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Abstract
Inflammation and cancerogenesis are strongly interconnected processes, not only because inflammation promotes DNA 
instability, but also because both processes are driven by pathways such as NF-kB, STAT3, mTOR and MAPKs. Interestingly, 
these pathways regulate the release of pro-inflammatory cytokines such as IL-6, TNF-α and IL-1β that in turn control their 
activation and play a crucial role in shaping immune response. The transcription factor p53 is the major tumor suppressor that 
is often mutated in cancer, contributing to tumor progression. In this overview, we highlight how the interplay between pro-
inflammatory cytokines and pro-inflammatory/pro-oncogenic pathways, regulating and being regulated by UPR signaling and 
autophagy, affects the stability of mutp53 that in turn is able to control autophagy, UPR signaling, cytokine release and the 
activation of the same oncogenic pathways to preserve its own stability and promote tumorigenesis. Interrupting these posi-
tive feedback loops may represent a promising strategy in anticancer therapy, particularly against cancers carrying mutp53.
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Introduction

Pro-inflammatory and anti-inflammatory cytokines such 
as IL-6, IL-1β, TNF-α and IL-10 deeply shape immune 
response; therefore the dysregulation of their produc-
tion may lead to immune dysfunction, favoring the onset 
of inflammatory diseases including cancer [1–3]. NF-kB 
(nuclear factor kappa-light chain- enhancer of activated B 
cells), MAPKs (mitogen-activated protein kinases), mTOR 
(mammalian target of rapamycin) and STAT3 (signal trans-
ducer and activator of transcription 3) are among the most 
important pathways that regulate cytokine production and, 
interestingly, also strongly involved in the control of carcino-
genesis. These pathways that bridge inflammation to cancer 
may be activated in response to cellular stress caused by the 

presence of oncogenes or by the sensing of PAMPs (path-
ogens-associated molecular patterns) or DAMPs (damage-
associated molecular patterns), molecules that also trigger 
endoplasmic reticulum (ER) stress and the unfolded pro-
tein response (UPR) [4]. UPR is an adaptive response that 
helps cells to survive in the face of stress whose signaling 
initiates from proteins that traverse the ER membrane and 
act as cellular sensors, namely: inositol requiring enzyme 1 
(IRE1, also known as ERN1), activating transcription factor 
6 (ATF6), and PKR-like ER kinase (PERK, also known as 
EIF2AK3) [4]. These three sensors activate an integrated 
transcriptional program that drives multiple processes, 
including the activation of the oncogenic pathways and the 
secretion of the cytokines above reported [5, 6]. Interest-
ingly, cytokines released following UPR activation may in 
turn trigger UPR and through its signaling or directly can 
reactivate the same oncogenic pathways that promote their 
production, in a positive feedback loop [7] (Fig. 1).

Mutations in the TP53 oncosuppressor gene are very 
common in cancers, as a normal functioning p53 does not 
allow cells to undergo oncogenic transformation [8]. In addi-
tion, in cancers in which p53 is not mutated, wild-type (wt) 
p53 protein may be functionally inactivated by other mecha-
nisms [8, 9]. For example, wtp53 is inhibited or degraded 
due to the binding to viral proteins, in some virus-associated 
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cancers [10, 11]. Besides losing the wild-type oncosuppres-
sor functions, some mutant (mut) p53 proteins acquire onco-
genic properties, defined as gain of function (GOF) [8]. This 
implies that mutp53 may promote tumor invasion, metas-
tasis, chemoresistance and inflammation [12], e.g., it has 
been reported that mutp53 may alter cancer cell secretome 
and consequently modulate the characteristics of the tumor 
microenvironment [13]. Among other effects, mutp53 has 
been reported to trigger UPR, in particular the ATF6 branch 
[14] that shares with the other two arms, IRE1alpha and 
PERK, the capacity to activate the pro-inflammatory/pro-
oncogenic transcription factors NF-κB, STAT3, MAPK and 
mTOR and to positively regulate pro-inflammatory cytokine 
production [7], strengthening the link between inflammation 
and cancer [15]. All the above-mentioned pathways may be 
activated by mutp53, which earns in turn a greater stabil-
ity, a distinctive trait of its oncogenic function. Thus, these 
pathways may prevent mutp53 degradation [14, 16], for 
example, by negatively regulating macroautophagy, a pro-
cess known to be involved in mutp53 degradation [17–19] 
(Fig. 2). As mutp53 is often misfolded, its hyperstability 
may also depend on the presence of chaperoning molecules 
such as HSP90 [20, 21] whose expression can be regulated 
by pathways such as PI3K/AKT/mTOR [22] and STAT3 [23, 
24] (Fig. 3).

