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Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling 
viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their 
receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review 
of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will 
give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, 
highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we 
will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN 
induced antiviral activities.
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Introduction

Innate immune responses are the first host defense against 
viral infections. Conserved pathogen structures are recog-
nized by pattern recognition receptors (PRRs) on the host 
cells [1], that recruit a variety of adaptor proteins to signal 
downstream and activate the IFN response. The IFN sys-
tem is present in all vertebrates and is central to antiviral 
responses [2]. IFNs are classified into three different families 
according to their receptor usage, mode of induction, bio-
logical activity and amino acid sequence [3]: type I, type II 
and type III IFNs. Type I IFNs, originally identified by their 
antiviral activity [4], include multiple IFN-α subtypes (13 
in humans and 14 in mice), and a single IFN-β, and IFN-ε, 
IFN-κ, IFN-ω (humans) and IFN-ξ (mice) subtypes [5]. In 
mammals, type I IFN (IFN-I) response is essential for innate 
antiviral responses. They all bind to the same ubiquitously 
expressed receptor, IFNAR receptor, but they differ in their 
biological functions, due partially to the different binding 

affinities to the IFNAR receptor [6]. This differences in 
affinity results in different downstream signaling cascades 
[7]. For IFN-α subtypes, the quantity of the receptor on the 
surface of a target cell correlates also with their biological 
activities suggesting that the amount of IFNAR expression 
might compensate the weak affinity of some IFN-α subtypes 
[6, 8].

Type II IFNs include only one member, IFN-γ, secreted 
by activated T cells, natural killer (NK), NKT cells and den-
dritic cells with pro-inflammatory and immunomodulatory 
functions [9]. In general, type II IFN acts as a link between 
the innate immune response and the activation of the adap-
tive immune response [10]. Type III IFNs include IFN-λ1, 
IFN-λ2 and IFN-λ3, and, although genetically different to 
type I IFNs and signaling through different receptors, they 
are induced by PPRs and activates antiviral pathways similar 
to type I IFNs [11, 12].

Viruses use multiple mechanisms to by-pass the host IFN 
responses so that they can replicate and continue their infec-
tious cycle. The present review will focus on how viruses 
interfere with IFN-I responses. Viruses can act at different 
levels of the signaling cascades involved in IFN-I responses. 
They can inhibit the induction of the IFN response, block 
the IFN signaling, and/or interfere with the antiviral activi-
ties induced by IFN. We will review some of the emerging 
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themes and new insights from the past years of the IFN eva-
sion mechanism employed by viruses in these contexts.

Type I IFN induction

The antiviral state of an infected cells is attained by the ini-
tial induction of type I IFN expression, followed by IFN 
signaling transduction, which finally leads to the expres-
sion of multiple genes (Fig. 1). IFNs are the main group 
of cytokines secreted by host cells in response to the pres-
ence of “aberrant” nucleic acids such as double-stranded 
RNA (dsRNA) molecules generated as viral intermediates 
during viral transcription in infected cells, to CpG DNA, 

or uncapped ssRNA with 5′ triphosphate present in some 
viruses. These elements are known as pathogen-associated 
molecular patterns (PAMP) [13, 14] that can be recognized 
by PRRs. Four main types of PRRs have been described to 
detect virus-derived genetic materials: Toll-like receptors 
(TLRs) 3/7/8/9 [15]; retinoic acid-inducible gene-I (RIG-
I) like receptors (RLRs) which include the cytosolic sen-
sor RIG-I, the melanoma differentiation-associated factor 5 
(MDA-5) and laboratory of genetics and physiology (LGP2) 
[16]; and nucleotide oligomerization domain-like receptors 
(NLRs) [17] and the cytosolic DNA sensors [18]. For a host 
to establish an antiviral state it first requires the production 
of type I (α/β) IFNs in direct response to virus infection 
and recognition of virus-derived genetic material. Hence, 

Fig. 1   IFN-I induction and viral counteracting actions. Viral motifs 
(e.g. dsRNA), are recognized by PPRs. This leads to the activation 
of adaptor proteins such as NFκB, TBK-1, IKKε and AP-1. TBK-1 
and IKKε phosphorylate IRF3, which translocate to the nucleus and 
induce IFN-I expression. In a second IFN signaling wave, IRF7 is 

phosphorylated and translocated to the nucleus, creating an amplifica-
tion loop of IFN-I induction. Several viruses have developed mecha-
nisms to block several steps of this IFN induction cascade, indicated 
in red blades in the figure
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TLR-7 and 8 become active with the detection of ssRNA in 
the acidic compartment of endosomes [19] while TLR3 and 
9 are receptors for dsRNA and unmethylated DNA, respec-
tively [20].

Both RIG-I and MDA-5 sense cytosolic dsRNA. RIG-I 
also specifically senses 5′ triphosphate RNA generated dur-
ing infection, while MDA-5 detects longer dsRNA sequence 
generated during virus replication. RIG-I and MDA5 contain 
two caspase activation and recruitment domains (CARDs) 
at the N-terminal. Activation of RIG-I and MDA5 liberates 
these CARD domains and drives the interaction of these 
tandem CARDs with the CARD of the mitochondrial acti-
vation signaling (MAVS) protein [21]. MAVS aggregates 
in filaments that provide a platform for the recruitment of 
the elements involved in the subsequent signaling cascade 
such as the tumor necrosis factor receptor-associated factor 
(TRAF) 3 and TRAF6, the TANK binding kinase 1 (TBK1) 
and IKKε ultimately drives the activation of transcription 
factors as IRF3/7, NFκB and AP-1, leading the production 
of type I IFN and pro-inflammatory cytokines [22]. IRF3 is 
constitutively expressed in many cell types, and after phos-
phorylation, IRF-3 forms a homodimer that translocates into 
the nucleus, activating the transcription of early transcribed 
type I and III IFN genes, IFN-β, IFN-α4 and IFN-α1 [23, 
24].

The activation of IRF-7, expressed only in B cells, mono-
cytes and plasmacytoid dendritic cells (pDCs) [25], with 
high levels of expression on pDCs [26] requires a second 
IFN signaling wave to be activated by phosphorylation. IRF7 
induces the transcription of a set of delayed IFNα genes 
[24]. This creates an amplification loop in which type I IFN 
induces more IRF7, leading to the production of more IFN, 
with an important role in the generation of a potent response 
to viral infections [26].

The aberrant presence of DNA can also be sensed by 
PRRs during viral infection. Two main sensors for DNA 
during viral infection have been described so far: the IFN-γ 
inducible protein 16 (IFI16) and the cGAS cyclic-GMP-
AMP synthetase (cGAS) (reviewed in [18]). IFI16 appears 
to have a preferential affinity for quadruplex DNA structures 
[27] that can be found in some viral genomes [28]. cGAS 
recognizes the presence of DNA in the cytosol. This includes 
viral, bacterial, or leaked cellular DNA [29, 30]. Upon the 
recognition cGAS catalyze the production of cGAMP that 
interacts with the stimulator of IFN gene (STING). STING 
possesses a pocket where it binds cyclic dinucleotides such 
as cGAMP resulting in conformational changes that lead to 
activation [31]. Once activated, STING acts as an adaptor 
protein located in the ER that traffics through the Golgi to 
perinuclear regions. During trafficking, STING recruits and 
activates TBK1, which leads to IRF3 activation and type 
I IFN induction [32]. While cGAS activation of STING 
involves the second messenger cGAMP, IFI16 appears to 

interact with STING to induce TBK1-dependent IFN induc-
tion [33].

