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Abstract
Various factors of the tissue microenvironment such as the oxygen concentration influence the host–pathogen interaction. 
During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that 
affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a 
particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, 
the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also 
summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, 
we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas 
aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes 
a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions.
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Abbreviations
ATP	� Adenosine triphosphate
DCs	� Dendritic cells
DSS	� Dextran sulfate sodium
DMOG	� Dimethyloxalylglycine
(Dos)R	� Dormancy survival regulator
HIF	� Hypoxia-inducible factors
IDO	� Indoleamine 2,3-dioxygenase
iNOS or NOS2	� Inducible or type 2 nitric oxide synthase
IFNγ	� Interferon γ
IL	� Interleukin
LDH-A	� Lactate dehydrogenase-A
LPS	� Lipopolysaccharide

MtrAB	� M. tuberculosis Two-component regula-
tory system MtrA/MtrB

NET	� Neutrophil extracellular traps
NO	� Nitric oxide
OXPHOS	� Oxidative phosphorylation
PHOX	� Phagocyte NADPH-oxidase
PMN	� Polymorphonuclear neutrophils
PHDs	� Prolyl hydroxylases
PKM2	� Pyruvate kinase M2
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
SPI-2	� Salmonella Pathogenicity island 2
TCA​	� Tricarboxylic acid cycle
VEGF	� Vascular endothelial growth factor

Introduction

Myeloid cells are the first line of defense against bacterial 
infections. They are equipped with an arsenal of mechanisms 
to prevent spreading of the intruders, to alert the adaptive 
immune system, to prevent bacterial proliferation and to 
eliminate the pathogens without inducing immunopathology 
(reviewed: [1]). In recent years, it has become clear that the 
interplay between myeloid cells and the pathogen is strongly 
affected by the (patho)physiological conditions prevailing at 
the site of infection. Thus, tonicity, availability of nutrients 
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and oxygen tension significantly influence the outcome of 
the host–pathogen interaction [2–5]. The oxygen availability 
is of particular interest in this context. Several important 
antimicrobial effector pathways require oxygen, such as 
the phagocyte NADPH-oxidase (PHOX), which generates 
reactive oxygen species (ROS), and the inducible or type 
2 nitric oxide synthase (iNOS or NOS2), which produces 
high amounts of nitric oxide (NO) and leads to the forma-
tion of subsequent reactive nitrogen species (RNS). Both 
ROS and NO are capable of damaging and killing bacterial 
microorganisms and, therefore, are important to control the 
infection [6]. In addition, it is well established that oxygen 
levels differ in various organs (reviewed: [7]). Even under 
resting conditions, the oxygen level of the renal medulla, 
skin, and bone marrow are low [8–10]. In these organs, the 
availability of oxygen and, hence, the tissue oxygenation is 
thought to be largely dependent on the organ-specific vascu-
lar network. Not only vascularization and supply of oxygen, 
but also the consumption rate influences the oxygen level 
available within the tissue. Infiltration of immune cells in 
an organ increases the consumption of oxygen and as a con-
sequence reduces the available oxygen level [11]. Similarly, 
the low oxygen levels found in epithelial layers facing the 
gastrointestinal lumen [12, 13] result from the metabolism 
of gastrointestinal microbiota [14] and the action of their 
products on the host epithelium [15]. These latter examples 
demonstrate that already under resting conditions, bacteria 
have an impact on the oxygen availability in host tissue. 
Importantly, infections with microbial pathogens lead to 
oxygen consumption in the affected tissues, which influences 
the host as well as the pathogen and their interplay and, thus, 
the outcome of infection.

In the following, we will review (i) the basic methodol-
ogy to measure oxygen in tissues; (ii) the principle impact 
of infections on tissue oxygen levels; (iii) the metabolism of 
innate immune cells under hypoxic conditions; (iv) the role 
of hypoxia-inducible factors (HIF); (v) the functional regula-
tion of myeloid cells by hypoxia and HIF; (vi) the sensing of 
hypoxia by bacteria and their reaction to oxygen deprivation; 
and (vii) the mechanisms of control of bacterial infections 
under hypoxic conditions.

Methods to quantify tissue oxygenation

Progress in our understanding of tissue oxygenation is lim-
ited by the fact that quantification of tissue oxygen is a dif-
ficult and tedious task (reviewed: [16, 17]). Over the last 
decades, different studies either employed the Clark polaro-
graphic electrode technique, used histochemical staining 
techniques to detect severely hypoxic regions with the help 
of 2-nitroimidazole derivatives (e. g., EF5, piminidazole, 
CCI-103F) or applied luminescence-based technologies to 

monitor tissue oxygen levels (reviewed: [16]). More recently, 
positron emission tomography (PET), single-photon emis-
sion computed tomography (SPECT) and magnetic reso-
nance imaging (MRI)-based technologies have become 
available and offer new opportunities to assess oxygen lev-
els in inflamed and infected tissues [18–21]. The advantage 
of these methods is that they are noninvasive and do not 
cause tissue injuries. PET/SPECT/MRI entered preclini-
cal and clinical application in late 2000s/early 2010s for 
oxygen quantification. These methods rely on administra-
tion of various hypoxia tracers that enable in vivo oxygen 
measurement without tissue destruction (reviewed: [21]). 
Several studies were performed using [18F]fluoromisonida-
zole ([18F]FMISO), which is often referred to as a “gold 
standard” in PET/SPECT. However, several disadvantages 
of [18F]FMISO led to the development of novel tracers, 
such as [64Cu][Cu-diacetyl-bis(N(4)-methylthiosemicarba-
zone)] ([64Cu][Cu(ATSM)]), 68 Ga-labeled tracers, techne-
tium-99 m ([99mTc]Tc-BRU59-21, [99mTc]Tc-EDTA-2-MN) 
or molybdenum-99 co-labeled nitroimidazole-containing or 
nitroimidazole-free compounds [22–27].

Infection triggers low tissue oxygen levels: 
underlying mechanisms

There is substantial evidence that inflamed and infected 
tissue displays low oxygen levels (reviewed: [16]). How-
ever, only recently, studies on the mechanisms that account 
for the reduced oxygen levels in infected and inflamed tis-
sues were conducted. In a mouse model of pyelonephritis, 
inflammation-induced clotting contributed to a low oxygen 
microenvironment in the kidney [28]. Moreover, inflamma-
tion was able to trigger clotting processes and vice versa 
(reviewed: [29]). Clotting of vessels in infected tissues can 
help to sequester and compartmentalize infections [30], but 
will result in reduced oxygen levels in the afflicted tissues. 
Thus, induction of low tissue oxygenation might be a side 
effect of host efforts to inhibit bacterial spreading.

The influx of neutrophils also plays a role in mediating 
low tissue oxygenation upon an infection. In a seminal study, 
Campbell et al. demonstrated in a model of dextran sulfate 
sodium (DSS)-induced colitis that the influx of polymor-
phonuclear neutrophils (PMN) and their NADPH oxidase 
activity caused increased oxygen consumption and ulti-
mately low mucosal tissue oxygenation [11]. As Campbell 
et al. used DSS to induce colitis and not a specific patho-
gen, it is formally unclear whether infections with intestinal 
pathogens induce low oxygen levels in mouse mucosal gut 
tissue. However, infections with enteropathogenic bacteria 
such as Salmonella and Shigella were shown to trigger low 
oxygen levels in infected lamina propria and serosal gut tis-
sue [31–34]. The exact mechanisms that lead to low oxygen 
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levels in Salmonella-infected tissues are still unknown. It 
is possible that Salmonella inhibits inflammation-triggered 
de novo formation of blood vessels by limiting vascular 
endothelial growth factor (VEGF)-driven angiogenesis [35]. 
In a Shigella infection model, the relative contribution of the 
oxygen consumption induced by enteropathogens and/or the 
infection-triggered inflammation was investigated. Tinevez 
and coworkers found that, unlike the above-mentioned Sal-
monella studies, the pathogen themselves, but not the infil-
trating PMN, were largely responsible for the low oxygen 
conditions in the gut mucosa [34].