On the basis of the above background, the aim of this 
perspective is to discuss how the interplay between UPR, 
inflammatory cytokines and pro-inflammatory/pro-onco-
genic pathways may affect mutp53 expression levels by 
regulating its stability and/or degradation.

The interplay between UPR, autophagy, 
pro‑inflammatory cytokines and pro‑oncogenic 
pathways regulates mutp53 expression level

When unfolded/misfolded proteins accumulate into the ER, 
they attract GRP78/BIP detaching it from IRE1α, PERK 
and ATF6 UPR sensors, resulting in their activation and 
UPR triggering. This process helps cells to be relieved 
from stress, although when it is too prolonged or intense 
it may induce cell death [4]. Among its protective func-
tions, UPR may reduce protein translation, increase ER 
chaperone transcription, promote mRNA degradation and 
induce macroautophagy to eliminate misfolded proteins 
and damaged organelles [25]. Macroautophagy (hereafter 
referred to as autophagy) is indeed a catabolic process, 
during which unwanted materials are enclosed in double 
membrane vesicles that are targeted to lysosomes for deg-
radation. Autophagy has a key role in maintaining essential 
biological activities during cellular stress and plays also a 
role in physiological processes; therefore, its dysregulation 
predisposes to a variety of human diseases, including cancer 
[26]. Autophagy regulation is highly dependent on rewir-
ing of tumor metabolism, as demonstrated by the fact that 
mTOR and AMPK cellular sensors are both the master regu-
lators of autophagy [27]. The autophagic process may have 
a multifacet role in cancer, depending on the cell context, 
the tumor types and stage, as well as the nature of stress and 
the metabolic and environmental status of the cancer cells 
[28]. In this regard, it has been reported that autophagy may 
inhibit the first steps of cancerogenesis by reducing reactive 
oxygen species (ROS) and DNA damage, thus preventing 
oncogenic transformation [29].

On the other side, autophagy promotes survival of estab-
lished cancers, especially when they undergo chemother-
apy/radiotherapy, or even contributes to immunogenicity of 
cell death in the course of those treatments [28–30]. The 
ER stress/UPR-dependent autophagy induction has been 
reported to promote the degradation of mutp53 [31, 32] that 
is able in turn to counteract this catabolic process to prevent 
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Fig. 1  Interplay between oncogenic pathways (NF-kB, mTOR, 
STAT3 and p38MAPK), ERS (endoplasmic reticulum stress)/UPR 
(unfolded protein response) and pro-inflammatory cytokines
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Fig. 2  Autophagy induces mutp53 degradation. Mutp53 may activate 
the oncogenic pathways to inhibit autophagy and therefore prevent its 
degradation. The results of that interplay further link inflammation to 
cancerogenesis
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its own elimination [33]. Moreover, mutp53 has been shown 
to manipulate UPR, inhibiting its pro-death functions while 
stimulating the pro-survival ones through the activation 
of ATF6 [14], although the impact of ATF6 activation on 
autophagy in this context remains to be explored. UPR sign-
aling may contribute to the activation of NF-κB, STAT3, 
MAPK and mTOR, thus regulating the cytokine release 
[34] that both influences and is influenced by autophagy. 
Of note, ATF6 has been shown to synergize with toll-like 
receptor (TLR) signaling in the activation of NF-κB, stimu-
lating the production of pro-inflammatory cytokines while 
reducing the anti-inflammatory ones [35] or contribute to 
the activation of p38 MAPK to regulate cytokine secretion 
[36]. Intriguingly MKK3, a kinase involved in the phos-
phorylation of p38 MAPK, is one of mutp53 targets [37] 
whose inhibition promotes mutp53 degradation through 
autophagy [31]. These findings allow us to hypothesize that 
ATF6 activation by mutp53 may contribute to p38 phos-
phorylation also to counteract autophagy. In addition, ATF6 
may activate mTOR [38], the master negative regulator of 
autophagy, previously reported to be activated by mutp53 
to inhibit autophagy [39]. These results point out to a close 
relationship between UPR, pro-oncogenic pathways regulat-
ing the release of pro-inflammatory cytokines, autophagy 
and mutp53 stability that deserves to be better explored in 
future studies.