IFN signaling in antiviral defense

All type I IFNs signal through the same heterodimeric 
transmembrane receptor termed the IFNα receptor 
(IFNAR), containing the subunit 1 and 2 (IFNAR1 and 
IFNAR2). In a first step, IFN-I binds with high affinity to 
IFNAR1, and then recruit IFNAR2 [34]. IFNAR engage-
ment with IFN-I promotes the induction of an antiviral 
state in cells. This involves the upregulation of products 
from a large subset of genes named IFN-stimulated genes 
(ISG) that protect the cell from viral replication. Broadly 
speaking, ISG products modulate and mediate IFN activity 
in the cells. This includes for instance cooperating in PRR 
recognition of viral PAMPs, stabilizing signaling com-
plexes to improve their resistance to degradation, stopping 
virus entry, blocking viral capsid formation, impairing 
trafficking and budding of virions from the infected cells, 
but also modulating the IFN response to avoid the toxicity 
of these potent immune mediators. An important feature of 
the IFN signaling is the rapid speed at which the response 
happens, which is possible because protein synthesis is not 
required in an initial stage.

The interaction of type I IFNs with their universally 
expressed receptor (IFNAR) elicits an intracellular signal-
ing cascade through the Janus protein kinase (JAK) family 
members, JAK and Tyk2, that successively phosphoryl-
ate signal transducer and transcription activator (STAT) 
family proteins [35]. The phosphorylated STAT1/STAT2 
heterodimer associates with interferon regulatory fac-
tor 9 (IRF9) to form the transcriptional factor complex 
ISGF3, which translocate to the nucleus and binds the 
IFN-response elements (ISRE) in ISG promoters leading 
to the expression of ISG products [36] (Fig. 2). ISGs tar-
get different steps of viral replication, amplifying the IFN 
signaling cascades to strength the antiviral activities [37]. 
Hence, the ISGs can exert a complex and wide range of 
functions, providing a significant redundancy in the system 
that fights against viral infections (reviewed in [38]).

The so-called classical ISGs pathways belong to one of 
the following three gene families: Mx proteins, 2′,5′-oli-
goadenylate synthetase (2-5OAS) or ds RNA-activated 
protein kinase (PKR) [39, 40]. Evidences of the role of 
these genes in establishing an antiviral state came from 
studies of infected knock out mice for PKR, 2-5OAS or 
Mx, individually and/or together [41]. The Mx family 
GTPases includes Mx1 and Mx2 proteins that function 
as an inhibitor of viral entry. Mx1 acts before genome 
replication at a very early time of the virus life cycle, 
inhibiting the replication of several viruses belonging to 
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Orthomyxo-, Paramyxo-, Rhabdo- and Bunyaviridae fami-
lies by interfering with the traffic or synthesis of the viral 
ribonucleoprotein complexes [42]. Mx2 acts as an antiret-
roviral protein by inhibiting chromosomal integration, a 
key event in the retrovirus life cycle [43].

The oligoadenylate synthetase (OAS)-latent RNase 
(RNase L) pathway is another IFN-inducible pathway 
that provides the cell with an effector mechanism upon 
recognition of viral dsRNA (reviewed in [44]). When 
the OAS senses dsRNA activates the production of 

2′,5′-oligoadenylates that act as a second messenger on 
the inactive monomeric RNaseL [45]. The 2′,5-oligoad-
enylates binding to RNase L produces a catalytically active 
dimer that cleaves ssRNA [46]. This leads to the transla-
tional arrest and prevent viral replication and spreading 
[47].

RNA-activated protein kinase is an ISG product that 
detects cytosolic dsRNA. PKR recognition of its dsRNA 
substrate leads to dimerization and autophosphoryla-
tion which in turn leads to the phosphorylation of the 

Fig. 2   Type I IFN signaling and viral countermeasures. IFN binds to 
the receptor IFNAR and triggers a signaling cascade that is summa-
rized in this figure. Viruses has developed strategies to counteract dif-

ferent steps on this signaling cascade. It is marked in red blades the 
main signaling targets of viruses
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eukaryotic initiation factor 2α (eIF2α) required for trans-
lation initiation [48]. eIF2α phosphorylation results in the 
shutdown of all translation of 5′capped mRNA, thus pre-
venting the synthesis of viral proteins. This also usually 
results in the formation of stress granules (SG) that consist 
of the accumulation of RNA and proteins from the stalled 
translation complexes. SG formation has been linked to 
antiviral responses, and their formation is often inhibited 
in viral infections. In general, the antiviral activity of PKR 
is related to apoptosis induction [49], regulation of IFN-β 
synthesis and NF-κΒ pathway [50–52], serine kinase activ-
ity for STAT1 that also regulate the IFN-I signaling path-
way [53].

A family of proteins with a wide range of anti-viral func-
tions are the interferon-induced proteins with tetratricopep-
tide repeats (IFITs) [54]. These genes are expressed at very 
low basal levels, but their transcription is rapidly increased 
after activation by IFN signaling. IFIT detect the lack of 
2′-O-methylation on RNAs species, a methylation absent 
in some viral RNA but present in eukaryotic mRNA [55]. 
IFIT1 has also been shown to bind to the 5′-triP end of some 
viral RNA [56]. IFIT1 can sequester viral RNA or interact 
with the eukaryotic translation initiation factor 3 to inhibit 
the translation initiation of IFIT1-bound RNA species.

In addition to these ISGs, one highly upregulated gene in 
the initial stage of the antiviral immune response is ISG15 
(interferon-stimulated gene 15), which encodes an ubiquitin-
like protein involved in a post-translational process termed 
ISGylation [57]. This process allows ISG15 to bind cova-
lently to a range of target proteins, both viral and cellular 
[58], by a process that is reversible due to the action of the 
ubiquitin-specific protease 18 (USP18), an event regulated 
by type I IFN [59]. ISGylation appears to modulate the 
activity of multiple elements involved in the IFN response. 
For instance, ISGylation has been shown to sustain STAT1 
or IRF3 activity [60, 61], downregulate the turnover of 
ubiquitinated proteins [62], but also to negatively regulate 
RIG-I signaling [63]. ISG15 acts during viral replication 
by interfering with the endogenous proteins that the virus 
needs to replicate. Thus, ISG15 conjugates to the eukaryotic 
factor 4E (eIF4E) homologous protein (4EHP) that binds 
to the capped mRNA, inhibiting in this way the viral RNA 
translation of those viruses that contains a capped positive-
sense RNA such as flaviviruses [64]. ISG15 also exists as 
an unconjugated protein that acts as a cytokine, regulating 
viral replication and host responses [65, 66].

The role of the ISGs members mentioned above clearly 
illustrates the breadth and diversity in the function of this 
protein group. A database has been created, called Inter-
ferome (https​://www.inter​ferom​e.org/inter​ferom​e/home.
jspx), in which ISGs are catalogued and incorporated into a 
database, based on the information obtained from all pub-
lished reports where cells were treated with IFN, Thus, this 

database will allow to identify ISG signatures from high-
throughput data, having implications for determining the 
role of ISGs. Viruses employ mechanisms that impair ISG 
activity to enhance their evasion from the IFN system. The 
mechanisms will be discussed in another section of this 
review.