Nonetheless, in addition to the above-mentioned study, 
analyses in other models confirmed that PMN critically 
contributes to low tissue oxygen levels. The influx of PMN 
reduced local oxygen levels in a preclinical model of Herpes 
simplex virus 1 (HSV-1) keratitis [36]. Similarly, accumula-
tion of PMN into a Candida albicans-induced subdermal 
abscess triggered a hypoxic microenvironment [37]. In addi-
tion, interleukin 1 (IL-1)-dependent signaling elicited low 
O2 levels in a preclinical model of pulmonary aspergillosis 
[38]. These findings suggest that the inflammatory response 
of the host and especially the activities of neutrophils are the 
main drivers of infection-triggered low tissue oxygenation .

Thus, from a mechanistic point of view, the reduced 
oxygen levels in infected tissues can result from several, 
presumably overlapping processes: (i) oxygen consumption 
by the invading immune cells; (ii) oxygen consumption by 
the invading pathogens; (iii) induction of host cell signal-
ing cascades that control oxygen availability, by bacterial 

compounds and/or by host cell products; (iv) alterations 
of the microenvironment during the infection that result in 
changes in metabolism and thereby oxygen availability.

Metabolic response of innate immune cells 
to hypoxia

Similar to other immune cells, myeloid cells require various 
cellular metabolic pathways to function and respond prop-
erly (reviewed: [39], Fig. 1). The prevailing metabolic path-
ways vary between different types and activation statuses of 
cells. Moreover, depending on the local microenvironment in 
which the cells reside, they must adapt their cellular metabo-
lism (reviewed: [40]).

As discussed above, oxygen is limited in inflamed and 
infected tissues. Therefore, immune cells have to operate 
under hypoxic conditions and, consequently, switch to anaer-
obic glycolysis (reviewed: [41]), while the oxygen-depend-
ent energy generation via the tricarboxylic acid (TCA) cycle 
is suppressed (reviewed: [39, 42–47]).

However, not only hypoxic immune cells rely on gly-
colysis for energy generation, but in general, activated or 
proliferating immune cells also shift their metabolism to 
aerobic glycolysis, which resembles a metabolic profile 
observed by Otto Warburg in tumor cells (Warburg effect) 
(reviewed: [41, 42]). Instead of using oxidative phospho-
rylation (OXPHOS) for highly efficient adenosine triphos-
phate (ATP) production, proliferating cells tend to increase 

Fig. 1   Cellular metabolism 
differences under normoxia and 
hypoxia or between resting or 
activated profiles of immune 
cells. Regardless of the oxygen 
or activation status, neutrophils 
witness increased glycolysis 
and decreased tricarboxylic 
acid (TCA) cycle and oxidative 
phosphorylation (OXPHOS) 
activity, with an augmentation 
of glycolysis under hypoxia or 
upon activation. Resting or nor-
moxic macrophages/dendritic 
cells, however, depend on the 
TCA cycle to ensure longevity 
and biomass. Upon exposure to 
hypoxia or pro-inflammatory 
signals, they switch to heavy 
glycolysis and hamper the 
TCA cycle activity as well 
as OXPHOS. Macrophages, 
which have encountered anti-
inflammatory signals, on the 
other hand, depend greatly on 
the TCA cycle activity and 
OXPHOS



1890	 I. Hayek et al.

1 3

their glycolysis rate, which, however, only generates two 
ATP molecules per round of glycolysis (reviewed: [48]). 
To compensate for the reduced or absent mitochondrial 
OXPHOS, proliferating cells need to increase their glu-
cose uptake and boost their glycolytic activity to meet the 
energy demand of proliferating cells (reviewed: [41, 48]). 
Since activation of immune cells under normoxic condi-
tions already triggers a switch to glycolytic energy genera-
tion, these cells are well prepared to operate in inflamed 

areas, which are very likely to display low oxygen levels. 
The hypoxia-inducible factor (HIF) plays an important role 
not only for the adaptation of cells to oxygen-poor envi-
ronments (reviewed: [49, 50]), but also under normoxic 
conditions (reviewed: [39, 42, 44–46, 51]). Therefore, we 
will very briefly review the molecular mechanisms that 
result in HIF stabilization in myeloid cells and we will 
describe the role of HIF in the immunobiology of neutro-
phils, macrophages, and dendritic cells.

Table 1   Examples of bacterial genes involved in response to hypoxia

Bacteria Gene Research model Biological consequence References

Pseudomonas aeruginosa AQ signaling molecules Infection of cell lines Downregulated HIF1 protein levels [82]
Via 26S proteasomal degradation
VEGF secretion

Pseudomonas aeruginosa AtvR Knock-out mutants; Response to hypoxia; involved [123]
Cultivation in broth; infection of in virulence
cell lines; in vivo infection in mice

Pseudomonas aeruginosa AdhA Cultivation in broth Increased expression under hypoxia [143]
Allowed growth on ethanol
Increased acetate production
Decreased of pH

Pseudomonas aeruginosa PPHD Knock-out mutants; Suppressed antibiotic resistance [122]
Infection of Galleria mellonella and pathogenicity

Bartonella henselae BadA Infection of cell lines HIF1 activation [80]
Secretion of proangiogenic 

cytokines
Bartonella henselae Pili Infection of cell lines HIF1 activation [81]

VEGF secretion
Chlamyida pneumoniae CPAF Cell-free degradation assays Degraded HIF1 [83]
Mycobacterium tuberculosis DosR regulon Cultivation in broth Allowed anaerobic survival [148]
Mycobacterium tuberculosis Rv0081 ChIP-Seq Mediated response to hypoxia [134]
Mycobacterium tuberculosis Clp gene regulator 

(Rv2745c)
Cultivation in broth Implicated in response to hypoxia [153]

Mycobacterium tuberculosis TreS Growth in broth Implicated in hypoxia-induced [154]
Infection of primary cells Metabolic reprograming of M. tb

Mycobacterium tuberculosis Rv0998 Cultivation in broth Acetylated DosR; negative influ-
ence

[131]

Infection of primary cells Adaption to hypoxia
Contributed to pathogenesis

Mycobacterium tuberculosis MtrB Cultivation in broth Allowed survival under hypoxia [130]
Infection of primary cells Required for establishing infection
Infection in mice Regulated DosR regulon

Salmonella enterica Sal (Siderophore) Infection of cell lines HIF1 activation [79]
VEGF secretion

Yersina enterocolitica Ybt (Siderophore) Infection of cell lines HIF1 activation [79]
Staphylococcus aureus SrrAB two-component 

system
Growth in broth Allowed resistance to hypoxia [162]
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Hypoxia and inflammation‑/
infection‑triggered HIF stabilization