Cross talk between NF‑κB, UPR, autophagy 
and mutp53

The NF-κB family of transcription factors, composed of five 
members designated as p65 (RelA), RelB, c-Rel, NF-κB1 
and NF-κB2, plays an essential role in regulating inflamma-
tion. Even if its primary function it to sustain this process 
by inducing the transcription of pro-inflammatory cytokines 
and contributing to the activation of NRLP3 inflammosome, 
NF-κB may also restrain inflammation, for example by pro-
moting the p62/SQSTM1-mediated removal of damaged 
mitochondria [40]. Prolonged inflammation is associated 
with an increased risk of cancer, as it favors mismatch repair 
abnormalities or alters DNA methylation, and DNA hyper-
methylation has been reported to precede large granular lym-
phocytic leukemia by activating the NF-κB-Myc axis [15]. 
NF-κB is activated mainly by mutations of the upstream 
components of this pathway, as observed in a plethora of 
hematological as well as solid cancers [41]. Interestingly, 
NF-κB that promotes the release of pro-inflammatory 
cytokines may in turn be activated by them, in a regulatory 
circuit that plays a critical role in cancerogenesis. Indeed, an 
inflammatory microenvironment paves the way to processes 
such as endothelial to mesenchymal transition (EMT) and 
strongly contributes to the impairment of immune response, 
i.e., by skewing macrophage polarization into M2/TAM, 

cells that sustain tumor instead of fighting it [20, 42, 43]. 
Of note, oncogenes such as RAS and Myc have been shown 
to promote a pro-inflammatory environment and a similar 
effect may be induced by mutp53, which for that reason may 
acquire oncogenic properties. While wtp53 interacts with 
NF-κB and monitors that inflammatory response is prop-
erly balanced, maintaining the defense against pathogens 
and preventing the onset of inflammatory diseases, mutp53 
interaction with NF-κB dysregulates its activation to cre-
ate an inflammatory microenvironment that promotes tumor 
progression [42]. Mutp53 may induce elevated expression 
of CXCL5, CXCL8 and CXCL12 [13, 44, 45], increase the 
expression of NF-κB2 [46], stimulate NF-κB transcriptional 
activity in cancer cells exposed to TNF-α [47] or interact 
with NF-κB upon chronic TNF-α signaling to simultane-
ously activate pro-tumorigenic genes [48]. It has also been 
reported that mutp53 sustains TNF-α-induced NF-κB sign-
aling through the transcriptional repression of DAB2IP, a 
cytoplasmic inhibitor of NF-κB, increasing the secretion of 
inflammatory chemokines which recruit lymphocytes in the 
tumor bed and coopt them to further promote inflamma-
tion [47]. Moreover, mutp53 is able to suppress the anti-
inflammatory response by reducing the secreted interleu-
kin-1 receptor antagonist (sIL-1Ra, IL1RN), an effect that 
contributes to the chronicity of the inflammatory process 
[49]. NF-κB may be activated through UPR signaling, i.e., 
by ATF6, the UPR sensor activated by mutp53 [14] that 
may trigger NF-κB activation through the phosphorylation 
of AKT [50].

Very complex is the relationship between NF-κB and 
autophagy. Interestingly, several components of the NF-κB 
pathway such as IKKa, IKKb and IKKg may be degraded 
through autophagy, following HSP90 inhibition [51]. NF-κB 
has been reported to inhibit autophagy in a variety of cancers 
[52, 53], therefore its activation through ATF6 signaling and 
by pro-inflammatory cytokines, both induced by mutp53, 
could contribute to sustain its expression level also by inhib-
iting autophagy.