Viral evasion strategies: inhibition 
of interferon induction

As discussed previously, PRR activation leads to the produc-
tion of IFN-I, -III, and pro-inflammatory cytokines such as 
IL-1β. The present section will be centered on how viruses 
affect IFN-I induction. Typically, virus genetic material trig-
gers IFN-I induction when recognized by viral nucleic acid 
sensors that are membrane bound or present in the cyto-
plasm/nucleus. This recognition leads to activation of sign-
aling cascades that converge towards the induction of IFN-I 
production in infected cells. Viruses are known to interfere 
at every point of this process. Viruses can interfere with 
the sensing of their genetic material, impair the signaling 
cascade that leads to IFN-I induction, and/or antagonize the 
activity of the transcription factors involved in IFN-I gene 
expression. The present section aims at providing a non-
exhaustive overview of some of the most commonly used 
viral mechanisms to counter IFN-I induction in the host with 
a focus on recent findings in the field.

Virus interference with viral sensors of genetic 
material

Viruses use different mechanisms to counteract the recogni-
tion of their genetic material by the host cell so that IFNs are 
not induced (Table 1). Viruses can sequester, modify or even 
degrade their nucleic acids to avoid detection by PRRs. For 
instance, during replication most flaviviruses create vesicu-
lar structures in the ER membrane which physically shield 
the viral genetic material from cytosolic RLRs [67–69]. 
Influenza A virus (IAV) uses the nucleus for replication, 
atypically for an RNA virus, so that its genetic material 
remains hidden from cytosolic RLRs [70]. Vaccinia virus 
(VV), a large double-stranded DNA virus has the peculiar-
ity of replicating in the cytoplasm, where DNA sensors like 
cGAS are present, which potentially renders the viral genetic 
material susceptible to recognition by PRR. VV replication, 
however, occurs in organelles similar to micronuclei [71] 
that probably render viral DNA inaccessible to recognition 
by cytoplasmic DNA sensors. Rotaviruses (RV) concentrate 
their replication in a cytoplasmic structure called viroplasms 
where dsRNA genome is generated for packaging so that it 
is not exposed to the cytoplasmic PRR [72].

https://www.interferome.org/interferome/home.jspx
https://www.interferome.org/interferome/home.jspx
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Many viruses also encode proteins that help conceal their 
genetic material from PRR. Some viruses possess dsRNA 
binding proteins that could potentially sequester these 
PAMPs from PPR recognition, such as VP35 from Ebola 
virus or σ3 from reovirus [73, 74]. The encapsidation of the 
viral RNA can also impair RLR recognition. For instance, 
IAV nucleoprotein and polymerase prevents RIG-I binding 
to viral RNA during transit through the cytoplasm [75]. IAV 
NS1 protein also possesses a dsRNA binding site that pre-
vents recognition by RIG-I [76]. Calicivirus and picorna-
virus ssRNA ( +) is covalently linked to a capping protein 
that could prevent recognition of the 5′ viral RNA extremity 
by RIG-I [77]. Lassa virus (LASV) nucleoprotein (NP) can 
act as a capping enzyme with exonuclease activity specific 
for dsRNA, which has been shown to antagonize IFN induc-
tion [78, 79]. Other viruses can modify their 5′tri-P motifs 
recognized by RIG-I to evade this cytoplasmic RNA sensor. 
Hantaan virus, Crimean-Congo hemorrhagic fever virus and 
Borna disease virus can process their 5′ genome extremity 
to form 5′mono-P forms, evading RIG-I recognition [80]. 
Poxvirus decapping enzymes D9 and D10 can prevent the 
accumulation of dsRNA, an intermediate necessary in viral 
replication, and thereby evade RLR recognition [81]. Mea-
sles virus (MeV) encodes for the non-structural C protein 
that can impair IFN response by modulating viral RNA 
replication [82] and improving the polymerase processivity 
[83], thus probably limiting the amount of viral material 
recognizable by cytosolic PRR.

Another mechanism employed by viruses to limit detec-
tion by PRR is to interact with these sensors to impair their 
activation. The Kaposi’s sarcoma-associated virus (KSHV) 
uses the tegument protein ORF52 to bind to cGAS and 
inhibit cGAMP production, the second messenger used for 
STING (stimulator of interferon response cGAMP inter-
actor 1) activation [84]. Homologues of ORF52 in other 

gammaherpesviruses have also been described to act simi-
larly, indicating that inhibition of this PRR pathway is proba-
bly shared by gammaherpesvirus. The Herpes simplex virus 
1 (HSV-1) tegument protein VP22 has also been shown to 
inhibit cGAS enzymatic activity, indicating that other Her-
pesviridae can directly target cGAS [85]. Other viruses can 
sequester PRR so that they are unable to relocate to their 
activity site. For instance, the protein Z of new world arena-
viruses binds to RIG-I and prevents its association with the 
signaling platform MAVS protein [86]. Severe acute respira-
tory syndrome coronavirus (SARS-CoV) M protein has been 
shown to associate with RIG-I and can potentially sequester 
this PRR [87].

Viruses can also promote PRR degradation, thus reduc-
ing the number of cellular sensors capable of detecting viral 
infection (Fig. 3). This can be done directly by proteases 
encoded by the viral genome. Foot and mouth disease virus 
(FMDV) Lpro and 3Cpro protease can reduce RIG-I intracellu-
lar protein levels [88]. The 3Cpro protease of other picornavi-
ruses has also been shown to degrade RIG-I [89], indicating 
that this is a shared mechanism of RLR evasion by this viral 
family. RIG-I is not the sole PRR that picornavirus proteases 
can target; the poliovirus and enterovirus 71 (EV71) 2Apro 
protease can also degrade MDA5 [90]. Viruses also encode 
for proteins that indirectly promote PRR degradation. The 
nuclear sensor of DNA IFI16 is degraded during HSV-1 
infection through a mechanism dependent on the viral ICP0 
protein that is not fully understood but probably involves 
targeting the DNA sensor for proteasomal degradation [91]. 
A E3 ligase activity on the NSs protein of the phlebovirus 
Toscana virus was recently identified that allowed the ubiq-
uitination of RIG-I CARD domains and the subsequent pro-
teasomal degradation of the PRR [92]. The NS2B protein of 
the flavivirus Dengue virus (DENV) can target the cytosolic 
DNA sensor cGAS for lysosomal degradation. Although this 

Table 1   Virus interference with 
viral sensors of genetic material

Virus Cellular target Viral protein References

Flavivirus, IAV, Rotavirus Detection by PRRs [67–70, 72]
Reovirus dsRNA σ3 [73]
Ebola virus dsRNA VP35 [74]
IAV dsRNA, RIG-I NS1, NS1 ], [108, 109]
Lassa virus dsRNA NP [78]
Kaposi’s sarcoma-associated virus Inhibit cGAS ORF52 [84]
HSV-1 Inhibit cGAS, IFI16 VP22, ICP0 [85], [91]
DENV cGAS, 14-3-3ε (RIG-I) NS2B, NS3 [93], [111]
Hantavirus, Crimean-Congo and Borna 

disease virus
RIG-I recognition – [80]

New World Arenavirus RIG-I Z [86]
Coronaviruses RIG-I M, PLP [87, 94]
Picornavirus RIG-I, MDA5 Lpro, 3Cpro, 2Apro [88–90]
Paramyxovirus MDA5 V [98–100]
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mechanism could at first glance seem counterproductive for 
an RNA virus, it actually allows DenV to evade the recogni-
tion of the mitochondrial DNA that becomes exposed during 
infection [93].