HIF, initially discovered as oxygen-dependent complex for 
erythropoietin induction in the liver and kidney, is part 
of the PER-ARNT-SIM (PAS) protein subfamily of the 
basic helix-loop-helix (bHLH) family (reviewed: [52]). 
This dimeric transcription factor consists of two subunits 
(HIFα and HIFβ), which have to dimerize to attach to the 
promoter region of target genes harboring the hypoxia 
response element (HRE). There is only one HIFα isoform, 
but there are three closely related HIFß isoforms, HIF1α, 
HIF2α, and HIF3α (reviewed: [53]). HIF1α is considered 
a ubiquitous transcription factor. According to the Immgen 
Database (www.immge​n.org), all myeloid cells are able 
to express HIF1α mRNA at medium to high range level 
[54]. In contrast, the expression of HIF2α is much more 
restricted. Thus, HIF2α is expressed in endothelial cells 
[55, 56], but is also present in some immune cells [57, 
58]. It is known that various cells express HIF3α [59], but 
there is only very limited data on its expression in innate 
immune cells. While thioglycolate-elicited peritoneal mac-
rophages express prominent amounts of HIF2α mRNA, 
the mRNA expression of both HIF2α and HIF3α in other 
myeloid cells is low [54].

Hypoxic HIF stabilization

HIF activity is regulated by modulating the stability of its 
α-subunit. Under conditions of ample oxygen, HIF1α is 
readily hydroxylated at proline residues located in the oxy-
gen-dependent degradation domain, which is present in all 
three HIFα isoforms. Hydroxylation of the HIFα isoforms 
are governed by a class of enzymes called prolyl hydroxy-
lases (PHDs), which serve as cellular oxygen sensors. PHD-
mediated HIF1α-hydroxylation is highly specific [60] and 
leads to ubiquitination of HIF1α by von Hippel–Lindau 
(VHL) E3 ubiquitin ligase, which ultimately targets HIF1α 
for proteasomal degradation. Of note, PHD requires the pres-
ence of its cofactor Fe2+ and the co-substrate 2-oxoglutarate 
for HIF1α hydroxylation (reviewed: [61]). In the absence of 
oxygen, its co-substrate or co-factors, the PHD activity is 
suppressed, which in turn triggers subsequent HIF1α activa-
tion (reviewed: [49, 50, 52, 61]).

HIFα governs the expression of a plethora of different 
genes involved in metabolism, immune system regulation, 
and in general cellular functions in response to hypoxia 
(reviewed: [39, 42, 44–46, 51]). A detailed global assess-
ment of HIF1α and HIF2α binding sites in MCF7 breast 
cancer cells, for instance, revealed that many of these sites 
bound HIF1α and HIF2α equally well, while there were only 
very few sites that bound HIF2α exclusively [62]. It will 

require further endeavors to understand differential regula-
tion of target genes by HIFα isoforms in various cell types 
[63], including immune cells.

Inflammatory and infectious HIFα stabilization

In addition to hypoxia, other non-hypoxic stimuli are able 
to induce HIFα accumulation. This holds especially true 
for immune cells in which several inflammatory stimuli 
and cytokines are known to trigger HIFα accumulation 
(reviewed: [2, 7, 16, 64–66]. In line with this, there is evi-
dence that a large array of human pathogens or microbial 
products are able to induce HIF1α accumulation even in 
the presence of O2 [67]. The most prominent and best stud-
ied pathogen-associated molecular pattern in this respect is 
lipopolysaccharide (LPS), a component of the cell wall of 
Gram-negative bacteria [68]. Under normoxic conditions, 
the LPS-triggered HIFα accumulation depends on nuclear 
factor (NF)-κB- and p42/44 MAPK-dependent signal trans-
duction [69, 70]. Ultimately, this results in PHD inhibition 
via (i) enhanced ROS and RNS production [71–74], (ii) met-
abolic inhibition of PHD by succinate accumulation [75], 
and/ or (iii) decrease of availability of the PHD cofactor 
Fe2+ [3]. Adding another layer of complexity, HIF activation 
induced by LPS leads to a distinct and different response of 
myeloid cells compared to hypoxia-driven HIF activation 
[76]. The mechanisms that underlie this divergent response 
are still unclear and warrant further investigation (reviewed: 
[16]).

Recently, Solis et al. discovered a novel mechanism lead-
ing to HIF1α stabilization in innate immunity, which turned 
out to be very different from hypoxic or inflammatory HIF1α 
stabilization [77]. The authors studied how mechanosensa-
tion activates innate immunity. Immune cells-infiltrating 
sites of infection in the lung faced cyclical hydrostatic pres-
sure [77, 78]. Monocytes detected this mechanical force via 
PIEZO1, a mechanically activated ion channel. Ca2+-influx 
by PIEZO1 subsequently triggered activating protein-1 (AP-
1), which led to the transcription of endothelin-1 (Edn1). 
EDN1, in turn, caused HIF1α stabilization that upregulated 
pro-inflammatory genes and thereby facilitated monocyte-
driven pathogen clearance [77].

In addition, bacterial virulence factors such as the Bar-
tonella henselae adhesion A (BadA) and bacterial sidero-
phores (Fe-chelating agents) are able to trigger normoxic 
HIF1α stabilization ([79–81]; Table 1).

An unexpected observation was that certain pathogens 
promoted the degradation of HIF1α rather than causing 
HIF1α stabilization (Table 1). For instance, Salmonella 
interfered with HIF1α accumulation [35]. Moreover, Pseu-
domonas aeruginosa 2-alkyl-4-quinolone (AQ) quorum 
sensing signaling molecule directly targeted HIF1α for 
proteasomal degradation independently of PHDs [82]. 

http://www.immgen.org


1892	 I. Hayek et al.

1 3

Similarly, HIF1α was degraded during the late phases of 
intracellular chlamydial replication. In contrast, during the 
early phase of infection, C. trachomatis enhanced HIF1α 
stabilization [83].

Altogether, these findings already suggest that HIF1α is 
not only required for the cellular adaptation to hypoxia, but 
also for the immune response to infection under normoxic 
conditions. Therefore, for studying HIFα-responses in the 
context of infections, we need to take into account that the 
HIFα response may be triggered and manipulated by the 
pathogens itself (Table 1) and/or the low oxygen environ-
ment induced by the infection.

Role of hypoxia and HIF 
in the immunobiology of neutrophils, 
macrophages, and dendritic cells

Hypoxia and neutrophils

Both inflammatory and hypoxic HIF1α stabilization play 
a major role in activated neutrophils [84]. Since neutro-
phils require high ATP to combat infections, they depend 
on increased glycolysis to meet their energetic needs. 
Interestingly, neutrophils possess only a limited number 
of mitochondria, which, in addition, do not participate in 
the production of ATP, but are rather involved in regulating 
cell death decisions [42, 85]. Thus, neutrophils most likely 
depend on glycolysis for ATP-production. This assumption 
is supported by the observation that ATP-production was 
reduced in neutrophils treated with an inhibitor of glycolysis 
(2-deoxyglucose). In 2003, Cramer et al. showed that peri-
toneal neutrophils lacking HIF1α produced 40% less ATP 
than wild-type controls [86]. The fact that HIF1α, induced 
by hypoxia or by LPS stimulation, increases the expression 
of glycolytic target genes, including pyruvate kinase M2 
(Pkm2), phosphoglycerate kinase (Pgk), glyceraldehyde 
3-phosphate dehydrogenase (Gapdh), and triosephosphate 
isomerse-1 (Tpi1) [87–89], offers an explanation for the cru-
cial role of HIF1α in ATP production.