Cross talk between STAT3, UPR, autophagy 
and mutp53

Another pathway playing a crucial role in inflammation, 
cancerogenesis and immune suppression is STAT3 [54], 
whose tyrosine phosphorylation, the most critical event for 
its activation, is mediated by JAK2, even if other kinases, 
including PERK UPR sensor, are able to do so [55]. JAK2-
mediated STAT3 phosphorylation mainly occurs in response 
to the signaling mediated by pro-inflammatory and immune-
suppressive cytokines whose release is also promoted by 
STAT3 activation, in a positive feedback loop [56]. STAT3 
is a very promising target in anticancer therapy, as its inhi-
bition interrupts the release of cytokines that re-activate 
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STAT3 in immune myeloid cells, inducing immune dysfunc-
tion, or in B cells, contributing to EBV-driven immortaliza-
tion, or in established cancer cells, sustaining cell survival 
[57–60]. While it has been reported that STAT3 and wtp53 
negatively regulate each other [61, 62], recent studies have 
highlighted that STAT3 engages a cross talk with mutp53 
in which they sustain each other [24, 63, 64]. Reducing the 
release of pro-inflammatory cytokines or using monoclonal 
antibodies able to neutralize their activity could interrupt 
the harmful alliance between mutp53 and STAT3, in which 
these cytokines may act as a bridge. In previous studies, we 
have found that the interplay between STAT3 activation and 
the production of pro-inflammatory cytokines may reduce 
autophagy [65], therefore it is possible that such interplay 
could contribute to the prevention of autophagy-mediated 
mutp53 degradation.

Cross talk between mTOR, UPR, autophagy 
and mutp53

mTOR is a serine/threonine protein kinase that belongs 
to the phosphatidylinositol kinase-related kinase (PIKK) 
family and constitutes the catalytic subunit of two distinct 
protein complexes, known as mTORC1 and mTORC2 
[66]. A plethora of studies evidenced a crucial role for 
mTOR pathway in the regulation of fundamental cellular 
processes, such as protein synthesis [67], EMT [68], War-
burg effect [69], autophagy [67], immune response [70] 
and oxidative stress [71] and demonstrate that deregulated 
mTOR signaling is implicated in cancer progression as 
well as aging [72]. Interestingly, mTOR activation may 
engage a cross talk with ER stress and UPR with important 
implications in anticancer therapy [73]. A recent report 
has indicated that ATF6 branch of UPR is directly involved 
in mTOR activation [38]. Interestingly, mTOR may be also 
activated by cytokines [74, 75] and, as UPR has a key role 
in regulating the release of these molecules, UPR signal-
ing could contribute to mTOR activation also by increas-
ing the production of these cytokines. Of note, mutp53, in 
contrast to its wild-type counterpart, may support mTOR 
signaling, sustaining an oxidative environment that leads 
to uncontrolled cancer cell proliferation [76]. Indeed, it 
has been recently reported that hotspot mutp53 promotes 
the phosphorylation of the mTORC1 targets S6K1 and 
4EBP1 in both colon and non-small carcinoma cells [77]. 
Considering that mTOR is the master negative regulator of 
autophagy, it is not surprising that mutp53 may adopt sev-
eral strategies to maintain mTOR activated in an attempt 
to prevent its degradation through autophagy. On the other 
side, the stimulation of mTOR activity by mutp53 repre-
sents an Achille’s heel that makes cancer cells carrying 
mutp53 more sensitive to mTOR inhibitors [39]. This may 
have particular implications from a therapeutic point of 

view, since counteracting mTOR pathway may provide 
new therapeutic openings for clinical studies in cancer 
patients carrying the mutant TP53 gene.

