. Transcriptomic approaches have recently shed new 
light on lineage progression and progenitor potential, and 
single-cell transcriptomic analysis has revealed important 
information about cell identity and the distinct expression 
patterns under different conditions that could be crucial 
to fine-tune lineage tracing approaches. Transcriptomic 
analyses have helped classify cells in terms of their spe-
cific transcriptomic expression. Several studies have shown 
the diversification of transcriptional profiles within neu-
ronal [106, 107], astroglial [108, 109] and oligodendroglial 
populations [110, 111]. Recent approaches using in situ 
transcriptomic analyses reflect the strong specification and 
regionalized distribution of astrocytes within the pallial cor-
tex, diverging from the classic six neuronal layered patterns 
[112]. In addition, bulk RNA-seq has provided important 
information about gene expression and the molecular dif-
ferences between cells populating neocortical layers [113]. 

Furthermore, pseudotemporal alignment of the transcrip-
tomic profiles of developing cerebral organoids gave insight 
into the maturation and differentiation stages associated with 
cell-type specification [114]. The regional identity of spe-
cific neuronal progenitors has also been described for glial 
lineages, where progenitors in different domains produce 
glial cells restricted to a specific region [13, 115], with broad 
variability in terms of their spatial and clonal organization 
[116]. Thus, it becomes crucial to determine how embryonic 
development influences cell fate heterogeneity.

In addition, deep genome sequencing has made it possible 
to trace the lineage of every single cell in a given organism 
(Fig. 4d). DNA replication that occurs before cell division 
produces somatic mutations that do not have phenotypic 
effects. However, these somatic DNA mutations accumulate 
in daughter cells and they provide important information 
that could be useful to reconstruct lineage trees [117, 118].

Lineage tracing techniques can also be applied in patho-
logical situations to address the heterogeneity in terms of 
therapeutic responses or the different implications accord-
ing to ontogeny. In this regard, clonal responses have been 

Fig. 4  Diagram of the different techniques and their improvements 
based on advances in lineage tracing. a The first lineage analy-
ses were done by random targeting of progenitors in a manner that 
attempted to ensure the distant labeling of clones. b The incorpora-
tion of more than one reporter increased the number of combina-
tions and improved the single-cell clone identity. c The assignment 

of unique fingerprints to targeted progenitors enabled sibling cells to 
be identified and their relationships due to the generation of a specific 
and stable barcode in the cells. d However, the new tools generated to 
decipher genomic information in an entire organism enable a wealth 
of important information to be drawn that helps to reconstruct the lin-
eage trees of cells and their sibling connections
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described in the progression of squamous carcinomas [119], 
sarcomas [120] and breast cancers [121]. In the CNS, glio-
blastoma cells engage in clonal communication based on 
cell–cell contact [122]. Alternatively, clonal expansion of 
the astrocyte lineage was evident following brain disease or 
insult, as seen for Huntington’s disease [123], brain injury 
[124] or multiple sclerosis [125]. This clonal response could 
be explained by preferential connectivity of sibling astro-
cytes relative to their neighboring cells [126]. Therefore, 
fate mapping and cell fate potential mapping could provide 
important information about lineage trees and evolution, yet 
it could also shed light on important therapeutic issues or 
even, on the possible reprogramming of cells. One challeng-
ing issue will be to compile and compare all the lineage 
tracing data obtained through different clonal methodolo-
gies to obtain an overview of how lineages evolve [127]. 
All the emerging data, along with the improved molecular 
techniques and the developments in big data analysis, can 
overcome the current limitations to understand the tremen-
dous heterogeneity among cell lineages.

In conclusion, DNA barcoding strategies and sequencing 
resources could help to consolidate cell lineage reconstruc-
tions and contribute to our understanding of cell dynamics, 
clonal expansion, and the behavior of specific cell lineages 
in normal conditions and disease. Moreover, this type of 
analysis may produce important advances in understanding 
the molecular events underlying lineage specification and 
the sculpting of progenitor potential.
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