Stabilization of HIFα in neutrophils using a PHD2-defi-
cient mouse model revealed that HIFα is critically involved 
in augmented inflammatory and antimicrobial responses 
against Streptococcus pneumoniae through rapid recruit-
ment, enhanced chemotaxis, and prolonged survival of 
neutrophils. Of note, stabilization of HIFα by interfering 
with PHD activity in neutrophils did not trigger changes 
in respiratory burst or in inner mitochondrial membrane 
potential [89]. However, hypoxic HIF1α enhanced produc-
tion of granule proteases (neutrophil elastase and cathepsin 
G) and antimicrobial peptides (cathelicidin) in neutrophils 
[90]. In addition, HIF1α (but not hypoxia; see “Hypoxia-
mediated containment of bacterial infections”) promoted the 

formation of neutrophil extracellular traps (NET) [91]. Nor-
moxic [92] and hypoxic HIF1α also increased the lifespan of 
the otherwise short-lived neutrophils by inhibiting apoptosis 
via activating the NF-κB pathway [87]. This was accom-
panied by the hypoxia-induced release of the macrophage 
inflammatory protein-1β (MIP-1β) enhancing the survival 
effect of neutrophils under hypoxia [87].

Similar to HIF1α, HIF2α was able to prolong longev-
ity of granulocytes as well, while having little impact on 
phagocytosis of bacteria [58]. Overall, these findings clearly 
demonstrate that HIFα is not only critical for maintaining the 
energy homeostasis of neutrophils, but, in addition, is criti-
cal for maintaining the longevity and inflammatory activity 
of neutrophils.

Macrophages and hypoxia

Similar to neutrophils, macrophages also increase their gly-
colytic activity upon exposure to hypoxia and/ or inflamma-
tory/ infectious conditions. In macrophages, HIF1α forms a 
complex with the pyruvate kinase M2 (PKM2) and thereby 
contributes to the upregulation of glycolytic activity of 
macrophages ( [75, 93], Fig. 1). Interestingly, HIF1α was 
not only involved in fostering metabolic reprogramming, 
but regulated the expression of pathogen-recognition mol-
ecules (e.g., toll-like receptor 4) [94], antimicrobial peptides 
[90], and of inducible NO synthase (NOS2) [90]. In addi-
tion, HIF1α activity was negatively correlated with IL-10 
production [74, 95] and promoted the expression of IL-1β 
[75, 93], which ultimately helped fighting invading intruders 
[75, 86, 90, 93, 96–98].

In contrast to HIF1α, much less is known about the role 
of HIF2α in macrophages. Similar to HIF1α-knockout mac-
rophages, HIF2α-deficient macrophages displayed reduced 
inflammatory responses compared to controls [57]. In con-
trast to HIF1α, however, HIF2α appears to be particularly 
important for the induction of regulatory and/or anti-inflam-
matory cascades. For instance, IL-4-activated macrophages 
expressed HIF2α, which induced arginase 1 and suppressed 
NO synthesis, while in classically activated macrophages, 
LPS-induced HIF1α raised the expression of NOS2 and 
thereby the generation of NO [99].

Dendritic cells and hypoxia

As demonstrated earlier for neutrophils and macrophages, 
HIF1α stabilization contributed to increased glycolytic 
activities in activated mouse and human dendritic cells 
(DCs) [44, 100–103]. This supported the migration of 
DCs to lymph nodes to stimulate an immune response, 
which involves C–C chemokine receptor type 7 (CCR7) 
upregulation [104]. Inhibition of HIF1α [105] and HIF1α-
dependent glycolytic activity impaired the migratory 
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capacity of DC [106]. In addition, HIF1α was required 
for antigen presentation [107] and maturation [107, 108] 
and promoted DC-dependent T cell proliferation/activation 
[107–109]. Interestingly, an increase in glycolytic activ-
ity or stabilization of HIF1α alone was not sufficient to 
drive inflammatory outputs [108, 110]. However, under 
inflammatory conditions, HIF1α upregulated, in addi-
tion to glycolytic genes, a set of inflammatory genes, 
such as prostaglandin-endoperoxide synthase 2 (Ptgs2) 
and NOS2, which, in addition to HIF1α, co-depended on 
NF-κB [76]. Thus, the context of HIF1α activation is of 
critical relevance (reviewed: [16]). Recently, evidence was 
provided that the strength of the signal used to trigger 
inflammatory DC activation influences DC metabolism 
and their inflammatory output [104]. In contrast to weak 
DC activators such as “house dust mite-derived allergens”, 
a potent pro-inflammatory stimulus, such as LPS, led to 
a strong HIF1α-dependent pro-inflammatory phenotype, 
an increase in glycolysis and cessation of mitochondrial 
respiration. This is in line with earlier findings that the 
long-term commitment to glycolysis in activated DCs was 
indirectly regulated by PI(3)K-Akt-mTORC1 upregula-
tion of NOS2 and HIF1α [111]. Moreover, conditions that 
resulted in excess glycolytic activity of DC even limited 
the ability of DC to induce T cell responses [73]. Weakly 
activated DCs, in contrast, showed no significant HIF1α 
accumulation, along with decreased pro-inflammation and 
absent glycolytic reprogramming [104]. Collectively, these 
findings suggest that fine-tuning of the immune-metab-
olism via HIF1α holds great potential in modifying DC 
immunobiology.

HIF1α is not only important for acute innate immune 
responses, but is also an important factor in trained immu-
nity [112]. Trained immunity is a term for the memory-like 
response that is generated in innate immune cells due to 
a previous inflammatory stimulus which enables innate 
immune cells to respond more vigorously to a second 
insult in a nonspecific manner [113–115]. Trained immu-
nity requires Akt-mTOR-HIF1α-dependent glycolytic 
reprogramming [114, 116]. 

However, boosting of HIF1α activity to fight infec-
tions bears risks as well. Recent evidence demonstrates 
that increasing HIF1α responses by subjecting mice to 
acute low oxygen environments aggravated inflammatory 
responses and can be detrimental. In contrast, long-term 
exposure to low oxygen environments dampened HIF1α 
activation, glycolysis and decreased overall pathology 
[117]. Further studies are required to understand the dif-
ferences of HIF1α signaling in hypoxic preconditioning 
versus its role in trained immunity.

Collectively, neutrophils, macrophages and DCs are adept 
in accommodating to hypoxic niches by adjusting their 
inflammatory and metabolic activity (Fig. 2). HIF1α plays 

a key role in the regulation of this bidirectional interplay 
between metabolism and inflammation.