Other viruses alter the post-translational modifications 
essential to PRR signaling so that the PPR remains inactive. 
Some viral-encoded proteins achieve this directly, as in the 
case of the deubiquitinase activity of coronaviruses papain-
like protease (PLP) that removes the K63 ubiquitin tail from 
RIG-I that is essential for RIG-I translocation to the MAVS 
protein platform [94]. This deubiquitination activity has 
been characterized in several coronaviruses thus suggesting 
that this mechanism is central to coronavirus evasion from 
the IFN system [95–97]. Paramyxovirus V protein binds to 
MDA5 and impairs its dephosphorylation by blocking the 
ATP hydrolysis necessary for MDA5 folding to its active 

state, thus impairing the adequate activation of this PRR 
[98].

Viruses can also impair PRR activity by interfering 
with the functionality of accessory cellular components 
required for PRR activation. MeV has been shown to act 
on the phosphatase PP1 required for RLR activation using 
two distinct mechanisms. The MeV V protein can bind 
PP1 which prevents MDA5 dephosphorylation [99]. MeV 
infection in dendritic cells also produces recognition of 
the viral particle through the C-lectin receptor DC-SIGN 
[100]. This triggers a signaling cascade that results in Raf-1 
kinase activation and the association of the PP1 inhibitor 
I-1 with PP1 that prevented RLR dephosphorylation thus 
impairing IFN induction. Several viruses have also been 
shown to interact with the dsRNA binding protein PACT 
that potentiates RLR activation [101, 102]. For instance, 
Ebola virus VP35 protein, Middle East respiratory syndrome 

Fig. 3   Viral interference with accessory cellular components involved 
in PRR activation. MeV can interfere with RLR activation by target-
ing the phosphatase PP1 using 2 distinct mechanisms. MeV V protein 
can interact with PP1 to prevent the dephosphorylation of MDA-5 
required for activation. MeV can interact on the cell surface with the 
C-lectin receptor DC-SIGN which results in the association of PP1-
inhibitor 1 with PP1 thus preventing RLR dephosphorylation. Ebola 
virus VP35 protein, MERS-CoV 4a protein and arenavirus NP can 
interfere with PACT binding to dsRNA, a mechanism that potenti-
ates RLR activation. RLR ubiquitination is also essential for adequate 

activation and transport to MAVS for subsequent IFN signaling 
events to take place. Riplet and TRIM25 are critical to RIG-I ubiquit-
ination. IAV-NS1 and Denv sfRNA can interfere with TRIM25 activ-
ity, whereas Hepatitis C NS3-4A protease can cleave Riplet to impair 
RIG-I ubiquitination. The mitochondrial-targeting chaperone 14-3-3ε 
is responsible for RIG-I translocation to the mitochondrial membrane. 
DenV NS3 protein targets 14-3-3ε using a phosphomimetic domain 
that displaces activated RIG-I from this chaperone. WNV NS3 pos-
sesses a similar domain
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coronavirus (MERS-CoV) 4a protein and arenavirus nucleo-
proteins have been shown to interfere with PACT binding 
to RLR [103–105]. As previously stated, RIG-I activation 
is associated to its ubiquitination with K63 Ub chains that 
liberates its autorepressed N-terminal CARD domains, a 
mechanism dependent on the activity of the cellular pro-
teins TRIM25 and Riplet [106, 107]. This mechanism can 
be targeted by viral products such as the IAV NS1 protein 
that impairs TRIM25-mediated RIG-I ubiquitination [108, 
109], or the hepatitis C virus NS3-4A protease that cleaves 
Riplet [106]. Intriguingly, not only protein products appear 
to interfere with the RIG-I activation complex. The sub-
genomic flavivirus RNA (sfRNA) generated during DenV 
infection can bind to TRIM25 and prevent the deubiquitina-
tion step required for TRIM25 activity to take place [110]. 
DenV uses yet another mechanism to avoid PRR detection. 
DenV NS3 protein possesses a phosphomimetic domain that 
binds the mitochondrial-targeting chaperone protein 14-3-
3ε [111]. 14-3-3ε is responsible for RIG-I translocation to 
the mitochondrial membrane where the subsequent steps of 
the IFN induction signaling cascade take place. By binding 
14-3-3ε, DenV NS3 displaces the activated RIG-I complex 
and prevents IFN induction. Interestingly, a similar phospho-
mimetic domain is also present in West Nile Virus (WNV) 
NS3 protein [111].

Virus interference with the IFN‑I induction signaling 
cascade

Viruses not only interfere with the PRR capable of detecting 
their presence during infection, they also commonly affect 
the activity of the signaling complexes in charge of signal 
transduction. Indeed, this is a strategy employed by most 

viruses to limit IFN responses. Viruses can antagonize these 
signaling cascades at multiple levels and through varied 
mechanisms (Table 2). This can be achieved by impairing 
the post-translational modifications required for signaling, 
i.e. by altering the phosphorylation or ubiquitinylation status 
of signaling intermediates. For instance, SARS-CoV and 
human coronavirus NL63 (HCoV-NL63) PLPs have been 
shown to prevent STING dimerization and thus subsequent 
activation of the TBK1 pathway possibly through the PLP 
deubiquitinase activity [112, 113], as STING dimerization 
is dependent on the attachment of K63Ub chains [114]. 
Similarly, SARS-CoV PLP can inhibit TLR7 signaling by 
removing K63-Ub chains from TRAF3 and TRAF6 and thus 
blocking TBK1 activation [115]. Another strategy to prevent 
post-translational modification of IFN-I pathway signaling 
components consists of sequestering these components so 
that they do not reach the adequate cellular location for acti-
vation. The NS3 protein from the economically important 
orbivirus Bluetongue Virus (BTV) binds to the ubiquitin-
binding protein optineurin in the Golgi apparatus [116]. This 
prevents optineurin from recruiting ubiquitinated TBK1 
at the Golgi apparatus, a necessary step for subsequent 
TBK1 phosphorylation to occur [116]. Recently, it has been 
described that cGAMP, the second messenger generated by 
cGAS and that activates STING, can be cleaved by poxvirus-
encoded nucleases (named poxins) [117]. This allows poxvi-
rus blockade of the cGAS-STING signaling axis.