Cross talk between MAPKs, UPR, autophagy 
and mutp53

The Ser/Thr mitogen-activated family of protein kinases 
(MAPKs) includes p38 (α, β, γ, and δ), c-Jun amino-
terminal kinases 1–3 (JNK1 to -3), and the extracellular 
signal-regulated kinases 1 and 2 (ERK1/2). P38 MAPK, 
one of the best studied MAPKs, may influence a multitude 
of cellular events, such as cell growth, proliferation, dif-
ferentiation and inflammation, as it plays an important role 
in the regulation of cytokines production by the immune 
cells [78]. P38 as well as the other MAPK are activated 
through ER stress/UPR signaling, promoting the secretion 
of pro-inflammatory cytokines [5] that, also in this case, 
reactivate p38MAPK and UPR, through positive feedback 
loops [79]. The release of IL-1β, IL-6, and IL-8, the most 
important cytokines promoting inflammation, is under 
the direct control of p38 MAPK [80]. MKK3, a kinase 
involved in p38MAPK activation [81], has been shown to 
be activated by mutp53 to promote tumor survival [82]. 
Interestingly, MKK3 depletion may trigger ER stress and 
autophagy, inducing mutp53 degradation and reducing 
tumor growth [31].

JNK is another MAPK activated by pro-inflammatory 
cytokines as well as by UPR signaling [5]. Tumorigenic 
mutp53 has been reported to disrupt the Daxx-ASK1 cir-
cuit that amplifies JNK signaling, making cells more toler-
ant to stress induced by TNFα [83], differently from what 
occurs for NF-κB whose activation is sustained by mutp53 
[46, 47]. Intriguingly, although in completely different cell 
contexts, we have previously shown that JNK activation 
could promote autophagy [84, 85], allowing us to specu-
late that mutp53 could reduce JNK activation, once again 
to counteract its degradation through this catabolic route.

Previous findings have suggested that mutp53 may 
slightly influence ERK1/2 phosphorylation [86], although 
this molecule may be activated downstream of the meva-
lonate pathway that is known to be sustained by mutp53 
[16] as well as by pro-inflammatory and anti-inflamma-
tory cytokines [87]. More investigations are required to 
clarify the role of ERK1/2 on autophagy, as it has been 
reported to either negatively or positively regulate this 
process in cancer cells [88], depending on the stimuli and 
the cell types [89]. Also the interplay between mutp53 
and ERK1/2 needs to be better elucidated, although we 
speculate that, given the controversial role ERK1/2 on 
autophagy, mutp53 could avoid interfering with its acti-
vation to preserve its own stability.
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Concluding remarks and potential implications 
for cancer therapy

Inflammation may promote cancer onset and progression as 
well as immune dysfunction. Inflammation is orchestrated 
by the interplay between several pro-inflammatory cytokines 
and oncogenic pathways, including NF-kB, MAPK, mTOR 
and STAT3. These pathways can be activated by oncogenes, 
PAMPs or DAMPs, also through the triggering of ER stress/
UPR signaling that thus contributes to the pro-inflamma-
tory cytokine release. Besides shaping a pro-inflammatory/
immune suppressive microenvironment, these cytokines may 
reactivate the oncogenic pathways that regulate their pro-
duction, in positive feedback loops that ultimately regulate 
autophagy and the expression of chaperones such as HSP90. 
These complex interactions may influence the expression 
level of mutp53, whose hyperstability is a prerequisite of its 
GOF. Consequently, interrupting the interplay between UPR, 
oncogenic pathways, and pro-inflammatory cytokines may 
affect autophagy and HSP90 expression and concomitantly 
reduce pro-oncogenic inflammation and the stability of 
mutp53. Also considering that mutp53 may in turn positively 
influence the activation of these pathways and thus downreg-
ulate it may help to break the bridge between inflammation 
and cancer. Inhibitors of specific oncogenic pathways such 
as AG490 or tocilizumab WP1066 for STAT3, everolimus 
or NVP-BEZ235 for mTOR or LY3007113 for p38MAPK or 
targeting chaperones such as HSP90 by 17-AAG or deriva-
tives, used alone or in combination, may be promising in 
anticancer therapy, as they are able to interfere with mul-
tiple aspects of cancer biology (Fig. 4). Of note, many of 
these inhibitors are already in pre-clinical or clinical trials 

in which they are showing promising results. Antibodies 
against pro-inflammatory cytokines or their receptors may 
be also exploited to counteract inflammation and the activa-
tion of cancer-promoting molecular pathways that, among 
other functions, may contribute to mutp53 stability (Fig. 4).
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