Bacterial sensing of and reaction to hypoxia

Bacterial oxygen sensing

Not only does the host sense hypoxia and react to it 
accordingly, but also the pathogen perceives and responds 
to drops in oxygen levels (Table 1). The bacterial response 
to hypoxia is species specific and depends on the genetic 
configuration. Enteric pathogens, for example, are capa-
ble of growing under low oxygen conditions (reviewed: 
[118]). However, even the obligative aerobic species of 
Pseudomonas (P.) aeruginosa is able to adapt to low oxy-
gen levels and persist under these conditions [119]. To 
change transcription and translation, the pathogen has 
to be able to sense the altered environmental conditions. 
Thus, P. aeruginosa contains a homolog to the eukaryotic 
2-oxoglutarate-dependent prolyl hydroxylases that are key 
oxygen sensors. This homolog was termed Pseudomonas 
prolyl-hydroxylase domain-containing protein (PPHD) and 
has been implicated in oxygen sensing [120, 121]. In addi-
tion, PPDH induces the expression of several virulence 
factors, and pharmacological repression of PPDH reduces 
the pathogenicity of P. aeruginosa in a mouse model of 
pneumonia [121]. The fact that PPDH also influences anti-
biotic susceptibility, expression of efflux pumps, motility 
and biofilm formation [122] demonstrates the importance 
of this oxygen sensor. P. aeruginosa encodes for addi-
tional oxygen sensors. One of them, the response regulator 
AtvR, seems to be important for survival under hypoxic 
conditions within the host [123]. Hypoxia influences P. 
aeruginosa transcription, which allows the pathogen to 
adapt metabolically [124].

Similarly to P. aeruginosa, M. tuberculosis grows bet-
ter under normoxic conditions than in low oxygen envi-
ronments [125]. Nonetheless, M. tuberculosis is capable 
of adapting to hypoxic environments. M. tuberculosis 
encodes for several two-component systems that allow 
the pathogen to respond to environmental cues, includ-
ing oxygen. Two-component systems are composed of a 
sensor kinase and a cognate response regulator (reviewed: 
[126–128]). Recently, it was reported that an M. tuberculo-
sis strain lacking the M. tuberculosis two-component regu-
latory system MtrA/MtrB (MtrAB) showed a decreased 
viability under hypoxia. MtrAB interacts with the non-
cognate response regulator dormancy survival regulator 
(Dos)R and induces DosR-mediated gene expression. As 
DosR is part of the oxygen- and redox-sensing two-com-
ponent system DosR/DosT [129], it allows adaptation to 
the hypoxic environment [130]. In detail, under hypoxia, 
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DosR is acetylated at lysine 182 by the M. tuberculosis 
acetyltransferase Rv0998. This increases the DNA-binding 
ability of DosR to promote transcription of genes, which 
allows the adaptation to hypoxia [131]. Other bacterial 
transcription factors are also involved in hypoxic gene 
regulation [132, 133], from which Rv0081 seems to form 
the largest hub [134]. The DosR/DosT regulon not only 
helps the pathogen to adapt to the hypoxic environment, 
but it also modulates the host cell response to infection. 
The rv2626c gene, one of the most prominently induced 

genes of DosR/DosT regulon, is involved in inducing a 
pro-inflammatory host cell response and necrotic cell 
death [135]. As the DosR/DosT regulon is important for 
adaptation and survival of M. tuberculosis under hypoxic 
conditions, it might be a good target for new therapeutics. 
One promising inhibitor is artemisinin that disables the 
heme-base DosT sensor kinase [136]; further inhibitors 
with multiple distinct mechanisms have been identified 
[137].

Fig. 2   Antimicrobial mechanisms of macrophages under hypoxia. a 
Prolyl hydroxlases (PHD) are inactive in the absence of oxygen and 
thus, HIF1α is stabilized. HIF1α translocates into the nucleus, where 
it dimerizes with HIF1β. The dimer binds to the hypoxia respon-
sive elements (HRE) and induces the transcription of target genes. 
b Hypoxia induces increased toll-like receptor 4 (TLR-4) expres-
sion. c Under hypoxia, the expression of glucose transporter GLUT1 
is enhanced, which leads to increased glucose uptake into the cell. 
Hypoxia also enhances glycolysis. The end product of glycolysis, 

pyruvate, is metabolized into lactate. Due to the inhibition of the 
TCA cycle, less citrate and itaconate (the antimicrobial metabolite) 
are generated. Furthermore, hypoxia impairs OXPHOS. d Catheli-
cidin, the antimicrobial peptide, is also augmented under hypoxia. 
Cathelicidin can then be transported into the phagolysosome to elimi-
nate pathogens. e The phagocytic uptake of macrophages is enhanced 
under hypoxia. f The oxygen-dependent effectors, PHOX and NOS2, 
are impaired under hypoxia. Thus, less ROS and RNS production is 
evident. g The process of autophagy is also increased under hypoxia
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Bacterial responses to hypoxia: modulation 
of the host tissue response

Tobin and coworkers used a zebrafish model to investigate 
the role of tissue oxygen in the Mycobacterium–host inter-
play. They showed that mycobacterial granuloma in zebrafish 
also become hypoxic. In addition, they discovered that M. 
marinum-infected macrophages trigger a vascular endothe-
lial angiogenic program in granulomas. This response was 
absent when a replication-deficient M. marinum strain was 
used that was lacking ESX1 protein export systems. These 
findings indicate that Mycobacteria manipulate angiogen-
esis of the host to generate an at least partially vascularized 
and hence oxygenated microenvironment that is required to 
allow mycobacterial replication [138]. Therefore, M. mari-
num is able to counteract the efforts of the immune system 
to withhold oxygen from the invading pathogen. Although 
M. marinum infection in zebrafish is only a surrogate model 
mimicking immune responses in tuberculosis, it has offered 
substantial insights into mycobacterial pathogenesis over 
the last decades [139]. The question how angiogenesis and 
tissue oxygenation are regulated is certainly also of central 
relevance for M. tuberculosis infections.

Bacterial response to hypoxia: changes 
of the bacterial metabolism

Because the host metabolism changes with the level of oxy-
gen, the pathogens also have to adapt to the altered meta-
bolic environment (Table 1). This is especially important for 
pathogens that utilize host metabolites [140]. A recent report 
demonstrated that P. aeruginosa can grow on ethanol, pro-
duced by many other microbes, including Klebsiella pneu-
moniae [141, 142], as a sole carbon source in hypoxic set-
tings. Accordingly, under hypoxic conditions, P. aeruginosa 
upregulates the NAD-linked alcohol dehydrogenase AdhA, 
which enables the pathogen to catabolize ethanol [143]. In 
addition, P. aeruginosa can respire nitrate and utilize pyru-
vate when oxygen is limited [144–146]. These changes in 
metabolism allow the pathogen to grow even under unfa-
vorable conditions.

Bacterial response to hypoxia: induction of bacterial 
dormancy

Mycobacterium tuberculosis is able to survive in a low 
oxygen environment by inducing a state of dormancy that 
prevents sterile immunity [147]. For the induction of the 
dormancy survival program, the DosR/DosT regulon is 
essential [148]. Importantly, persistent bacteria develop a 
thick outer layer that helps to restrict entry of the antibiotic 

rifampicin [149] and confers antibiotic resistance. This is 
in agreement with other findings showing reduced antibi-
otic sensitivity of hypoxia-induced persistent M. tubercu-
losis [150]. Additionally, hypoxia might induce an internal 
bacterial program that alters the composition and function 
of multidrug efflux pumps resulting in antibiotic resist-
ance, as reported for Pseudomonas aeruginosa [151]. Dur-
ing C. burnetii infection, the lack of oxygen also seems to 
induce a state of dormancy [95], but this has to be studied 
in more detail. It is clear that hypoxia allows the initial 
containment of oxygen-dependent pathogens, but triggers 
the development of bacterial persistence and dormancy 
that impairs pathogen elimination and prepares the ground 
for chronic latent and eventually recrudescing infections.