Viral proteins can also prevent the adequate formation 
of signaling complexes by steric hindrance. For instance, 
human adenovirus type 5 E1A protein has been shown to 
bind to STING and thus antagonize IFN signaling [118]. 
MERS-CoV and SARS-CoV M proteins can interact with 
TRAF3 and thus disrupt the TRAF3-TBK1 association 

Table 2   Virus interference with 
the IFN-I induction signaling 
cascade

Virus Cellular target Viral protein References

Coronavirus STING dimerization, TLR7 PLP, PLP [112, 113], [115]
BTV TBK1 phosphorylation NS3 [116]
Poxvirus c-GAS-STING Poxins [117]
Adenovirus STING E1A [118]
MERS-CoV TRAF3a, TBK1/IKKε M, ORF4b [119], [121]
SARS-CoV TRAF3a, MAVS M, ORF9b [120],[134]
KSHV TBK1-STING vIRF1 [122]
HSV-1 TBK1 ICP27 [123]
Phlebovirus TBK1 NS [124]
Flavivirus STING NS2B3 [125–127]
Picornavirus MAVS 3Cpro [128, 129]
PPRSV MAVS 3C-like protease [130]
HCV MAVS NS3/4A [131]
DENV Mitofusins-MAVS NS2B3 [136]
Parainfluenza virus 3 Mitophagy-MAVS M [140]
IAV Mitophagy-MAVS PB1-F2 [141]
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[87, 119, 120]. MERS-CoV ORF4b protein can associate 
with the TBK1/IKKε complex to impair signaling [121], 
indicating that coronaviruses encode for multiple proteins 
that affect IFN induction at different stages of the signal-
ing cascade. KSHV encodes for viral interferon regulatory 
factor 1 (vIRF1), a protein that binds to STING and block 
the association of TBK1 with STING, thus hindering the 
consequent IRF3 phosphorylation [122]. HSV-1 encodes for 
the ICP27 protein that can interact with the active STING-
TBK1 complex and inhibit the subsequent TBK1-mediated 
phosphorylation of IRF3 [123]. The NSs protein from some 
phleboviruses has also been described to antagonize IFN 
induction by targeting TBK1 [124]. TBK1 activity is thus 
commonly targeted by both RNA and DNA viruses to antag-
onize IFN induction.

Viruses can also promote the degradation of signaling 
proteins involved in IFN induction. Virally-encoded pro-
teases can directly cleave some of the components of these 
pathways. STING can be directly cleaved by the NS2B3 pro-
tease from several flaviviruses such as DenV, Zika virus, 
WNV, or Japanese encephalitis virus (JEV), but not oth-
ers like yellow fever virus [125–127]. Indeed, this specific 
cleavage could partially explain some of the host range and 
pathogenicity of these flaviviruses in humans, as the identi-
fied STING cleavage site for the NS2B3 protease is only 
partially conserved among species [125]. Similarly, the 3Cpro 
from several Picornoviridae has been described to cleave 
MAVS proteins, thus inhibiting signal transduction [128, 
129]. The 3C-like protease from the arterivirus porcine 
reproductive respiratory syndrome virus (PRRSV) and the 
NS3/4A protease complex from the flavivirus hepatitis C 
virus (HCV) have also been described to cleave MAVS pro-
tein [130, 131]. Other viruses encode proteins that promote 
the degradation of signaling complexes involved in the IFN 

responses. RV NSP1 and VP3 proteins have been shown 
to target MAVS protein for proteasome-dependent degrada-
tion and thus impair IFN induction [132, 133]. SARS-CoV 
ORF9b protein localizes in the mitochondrial membrane 
where it interacts with MAVS protein and promote its degra-
dation [134]. This mechanism probably involves the recruit-
ment of the MAVS protein cellular regulator PCBP2 [135] to 
the mitochondrial membrane by SARS-CoV ORF9b protein, 
which favors MAVS protein ubiquitination through K48-Ub 
chains and thus subsequent proteasomal degradation.

Since MAVS protein represents an important signaling 
platform in the IFN induction cascade triggered by RLR 
activation, some viruses use strategies to alter mitochondria 
structure to impair MAVS protein assembly. DenV NS2B3 
protease can cleave mitofusins, which alters mitochondria 
dynamics and impair their fusion [136]. In other cases, 
viruses can also promote mitophagy to promote their repli-
cation and potentially impair IFN responses. Mitophagy has 
been described in MeV, hepatitis B virus (HBV) or Newcas-
tle disease virus infections [137–139]. The protein M from 
the human parainfluenza virus 3 has also been shown to 
promote mitophagy and thus trigger MAVS protein degrada-
tion to antagonize IFN induction [140]. Recently, IAV has 
also been shown to employ a similar mitophagic strategy to 
reduce MAVS protein levels through the expression of its 
PB1-F2 protein [141].

Virus interference with IFN‑I transcription factors

Viruses can also act on the transcription factors that bind 
to the IFN-I promoter and trigger the expression of ISGs. 
Viruses use multiple strategies to impair the binding of the 
transcription factors to the IFN-I promoters (Table 3). They 
can impair the phosphorylation by the TBK1/IKKε complex 

Table 3   Virus interference with IFN-I transcription factors

Virus Cellular target Viral protein References

Paramyxovirus IRF7 phosphorylation, IRF3 C, V [142], [160]
DENV IRF3 phosphorylation NS2B3 [143]
LCMV IRF3 phosphorylation, NF-κB NP, NP [144, 145], [147]
Hepatitis A NEMO 3Cpro [148]
FMDV NEMO// 3Cpro [149]
Porcine epidemic diarrhea virus NEMO 3C-like protease [150]
PRRSV NEMO 3C-like protease [151]
Rotavirus IRF3/7, NF-κB, IκB phosphorylation NSP1, NSP1, NSP1 [152], [154], [155]
VV IκB phosphorylation A49 [158]
Epstein–Barr IκB phosphorylation LMP-1 [157]
HIV IκB phosphorylation Vpu [156]
KSHV IRF3 vIRF1 [159]
V IRF3 NS5 [161]
Murine gamma-herpesvirus IRF3 ORF36 [166]
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of IRF3/7 that activates dimerization and transport to the 
nucleus. For instance, the paramyxovirus C protein inhib-
its IRF7 phosphorylation and thus its activation [142]. The 
DenV NS2B3 protease can impair IRF3 phosphorylation by 
masking the IKKε kinase domain necessary for IRF3 activa-
tion [143]. Lymphocytic choriomeningitis virus (LCMV) 
nucleoprotein was also shown to bind to the IKKε kinase 
domain, thus preventing IRF3 phosphorylation [144] indi-
cating that arenavirus NP-mediated inhibition of IRF3 phos-
phorylation [145] uses a similar mechanism.

Viruses not only target IRF3/7 activation to antagonize 
IFN induction, they can also interfere with the activation of 
NF-κB, as this transcription factor collaborates with IRF3 
in the early activation of the IFN-β promoter [146]. Most 
arenavirus nucleoproteins not only block IRF3 phosphoryla-
tion but they can also impair NF-κB activity [147]. Viruses 
can also target adaptor molecules that regulate NF-κB activ-
ity. The NF-κB essential modulator (NEMO) is part of the 
kinase complex that controls NF-κB release from its inhibi-
tor IκB. The 3Cpro from Hepatitis A virus or FMDV and 
the 3C-like proteases from porcine epidemic diarrhea virus 
or PRRSV cleave NEMO thus preventing IκB release from 
NF-κB and consequently antagonizing IFN-β production 
[148–151].