Bacteria might re-encounter atmospheric oxygen levels 
and re-enter into replication mode. How this is controlled 
and regulated is not completely understood. In the case of 
M. tuberculosis, global transcriptional and physiological 
changes are required [152, 153]. The pathogen mounts a 
metabolic shift under hypoxic conditions, which allows 
accumulation of metabolites that can be used for growth 
after re-aeration [154].

Hypoxia‑mediated containment of bacterial 
infections

The antimicrobial and immunoregulatory enzyme NOS2, 
which produces high levels of RNS in macrophages [155], 
contributes to the control of M. tuberculosis [155, 156]. 
However, NOS2 requires oxygen as a substrate (reviewed: 
[16]) and loses its efficiency under hypoxic conditions 
(reviewed: [157]). Thus, hypoxia inhibits this important 
antimicrobial defense mechanism. In addition, low con-
centration of RNS might even support bacterial survival 
and adaptation. Nitrite was found to induce transcriptional 
alterations in M. tuberculosis that allowed the pathogen to 
withstand stress conditions [158].

Hypoxia does not only impair the antimicrobial activity 
of macrophages directed against S. aureus, but also blocks 
PHOX-dependent antimicrobial activity of granulocytes 
[159], such as NET formation [160] and degranulation 
of mast cells [161]. In the case of S. aureus infections, 
hypoxia is able to boost the virulence of S. aureus via the 
two-component system SrrAB ([162]; Fig. 3). In line with 
this, acute systemic hypoxia results in impaired antimicro-
bial response of infected mice kept under conditions of 
low oxygen [117, 163].

Therefore, the question arises how myeloid cells con-
trol bacterial infection under oxygen limiting conditions. 
For aerobic bacteria, the hypoxic microenvironment itself 
already impedes bacterial replication and, thereby, helps 
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Table 2   HIF1α and hypoxia-mediated effects in bacterial infections (examples)

Bacteria Research model HIF1α-mediated effect Hypoxia-mediated effect References

Pseudomonas aeruginosa Growth in broth Increased antibiotic resistance [151]
Expression of efflux pumps

Pseudomonas aeruginosa Infection of cell lines Decreased internalization [208]
Pseudomonas aeruginosa Infection of mice Contributed to disease control [168]

Regulated T cell infiltration
Enhanced cytokine and
antimicrobial peptide production

Pseudomonas aeruginosa Growth in broth Suppression of siderophore and [121]
Exotoxin A production

Coxiella burnetii Infection of primary cells Impaired STAT3 activation Impeded replication [95]
Reduced citrate levels

Mycobacterium tuberculosis Infection of primary cells Degreased intracellular growth [164]
Mycobacterium tuberculosis Infection of mice Important for control of infection [181]

Regulated IFNγ-dependent 
immunity

Mycobacterium tuberculosis Infection of primary cells Promotes granulysin expression [165]
Mycobacterium tuberculosis Growth in broth Modulates bacterial [154]

infection of primary cells metabolic pathways
Mycobacterium tuberculosis Growth in broth Deacetylation of DosR; promotes [131]

adaption to hypoxia
Mycobacterium tuberculosis Infection of primary cells Restricted growth via LDH [171]

Infection of mice Expression and pyruvate reduc-
tion

Mycobacterium tuberculosis Infection of mice Prevented leucocyte recruitment [176]
Mycobacterium marinum Infection of zebrafish Decreased bacterial burden [96]

via iNOS induction
Mycobacterium marinum Infection of zebrafish Promoted granuloma formation [138]

via VEGF induction
Mycobacterium marinum Infection of zebrafish Decreased bacterial burden [177]

via IL-1β and NO production
Chlamydia pneumoniae Infection of cell lines Enlargement of inclusions [83]

Degradation assay Stabilized HIF1 in early infection
Degraded HIF1 in late infection

Chlamydia pneumoniae Infection of cell lines Induced host cell glycolysis [220]
Allowed bacterial replication

Chlamydia trachomatis Infection of cell lines Abrogated IFNγ-mediated [187]
anti-chlamydial activity

Shigella Growth in broth Reduced effector secretion via 
T3SS

[13]

Infection of cell lines Enhanced invasion
Shigella in vivo and in vitro Reduced effector secretion via 

T3SS
[34]

Required for tissue colonization
Salmonella Typhimurium Infection of primary cells Promoted replication [33]

Enhanced effector secretion via
SPI-2-T3SS

Yersinia enterocolitica Infection of mice Reduced susceptibility [79]
Infection of cell lines VEGF transcription

Group A streptococci Infection of mice Reduced skin lesion [8, 90]
Bacterial killing
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to control disease. In addition, the following mechanisms 
contribute to the control of bacterial infection under 
hypoxia: (i) induction of antimicrobial peptides; (ii) deple-
tion of essential metabolites and (iii) alterations of the 
defense mechanisms for the benefit of the host (Table 1).

Induction of antimicrobial peptides

Preclinical studies demonstrated that hypoxia was able to 
inhibit mycobacterial growth [164], as it caused the expres-
sion of antimicrobial molecules, like granulysin [165]. 
In line with this, the stabilization of HIF1α in bacterial 

dermatitis via lack of oxygen and/or infection itself resulted 
in the production and secretion of antibacterial peptides and 
pro-inflammatory cytokines (reviewed: [166]).

Hypoxia also helped to control infections with Pseu-
domonas aeruginosa. Increased bactericidal activities 
were observed in vitro and in vivo in a murine infection 
model [167]. HIF1α is partly responsible of this control, 
as demonstrated by the control of an ocular infection with 
P. aeruginosa, which might be dependent on NO and 
antimicrobial peptide production [168]. In a Caenorhab-
ditis elegans infection model, loss of HIF1α enhanced the 
susceptibility of the nematode to P. aeruginosa [169]. 

Fig. 3   Host–pathogen interaction in macrophages under hypoxia. 
Mycobacteria replication is inhibited under hypoxia. This is due to 
HIF1α-mediated increase in lactate dehydrogenase (LDH-A), which 
catalyzes the conversion of the carbon source of Mycobacteria, pyru-
vate into lactate. Depletion of pyruvate results in reduced replication 
of Mycobacteria. HIF1α-induced IL-1β generation also limits Myco-
bacteria replication. Itaconate, an important antimicrobial effector, is 
decreased under hypoxia, due to hypoxia-mediated reduction of the 
TCA cycle. The DosR regulon is activated under hypoxia; this allows 
Mycobacteria to survive in those harsh conditions. Coxiella replica-
tion is also impaired under hypoxia. This is mainly due to reduced 

citrate levels. HIF1α-mediated increase in IFNγ results in augmenta-
tion of IDO, which catalyzes the transformation of tryptophan to kyu-
renines. This exhaustion of tryptophan limits its uptake by Coxiella, 
which is tryptophan auxotroph and, thus, replication is prevented. 
Yet, IDO is inhibited by hypoxia. Salmonella and Staphylococcus, 
however, are characterized by replicating under hypoxia. This is due 
to the inhibition of the antimicrobial effector enzymes, PHOX and 
NOS2, which leads to less ROS and RNS and, thus, aids replication. 
Salmonella’s virulence is enhanced under reduced oxygen levels, 
through increasing T3SS-dependent secretion of effector proteins; 
and Staphylococcus increases its two-component system SrrAB
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Although HIF1α turned out to be important for the con-
trol of P. aeruginosa infections, the siderophore pyover-
din, an essential virulence factor of P. aeruginosa [170], 
unexpectedly induced HIF1α stabilization [169]. However, 
under hypoxic conditions the expression of pyoverdin was 
limited [121]. Together, these data suggest that HIF1α 
stabilization is a relevant component of the host defense 
against P. aeruginosa  (Table 2).

Depletion of essential metabolites

Increased HIF1α levels correlated with bacterial killing 
in a zebrafish model of M. avium infections [96]. How the 
containment of mycobacteria is achieved via HIF1α accu-
mulation is not yet clear. The underlying mechanism might 
involve HIF1α-mediated expression of the lactate dehy-
drogenase-A (LDH-A), which converts pyruvate to lactate. 
As M. tuberculosis can use pyruvate as a carbon source for 
intracellular replication, depletion of pyruvate might help to 
control mycobacteria ([171]; Fig. 3; Table 2).

The cytosolic conversion of citrate to acetyl-CoA is 
required for fatty acid biosynthesis and the synthesis of 
pro-inflammatory mediators [172–174]. Infection with C. 
burnetii, L. pneumophila [95] and C. trachomatis [175] 
induced an upregulation of citrate levels, which might result 
in a pro-inflammatory environment to fight the infection. 
However, C. burnetii only replicated in the presence of cit-
rate ([95]; Fig. 3; Table 2), demonstrating that the increased 
availability of citrate in an inflammatory environment is 
exploited by the pathogen for its own purposes. Why C. bur-
netii requires citrate is unknown. It might need citrate for its 
energy metabolism. Alternatively, C. burnetii might sense 
host cell-derived citrate allowing the pathogen to adjust to 
the microenvironment and/or to express virulence genes. 
Importantly, citrate levels were markedly reduced under 
hypoxia, which resulted in impaired C. burnetii replication 
[95]. Thus, hypoxia-mediated restriction of citrate functions 
as a nutritional antibacterial effector mechanism.

Modulation of host defense mechanisms: induction 
of pro‑inflammatory cytokines

HIF1α stabilization drives expression of pro-inflammatory 
cytokines [75, 93]. In addition, HIF1α stabilization by oxy-
gen deficiency or infection might enhance wound healing 
and tissue repair [166]. Experiments with mice deficient in 
HIF1α in the myeloid lineage support the assumption that 
HIF1α is required to prevent immuno-pathological conse-
quences for the host. Thus, mice lacking HIF1α in myeloid 
cells showed a stronger inflammatory response and died 
earlier than wild-type mice during chronic M. tuberculosis 
infection [176]. HIF1α not only prevents immuno-pathol-
ogy during infection, but also protects against M. marinum 

infection by inducing the pro-inflammatory cytokine IL-1β 
( [177]; Fig. 3; Table 2).

Interferon  γ (IFNγ) is essential for the activation of mac-
rophages and the control of many intracellular pathogens, 
including M. tuberculosis [178–180]. HIF1α regulates ~ 50% 
of all IFNγ-inducible genes during M. tuberculosis infection 
[181]. In uninfected dendritic cells hypoxia enhanced the 
IFNγ-induced mRNA expression of indoleamine 2,3-dioxy-
genase (IDO), which converts tryptophan into kynurenines 
[182]. IDO is known to suppress proliferation and survival 
of lymphocytes under normoxia [183]. Reports about the 
function of IDO during infections mainly concentrated on 
IDO-mediated depletion of tryptophan, which impaired 
the replication of tryptophan auxotrophic pathogens such 
as Chlamydia species, C. burnetii and Toxoplasma gondii 
([184–186]; Fig. 3). However, unlike the findings with non-
infected dendritic cells [182], IDO mRNA expression and 
activity were diminished in IFNγ-stimulated C. trachomatis-
infected HEp2 cells under hypoxia due to an impaired IFNγ-
STAT1 signaling [187]. Thus, the definitive role of IDO for 
the control of infections in a hypoxic microenvironment 
requires further studies.

Modulation of host cell defense mechanisms: 
phagocytosis and phagosome maturation

Previous studies have found that hypoxia increased the 
phagocytic activity of macrophages in an HIF1α-dependent 
manner [188]. Exposure of mice to hypoxia improved the 
uptake of E. coli by peritoneal macrophages [188].

HIF1α influences autophagy [189, 190]. Autophagy is an 
important process to sequester damaged organelles, protein 
aggregates, or bacteria in a double-membrane-bound vesi-
cle, the autophagosome. The fusion of the autophagosome 
with lysosomes results in the degradation of the sequestered 
material and replenishment of the host cell nutrient pool by 
the degraded products [191, 192]. Depending on the bacte-
ria, the interaction with the autophagic pathway might be 
either detrimental or beneficial. The overall effect of HIF1α 
on autophagy still awaits clarification, as there are conflict-
ing reports in the literature. We and others found that HIF1α 
can activate autophagy and, as a consequence, bacterial deg-
radation [190, 193]. In contrast, during Histoplasma capsu-
latum infection, HIF1α decreased autolysosome maturation. 
However, this also led to containment of the pathogen, as H. 
capsulatum exploited the autophagic pathway for its own 
survival [194]. Further research is required to understand 
the different effect of HIF1α and/or hypoxia on autophagy 
in the different infection models.

In summary, an infected host cell uses several mecha-
nisms to fight invading bacteria under oxygen-limiting con-
ditions (Table 2). While several pathways/factors have been 
already identified, other still await identification. One of 
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these factors might be itaconate, which is generated from 
cis-aconitate by the cis-aconitate-decarboxylase (encoded by 
the immune-responsive gene 1 [IRG1]) and possesses anti-
microbial activity [195–197]. Our data indicate that infec-
tion with Legionella pneumophila or C. burnetii resulted in 
an increased level of itaconate, supporting previous reports 
[196]. Its antibacterial activity is at least partially mediated 
by inhibition of the glyoxylate shunt, which is necessary 
for bacteria to survive intracellularly [198]. Several patho-
gens encode genes required for itaconate degradation. These 
genes are important for the intracellular survival of the cor-
responding pathogens [199], indicating an important role of 
itaconate in the containment of infections. However, hypoxia 
diminished itaconate levels otherwise induced by infection 
with L. pneumophila or C. burnetii. Importanly, we observed 
bacterial replication only under normoxia and, thus, in the 
presence of itaconate [95]. This indicates that the itaconate 
levels induced by the infection might be insufficient to pre-
vent C. burnetii and L. pneumophila replication. Our data 
suggest that the itaconate levels correlate with the oxygen 
concentration during infection. Thus, it is currently unlikely 
that itaconate contributes to the control of intracellular path-
ogens under hypoxic conditions.

HIF stabilization as therapeutic strategy 
for the control of infections in hypoxic 
tissues

As explained above, HIF1α stabilization is an important reg-
ulator of innate immune responses. Therefore, its pharmaco-
logical stabilization is a possible treatment strategy to boost 
the host defense against bacterial infection in an oxygen-
independent manner [200]. To stabilize HIF1α, inhibition of 
prolyl hydroxylases is widely used (reviewed: [201]). These 
prolyl hydroxylase inhibitors lead to HIF stabilization, mim-
icking hypoxic effects and have, therefore, been described as 
potential therapeutic agents [200, 202].