The degradation of the transcription factors involved in 
IFN induction is also the target of different viral proteins, as 
in the case of the NSP1 from RV that promote the degrada-
tion of several IRFs including IRF3 and 7 [152]. RV NSP1 
appears to target IRFs by interacting with their dimeriza-
tion domain and thus preventing their association in active 
form [153]. NSP1 has also been described to impair NF-κB 
by promoting the degradation of β-transducing repeat-con-
taining protein (β-TrCP) [154], the protein responsible for 
substrate recognition of the E3 ligase complex that targets 
for degradation IκB, the associated inhibitor of NF-κB. 
Similarly, to other viral products, such as HIV-1 Vpu, VV 
A49, or Epstein–Barr virus LMP-1, RV NSP1 associates 
with β-TrCP through mimicry of the phosphorylated IκB 
that requires degradation [155–158]. RV NSP1, however, 
presents the particularity of not only blocking the interac-
tion of IκB with the E3 ligase complex but also of targeting 
β-TrCP for degradation.

Viruses can also impair IRF3/7 activity downstream of 
their activation by phosphorylation. The vIRF1 encoded by 
KSHV can block IRF3 activity downstream of IRF3 activa-
tion by impairing the recruitment of the CBP-p300 coactiva-
tors to the IRF3 complex [159]. This can also be achieved 
by blocking the transport of activated transcription factors 
to the nucleus. For instance, some paramyxoviruses use their 
V protein to impair IRF3 translocation to the nucleus [160]. 
JEV NS5 blocks IRF3 and p65 subunit from NF-κB trans-
port to the nucleus by interacting with nuclear transport pro-
teins [161]. The NSs from the emerging bunyavirus severe 

fever with thrombocytopenia syndrome virus have also been 
described to sequester the TBK1–IKKε–IRF3 complex in 
viral inclusion bodies to prevent the trafficking of IRF3 to 
the nucleus [162].

Some viruses also code for proteins that interfere with 
IFN induction in the nucleus. In many instances, the exact 
mechanisms of IFN antagonism by viral products in the 
nucleus are not fully resolved. MERS-CoV ORF4b protein 
impairs IFN induction in the nucleus by a mechanism yet to 
be elucidated [121]. BTV encodes non-structural protein 4 
(NS4) that localizes in cell nucleoli and possess IFN antago-
nist activity [163]. MeV C protein can interfere with IFN-β 
promoter activation in the nucleus and this property has been 
linked to the virus pathogenicity [164]. The NSs protein 
from the Phlebovirus Sandfly fever Sicilian virus can prevent 
IRF3 activity by interacting with the DNA binding domain 
of IRF3 [165]. The protein ORF36 from the murine gamma-
herpes virus 68 was shown to bind to IRF3 and to prevent its 
association with the co-transcriptional activator CBP, thus 
impairing IRF3 binding to the IFN-β promoter [166].

Viruses have developed strategies to antagonize IFN 
induction at multiple stages of the signaling cascade. This 
includes limiting the recognition of their genetic material, 
impairing the activation of PRRs or their signaling part-
ners, promoting the degradation of key components of the 
signaling cascade, sequestering signaling complexes away 
from their site of action, or impairing DNA binding of the 
transcription factors involved in IFN induction. In viruses, 
multiple mechanisms have also often evolved to target sev-
eral elements in these pathways, and hence augment their 
capacity to evade innate immunity.

Viral evasion strategies: blockade of IFN 
signaling

Intracellular blockade of IFN signaling pathways

Viruses can suppress the IFN signaling at different levels 
(Table 4). In this section, we will discuss some of the mecha-
nisms that viruses use to counteract the action of this signal-
ing cascade.

One of the first steps in the signaling cascade is the phos-
phorylation of JAK1 and TYK2, relevant for initiating the 
JAK-STAT signaling. By directly promoting the dephospho-
rylation of the JAK/STAT pathway, viruses counteract the 
IFN response. For instance, Sendai virus (Respirovirus) C 
protein inhibits the phosphorylation of receptor-associated 
kinases JAK1 and TYK2 by binding to the IFN receptor 
subunit IFN-α/β [167]. The NS5 protein of the JEV blocks 
the tyrosine phosphorylation of TYK2 and STAT1 [168]. 
STAT1 phosphorylation is targeted by several viruses, using 
different mechanisms. The Paramyxovirus family, that 
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includes MeV, peste des petits ruminants virus (PPRV) and 
mumps, express V and P proteins that interact directly with 
STAT1, inhibiting phosphorylation [169, 170]. The imme-
diate-early protein ICP27 of HSV-1 downregulate STAT1 
phosphorylation and prevent the accumulation of STAT1 
in the nucleus [171]. The DENV proteins NS2A, NS4A, 
NS4B block the phosphorylation of STAT1 [172]. The NS5 
protein of HCV interacts with STAT1, interfering with its 
phosphorylation [173]. Among the Reoviridae family, the 
NSP1 protein encoded by rotavirus block the phosphoryla-
tion of STAT1 [174], and the NS3 protein encoded by BTV 
blocks STAT1 phosphorylation [175, 176].

Many viruses target STAT2 to antagonize IFN signaling. 
Thus, MeV V protein binds to STAT2 [177, 178]. Yellow 
fever virus NS5 protein also binds STAT2 but this interac-
tion requires STAT2 activation by IFN [179]. Other example 
is DENV NS5 protein acts as a bridge between UBR4 and 
STAT2, driving STAT2 to degradation through the protea-
some [180]. The nsp11 protein of PPRS degrades STAT2 
via proteasome [181]. The proteasome is not the only cata-
bolic cellular machinery that viruses can highjack to degrade 
signaling components of the IFN signaling pathway. BTV 
was recently shown to use ubiquitination of its NS3 protein 
to drive STAT2 degradation by an autophagy-dependent 
mechanism [175].

Another strategy used by viruses includes the interfer-
ence with IFN signal transduction by modification of the 

constitutive or basal levels of molecules involved in the JAK/
STAT pathway that viruses members of the Rubulavirus 
genus like Simian virus 5, mumps virus or human parain-
fluenza virus type 2, use [182, 183]. The human Papilloma-
virus-16 (HPV-16) expresses the viral E7 protein that binds 
the p48 protein blocking its translocation to the nucleus, 
impeding the association of IRF-9 with the STAT-1/STAT-2 
heterodimer (ISGF3), and thereby inhibiting the induction 
of IFN-I inducible genes [184].

Viruses involved in persistent infections, such as cyto-
megaloviruses (CMV), polyomaviruses, HCV [185], or 
HSV-1 [186] use similar strategies. CMV affects the expres-
sion levels of JAK1 and IRF-9 [187], and the viral large T 
antigen of murine polyomavirus binds to JAK1 inactivating 
the transduction signal through IFN receptors [188].

Blockade of IFN induced antiviral activities

Viruses employ mechanisms that impair ISG activity to 
enhance their evasion from the IFN system. In this section, 
we will discuss some of these mechanisms. As previously 
mentioned, some ISG products enhance the recognition 
of viral PAMPs and provide the cell with effector mecha-
nisms that block viral replication. Thus, FMDV Lpro cleaves 
G3BP1, an RNA-binding protein essential to stress granules 
(SG) assembly, to impair the formation of these structures 

Table 4   Blockade of IFN signaling

Virus Cellular target Viral protein References

Orthopoxviruses IFNAR, PKR IFN-I BP (B18), D9 and D10 [216, 217], [81]
Sendai virus JAK1/TYK2 phosphorylation C [167]
JEV TYK1/STAT1 phosphorylation NS5 [168]
Paramyxovirus STAT1 phosphorylation V and P [169, 170]
HSV-1 STAT1 phosphorylation ICP27 [171]
DENV STAT1 phosphorylation, STAT2, SG assembly NS2A, NS4A, NS4B, NS5, sfRNA [172], [180], [191]
HCV STAT1 phosphorylation NS5 [173]
Rotavirus STAT1 phosphorylation, PKR, RNaseL NSP1, σ3, VP3 [174], [192], [198]
BTV STAT1 phosphorylation, STAT2 NS3, NS3 [175, 176],
MeV STAT2, SG inhibition V, C [177, 178], [190]
Yellow fever virus STAT2 NS5 [179]
PPRS STAT2 nsp11 [181]
Simian virus 5 STAT1 V [182]
Mumps virus STAT1 V [183]
HPV-16 IRF-9 E7 [184]
CMV JAK1 and IRF-9 [187]
Murine polyomavirus JAK1 Large T antigen [188]
FMDV G3BP1, ISG15 Lpro,, Lpro [189], [209]
Bunyavirus PKR NSs [194]
Coronavirus RNaseL, ISG15 NS2, PLP [199], [95–97]
HCMV RNaseL pUL26, pUL50 [210, 211], [212]
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[189]. MeV C protein has been involved in SG inhibition 
through blockade of PKR-induced SG by the activity of the 
adenosine deaminase acting on RNA 1 (ADAR1) [190]. 
DENV sfRNA can bind to various components involved 
in SG assembly. This property of DENV sfRNA also led 
to impaired ISG mRNA translation, thus dampening IFN 
responses [191].

To overcome recognition by ISG products, some viral 
mechanisms are discussed. The reovirus σ3 protein was 
shown to inhibit PKR activity probably through its ability 
to bind dsRNA [192, 193]. NSs protein from bunyavirus 
can promote PKR degradation [194]. Poxvirus D9 and D10 
decapping enzyme promote dsRNA degradation, thus pre-
venting PKR recognition [81]. Viruses can also highjack 
regulatory ISG pathways to evade ISG product action. For 
instance, ADAR1 is an ISG involved in RLR regulation. 
ADAR1 has an important physiological function as it edits 
adenosines to inosines in RNA, a feature that destabilize the 
structure of complementary dsRNA strands, thus preventing 
RLR or PKR recognition. This is an important mechanism in 
the prevention of autoimmunity, as it limits the recognition 
of cellular dsRNA. Viruses such as MeV, VSV or HIV-1 
have been shown to use ADAR1 function to block PKR 
activation and thus evade translation shutdown [195–197].

Viruses can also interfere with the OAS-RNase L path-
way. Rotavirus VP3 protein blocks RNaseL activation [198] 
by cleaving the 2′,5′-oligoadenylates produced by OAS. The 
NS2 protein from coronavirus murine hepatitis virus has 
been shown to act similarly [199].

The IFIT is another ISG that contribute to viral RNA 
recognition. Some viruses have developed 2′-O methyltrans-
ferase activities on their gene products to prevent translation 
blockade of their RNA by IFIT. This has been described for 
WNV, coronaviruses, RV and poxvirus [200–204].

The IFN-induced transmembrane proteins (IFITM) 
expression is greatly enhanced upon IFN activation, but 
these proteins are also expressed ubiquitously in the absence 
of IFN. The family of IFITM proteins has been shown to 
block IAV, WNV and DENV cell entry, a mechanism that 
probably involves viral hemagglutinin recognition [205]. 
HCoV-OC43 has been shown to highjack IFITM2 and 
IFITM3 for cell entry. This mechanism could be important 
for virus entry in lower respiratory tract under inflamma-
tory conditions induced by IFN [206]. In HIV-1, Vpu and 
Env proteins can mutate to increase infectivity and overcome 
IFITM1-mediated restriction of replication [207]. Mutations 
to overcome the activity of the ISG product MxGTPase have 
also been described for IAV, indicating that multiple ISG 
products probably exert a selective pressure on viruses. 
For instance, pandemic avian IAV strains appear to adapt 
to human through evasion of the NP recognition by MxA 
GTPase [208].

Viruses have evolved strategies to dampen ISG15 effects 
on IFN signaling. For instance, the PLP from HCoV-NL63, 
SARS-CoV and MERS-CoV have been shown to not only 
act as a deubiquitinase but also as a deconjugating protease 
for ISG15 chains [94, 96, 97]. FMDV Lpro has also been 
associated with cleavage of ISG15, but instead of targeting 
the isopeptide bond used in ISG15 conjugation, it hydro-
lyzes the peptide bond preceding the ISGylation motif [209]. 
Human cytomegalovirus (HCMV) tegument pUL26 protein 
prevents ISGylation [210]. pUL26 activity appears to be 
supported by two other tegument proteins pUL25 and pp65 
[211]. HCMV also uses another tegument protein pUL50 to 
affect ISGylation by targeting UBE1L, an important ligase 
responsible for ISG15 linkage, for proteasomal degradation 
[212]. Since ISGylation also regulates the activation of IFN-
related pathways, some viruses have harnessed ISGylation 
to favor their replication. HCV has also been described to 
use ISGylation to favor its replication and develop persistent 
infections [213, 214]. Recently, ISGylation was also asso-
ciated with increased replication in HBV infections [215].

Multifaceted strategies have evolved in viruses to circum-
vent ISG product activity and thus enhance their replica-
tion and spreading. These range from directly impairing the 
activity of ISG products involved in host cellular defense to 
highjack the IFN modulating activity of some ISG products. 
Understanding these mechanisms of evasion will undoubt-
edly shed light on some of the pathogenic processes induced 
by viral infections.

Viral evasion strategies: secreted IFN 
binding proteins

A unique strategy to inhibit the activity of IFN was described 
in 1995 with the identification of a poxviral secreted IFN 
type I binding protein (IFN-I BP) encoded by the B18R gene 
of Vaccinia virus (VV) [216] a well characterized member 
of the Orthopoxvirus genus that contains the strains used 
for the efficacious worldwide vaccination campaigns against 
smallpox. The protein was found to be a secreted glyco-
protein of about 60 kDa expressed early during infection. 
While its sequence is unrelated to either of the two subu-
nits of the cellular IFN-I receptor, IFNAR1 or IFNAR2, the 
IFN-I BP was found to bind with high affinity (KD = 175 pM 
for hIFNα2) to several subtypes of human IFN-Is, inhibit-
ing their binding to the receptor and thus abrogating their 
biological activity [217]. In stark contrast to the high spe-
cies specificity observed for the cellular receptor, the viral 
protein is able to bind and inhibit the activity of IFN from 
different species, including mouse, rat, bovine and rabbit 
ligands, suggesting different interaction modes. Currently, 
all human IFN-I molecules tested including 8 (out of 13) 
IFNα, IFNβ, IFNϖ as well as the more divergent IFNκ 
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and IFNε are known to be bound and inhibited by B18 
[218–220], although with varying affinities. Interestingly, 
murine IFNα, but not murine IFNβ are inhibited by the pox-
viral IFN-I BP in spite of being bound with high affinity, as 
assessed by surface plasmon resonance [219, 221]. Competi-
tion studies using anti IFN monoclonal antibodies (mAbs) 
showed that the binding interface of IFNs with B18 is larger 
than the one with their cellular receptor, which could prob-
ably account for its broad species specificity and inhibitory 
capacity over a wide range of affinities [222].