The PHD inhibitor mimosine triggered bactericidal activ-
ity in in vitro studies using human phagocytes infected with 
S. aureus [203]. Mimosine treatment increased HIF1α levels 
and ameliorated the clinical course of mice infected subcu-
taneously with S. aureus [203]. AKB-4924, a more potent 
pharmacological compound, enhanced cutaneous innate 
defenses against bacterial infections as well [204]. Its stabi-
lizing effect on HIF1α was essential for the enhanced bacte-
ricidal activity of phagocytes, which might partially depend 
on AKB-4924-mediated upregulation of antimicrobial pep-
tides and/or pro-inflammatory cytokines [204]. Inhibition 
of PHD, and, thus, stabilization of HIF1α by AKB-4924 
not only boosted cutaneous defenses, but also improved the 
host innate immune response against urinary tract infections 
[205] and protected against colitis induced bacteremia [206].

Another prolyl hydroxylase inhibitor is dimethyloxalyl-
glycine (DMOG). This substance is well tolerated and is 
able to ameliorate experimental colitis [207]. Its beneficial 
effects are, however, not limited to gastrointestinal inflam-
matory disorders. DMOG reduced the cytotoxic effects of 
P. aeruginosa infection on epithelial cells by decreasing P. 
aeruginosa internalization [208] as well. Moreover, mice 
pretreated with DMOG 48 h prior to P. aeruginosa infection 
showed reduced mortality rates [208]. These results sug-
gest that DMOG might be a possible adjunctive therapeutic 
option to combat P. aeruginosa infections.

Desferrioxamine, an iron chelator, also leads to HIF1α 
stabilization by inhibiting PHD enzyme activity [209]. Addi-
tion of desferrioxamine to human-derived macrophages 
alters their cellular metabolism by increasing glycolysis 
in a HIF1α-dependent manner [210] in uninfected, LPS-
stimulated, and M. tuberculosis-infected macrophages. In 
early stages of M. tuberculosis infection, desferrioxamine 
increased the immunological function of macrophages by 
boosting IL-1β through HIF1α [210]. Therefore, desferri-
oxamine might serve as a possible adjunctive antimicrobial 
treatment option. However, the possible side effects, like 
anaphylaxis, anemia, hearing loss and retinopathy have to 
be taken into account [211]. Inhibition of PHD and HIF sta-
bilization holds potential as an adjunctive therapeutic agent. 
However, therapeutic stabilization of HIF1α has to be tai-
lored individually. For instance, in a model of progressive 
pulmonary tuberculosis in BALB/c mice, the blockage of 
HIF1α worsened the disease during the early phase of infec-
tion, while it decreased bacterial load during late tubercu-
losis [212].

Other bacteria thrive under hypoxia

Although hypoxia damages oxygen-dependent bacteria, 
induces HIF accumulation and activity, leads to increased 
release of pro-inflammatory cytokines and antimicrobial 
peptides, and prolongs the survival of neutrophils, it is not 
always detrimental to pathogens. First, several antimicro-
bial pathways such as NOS2 and PHOX require oxygen to 
produce their toxic compounds. Second, bacterial microor-
ganisms frequently develop strategies to adapt to hypoxic 
conditions and to benefit from the low O2 level at the site of 
infection (Table 2).

In the case of Shigella flexneri, the local depletion of oxy-
gen due to the aerobic respiration of the bacteria incapaci-
tated the Ipa (invasion plasmid antigen)-dependent secretion 
of effector molecules and, thus, the virulence of Shigella 
flexneri, but at the same time promoted its local prolifera-
tion and the establishment of microcolonies within the gut 
tissue [34].
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Furthermore, there is evidence that low oxygen condi-
tions support the replication of Salmonella enterica sero-
var Typhimurium within macrophages. Hypoxia increased 
the activity of the Salmonella pathogenicity island 2 (SPI-
2)-encoded type III secretion system and simultaneously 
impaired the activity of the antimicrobial enzymes NOS2 
and PHOX ( [33]; Fig. 3; Table 2). At this stage, the role of 
HIF1α in macrophages during Salmonella pathogenesis is 
unexplored and requires further investigation. In addition, 
the mechanisms by which hypoxia increased SPI-2 activ-
ity are unclear and warrant further research. Moreover, the 
metabolic requirements that allow Salmonella survival and 
replication under low oxygen conditions remain elusive. The 
ability of Salmonella to generate all its metabolites from 
simple carbon, nitrogen, and sulfur sources [213] and the 
expression of high-affinity cytochromes [213] might be the 
prerequisites that enable Salmonella to thrive within low 
oxygen environments.

Low oxygen conditions were also reported to impair anti-
microbial activity of macrophages directed against E. coli 
and S. aureus (Fig. 3) [214]. In addition, hypoxia impaired 
the regular function of mitochondria [214]. It is known that 
uncoupling of the electron transport chain and mitochondrial 
ROS production can contribute to the antimicrobial activity 
of macrophages [215–217]. Currently, it is, however, unclear 
which mitochondrial function is specifically impaired under 
hypoxic conditions.

Concluding remarks

In this review, we attempted to shed light on the complex 
and diverse roles of oxygen in host–pathogen interaction. 
Low levels of oxygen trigger HIF-dependent pathways in 
host cells, which contribute to containment of bacterial rep-
lication and spreading. This is mainly mediated by upregula-
tion of antimicrobial peptides or molecules and the alteration 
of the host immune response. In recent years, first examples 
demonstrated that bacterial containment under hypoxia can 
be accomplished by the depletion of metabolites caused by 
alteration of the host cell metabolism. A major challenge for 
future research will be to increase our understanding of the 
complex interplay between metabolites, immune responses 
and control of intruding pathogens.

Low oxygen environments can also be beneficial for the 
invading pathogen, as several antimicrobial effectors, such as 
PHOX and NOS2, depend on oxygen for production of their 
toxic products. Therefore, hypoxia might impede elimination 
of bacteria and might even result in increased replication 
under hypoxic condition or trigger bacterial dormancy. In 
this state, the bacteria can survive for a long period of time 
and are even protected from antibiotic treatment [218, 219]. 
As bacterial dormancy is the main cause for recurring and/

or chronic infections, the hypoxia-induced bacterial contain-
ment might come with a high cost for the patient. It will be 
of major importance to increase our understanding of how 
bacterial dormancy and the re-entering into the replication 
mode are regulated under hypoxic conditions. As bacterial 
dormancy is a major cause for antibiotic inaccessibility, this 
knowledge might allow developing novel therapeutics.

The picture is even more complex, as the pathogens have 
evolved mechanisms to overcome and modulate the hypoxic 
conditions. Thus, the pathogens rely on oxygen sensors to 
adapt to hypoxic conditions. These sensors are mainly two 
component systems and allow the pathogen to transcription-
ally react to changes in oxygen availability. Genes important 
for bacterial metabolism, for the induction of bacterial dor-
mancy, and for virulence factors are transcribed. As differ-
ent pathogens have distinct metabolic needs and virulence 
factors, the host–pathogen interaction under hypoxia has to 
be analyzed for each pathogen individually.

In addition, we are only beginning to understand the role 
of infection-induced HIF1α stabilization in host–pathogen 
interaction. This is due to the complex experimental set-up 
required to differentiate between the role of hypoxia/oxy-
gen deficiency and the infection-induced HIF stabilization. 
Studies employing HIF stabilization agents may especially 
interesting to address this issue. From these studies, new tar-
gets and therapeutic strategies might emanate, which allow 
targeting of pathogens in their hypoxic niche. However, 
therapeutics targeting hypoxia and/or HIF also have to be 
tailored individually for each pathogen and site of infection 
and will not be available off the shelf.
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