Further examinations substantiated an additional property 
of the poxviral IFN-I BP which is its saturable binding to the 
cell surface after secretion, where the protein is active and 
can inhibit IFN as efficiently as the secreted one [221]. This 
suggested that the main site of action is the cell surface, pro-
viding local tissue protection by protecting neighboring, still 
uninfected cells from entering into an IFN mediated antiviral 
state. Examination of a truncated version of B18 expressed 
by the attenuated Wyeth VACCV strain lacking its third, 
C-terminal immunoglobulin (Ig) domain showed that cell 
binding capacity is mediated by the N-terminal regions of 
the protein [221]. Additional transfection analyses with dif-
ferent constructs suggested that cell binding activity is medi-
ated by Ig domain 1, while IFN blocking activity requires 
Ig domains 2 and 3 [223] Site directed mutagenesis assays 
identified stretches of basic residues at the N terminus of 
B18 to mediate high affinity binding to cell surface sulfated 
glycosaminoglycans, preferentially heparan sulfate [224] and 
showed that mutants lacking GAG binding activity could 
still bind and inhibit IFN efficiently.

The IFN-I BP protein has been found to be conserved 
in other orthopoxviruses including cowpox virus and 
ectromelia virus (ECTV), a natural mouse pathogen, as well 
as the two viruses causing significant disease in humans, 
monkeypox virus and variola virus, the causative agent of 
smallpox [219]. Interestingly, the human viruses show an 
enhanced affinity for the human ligands, possibly reflecting 
the host adaptation of the virus, as occurs with other secreted 
cytokine binding receptors in this family. While possible 
orthologues can be readily found in virus species from sev-
eral other poxvirus genera, these are frequently more dis-
tantly related, and their properties have not been extensively 
studied. The single exception to this is protein Y136 of the 
Tanapoxvirus Yaba-like disease virus (YLDV), a primate 
virus causing infection restricted to the skin. This protein, 
which shares only 27% aminoacid identity to the VACV 
B18, can bind and inhibit both human (and monkey) IFN- I 
as well as the more recently described family of type III 
IFNs [218]. The latter are a specialized group of IFNs medi-
ating antiviral response specifically at mucosal sites without 
compromising barrier integrity of the epithelia and promot-
ing long-lasting humoral and cellular responses which signal 
through a distinct, specific heterodimeric cellular receptor 

(reviewed by [225]). The authors have proposed that inhi-
bition of these IFNs might be related to the specific tissue 
tropism of YLDV, although information on its role in vivo 
has not yet been provided.

Insights into the biological role of poxviral IFN-I BPs 
comes from murine infection models using VACCV and 
ECTV, the latter naturally causing fatal mousepox in sus-
ceptible mouse strains. Early reports showed that deletion 
of IFN-I BP gene from VACV attenuated the virus in vivo 
both in intranasal [216] as well as intracranial [217] infec-
tion models. In ECTV, absence of IFN-I BP resulted in a 
completely attenuated phenotype upon footpad inoculation 
(LD50 reduction at least 107-fold) with severely impaired 
dissemination of virus to its secondary replication sites, liver 
and spleen, as well as enhanced NK cell recruitment and 
both CD4+ and CD8+ T cell activation [226] Crucially, these 
effects were shown to be dependent on IFNAR signaling by 
the use of knockout mice. The IFN-I BP was found to bind to 
uninfected cells around infection foci in the liver and spleen 
protecting these tissues locally from IFN induced antiviral 
activity [227]. The biological relevance of tissue retention of 
this inhibitory protein was shown using recombinant ECTV 
that express a mutated IFN-I BP unable to bind to the cell 
surface but still able to inhibit IFN-I efficiently. Infection 
with these recombinants resulted in non-lethal infection as 
in the case of the virus lacking IFN-I BP altogether [228]. 
Interestingly, it was found that immunization of mice with 
recombinant IFN-I BP could prevent the development of 
mousepox upon challenge [226], probably through the devel-
opment of antibodies capable of impairing its interaction 
with its ligands [227] and also pointing to a novel therapeu-
tic target for the treatment of poxviral infections in humans.

The structure of the complex of ECTV IFN-I BP with 
murine IFNα-5 has been solved to high resolution (PDB 
entry 3OQ3, deposited by Fremont and Lee, results to be 
published). Comparisons with the ternary complexes of dif-
ferent IFN-I with their cellular receptor [229, 230] will be 
crucial to disentangle the structure function relationships in 
the interaction and inhibition of the biological activities of 
IFN-I ligands by the poxviral IFN-I BPs.

The particular properties of the poxviral IFN-I BP, 
especially its broad species and type specificity as well 
its high affinity have been instrumental to its use as a bio-
technological tool. Thus, B18 has been used to determine 
the implication of IFN-I in diverse processes, such as the 
monocyte-derived macrophage-mediated inhibition of 
human cytomegalovirus (HCMV) spread [231]. In addi-
tion, recombinant oncolytic herpes simplex viruses express-
ing B18 have been developed to improve their infectivity in 
the face of antiviral responses [232]. Finally, B18 has been 
used to block IFNα mediated HIV associated encephalitis 
in a murine model [233] or to inhibit the detrimental IFN 
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mediated effects produced by mRNA exposure in induced 
pluripotent stem (iPS) cell reprogramming [234].

Secreted IFN-I BPs have been exclusively found in poxvi-
ruses to date. A recent report described the murine norovirus 
NS1 protein, which is secreted by an unconventional cas-
pase-3 mediated pathway, to be essential for tuft cell infec-
tion in gastrointestinal tissue through blockade of IFN type 
III signaling [235]. While a direct inhibition of IFN type 
III could not be demonstrated in the reporter assay used, 
the molecular mechanism employed by this protein remains 
unsolved and raises the question as to whether additional and 
different soluble IFN-I or IFN-III BPs might be identified in 
other virus species.

Concluding remarks

IFN responses are a complex and important component of 
the innate immune system. This is reflected in the vastness 
and complexity of ISGs roles, not only involved in antiviral 
responses but also in several immunomodulatory functions. 
Viruses can disrupt IFN responses leading to the antiviral 
state to promote their successful replication. Indeed, viruses 
often interfere with multiple pathways involved in the IFN 
response to evade innate immunity. The importance of the 
IFN system in host antiviral responses is highlighted by the 
fact that viruses dedicate some of their genetic material to 
encode for IFN antagonists. The viral mechanisms of IFN 
evasion can be mediated directly by viral gene products. 
Viruses also often usurp components of the cellular machin-
ery to carry out their IFN antagonistic activity. There is no 
doubt that understanding how viruses evade the IFN system 
will shed some light on the pathogenicity and allow for a 
better design of therapeutic approaches. The interaction of 
these pathogens with the IFN system can also shed some 
light on some of the regulatory cellular mechanisms that 
control the IFN response. Studying the interaction of viral 
components with the IFN system remains essential to under-
stand the pathogenesis of emergent viruses that threatened 
global health.
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