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Abstract
Long non-coding RNAs (lncRNAs) are a largely uncharacterized group of non-coding RNAs with diverse regulatory roles 
in various biological processes. Recent observations have elucidated the functional roles of lncRNAs in cutaneous biology, 
e.g. in proliferation and differentiation of epidermal keratinocytes and in cutaneous wound repair. Furthermore, the role of 
lncRNAs in keratinocyte-derived skin cancers is emerging, especially in cutaneous squamous cell carcinoma (cSCC), which 
presents a significant burden to health care services worldwide and causes high mortality as metastatic disease. Elucidation 
of the functions of keratinocyte-specific lncRNAs will improve understanding of the molecular pathogenesis of epidermal 
disorders and skin cancers and can be exploited in development of new diagnostic and therapeutic applications for keratino-
cyte carcinomas. In this review, we summarize the current evidence of functionally important lncRNAs in cutaneous biology 
and in keratinocyte carcinomas.
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Introduction

Skin cancers are the most common cancer types globally 
with increasing incidence [1, 2]. Melanoma, basal cell car-
cinoma (BCC), and cutaneous squamous cell carcinoma 
(cSCC) are the three major types of skin cancer. Cumula-
tive exposure to ultraviolet radiation (UVR) is a common 
risk factor for skin cancers, but they differ with respect to 
mutational profiles and alterations in cellular signaling path-
ways [3]. Melanoma originates from melanocytes, whereas 
BCC and cSCC originate from epidermal keratinocytes and 
are, therefore, called keratinocyte carcinomas (KC). The best 
preventive measure against skin cancer is avoiding excessive 
and cumulative exposure to sunlight and other sources of 
UVR. In addition, early detection and treatment is pivotal for 

the prognosis of the disease. The mortality rates for skin can-
cers vary between populations. However, taking into account 
the considerably higher incidence of KC over melanoma, it 
is estimated that the global mortality rate for all non-mela-
noma skin cancers (NMSCs) including BCC and cSCC, is 
even higher than for melanoma [4].

A significant proportion of human genome encodes non-
coding RNAs (ncRNAs), including ribosomal RNA (rRNA) 
and transfer RNA (tRNA), and other functionally relevant 
ncRNAs, roughly categorized to small (sncRNAs) and long 
non-coding RNAs (lncRNAs) [5]. MicroRNAs (miRNAs) 
present an evolutionary conserved subgroup of sncRNAs 
deregulated in different cancers, including BCC and cSCC 
[6, 7]. LncRNAs are single-stranded RNA molecules larger 
than 200 nucleotides in size, lacking protein-coding capacity 
and sequence conservation [8]. It has become increasingly 
evident that they regulate a variety of cellular functions, and 
that aberrant expression of lncRNAs plays a role in various 
pathological conditions including cancer [9].

The mutational background for cSCC and BCC is well 
documented, and several driver mutations in protein coding 
genes have been identified [10–17]. These same driver gene 
mutations are also found frequently in epidermal keratino-
cytes in normal sun-exposed skin [18], indicating, that also 
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other factors, e.g. changes in non-coding genes and the 
microenvironment, are also necessary for development of 
cSCC [19]. Mutations in the non-coding regions of genome 
can affect chromatin structure, transcription factor binding, 
and gene expression [20]. Moreover, these mutations may 
alter expression or secondary structure of lncRNAs or inter-
fere with lncRNA interaction with other regulatory factors 
[21]. The consequence of non-coding mutations in lncRNA 
expression and function in cutaneous carcinogenesis and 
skin cancer development is largely unknown. However, 
recent evidence suggests that lncRNAs participate in the 
complex cancer signaling network in skin malignancies. 
Elucidation of their role in cutaneous biology is likely to 
reveal new molecular targets for diagnostics and therapeutic 
intervention. In this review, we summarize the current find-
ings of the function of lncRNAs in cutaneous biology and 
in keratinocyte carcinomas.

Keratinocyte carcinomas

Keratinocyte carcinomas BCC and cSCC are the most com-
mon forms of skin cancer with increasing incidence globally 
[22, 23]. The primary cause for KCs is chronic exposure 
to UVR, and other important risk factors include immuno-
suppression, human papillomavirus infection, and chronic 
cutaneous ulceration [22–24]. While BCC is the most com-
mon human malignancy, cSCC accounts for the majority 
of deaths among KCs [25, 26]. In addition, a personal his-
tory of KCs is associated with a risk for other cancers [27]. 
In contrast to BCC, which rarely metastasizes, the risk of 
metastasis for cSCC is estimated as 1–4% and the prognosis 
of metastatic cSCC is poor [26]. Overall, the high prevalence 
of KCs poses a marked burden on health care worldwide 
and has a major impact on the patients’ quality of life [28].

Development of KC involves accumulation of several 
molecular and cellular changes. Both BCC and cSCC harbor 
a substantial mutational burden, mainly due to cumulative 
UV exposure typically observed as C → T transitions in the 
DNA [12–19]. Several studies using BCC and cSCC murine 
models suggest that these cancers arise from multiple cel-
lular origins, e.g. from different stem cell populations in the 
basal layer of the epidermis, hair follicle bulge or sebaceous 
gland [29].

Despite a high frequency of UV-induced mutations, 
BCCs and cSCCs do not harbor many common genetic alter-
ations, except inactivation of tumor suppressor p53 [12–19]. 
Several driver gene mutations have been identified for cSCC, 
resulting in constitutive activation of HRAS and inactiva-
tion of tumor suppressors p53 and NOTCH1 [12–16]. Con-
versely, BCC is strongly associated with aberrant activation 
of the Hedgehog signaling pathway due to loss of PTCH1 
receptor function and activation of the G protein-coupled 

receptor SMO [17–19]. Like many other cancers, cSCCs 
and BCCs are associated with epigenetic deregulation and 
aberrant DNA methylation, which also contribute to cancer 
progression [30–34].

Actinic keratoses (AKs) are early precursors of cSCC and 
Bowen’s disease is in situ cSCC (cSCCIS), where atypi-
cal keratinocytes extend throughout the epidermis [35]. If 
left untreated, these lesions develop to invasive cSCCs. In 
general, patients with BCCs or resectable primary cSCCs 
have a good prognosis, whereas metastatic cSCC is associ-
ated with poor outcome [26]. Radiation and chemotherapy 
can be used for advanced and recurrent high-risk tumors 
that cannot be excised, especially those located in the facial 
area [36]. Recently, targeted therapies have been approved 
for therapy of advanced BCC and cSCC. Vismodegib, an 
inhibitor of Hedgehog pathway, is available for treatment of 
locally advanced BCC [37]. Immune checkpoint inhibitor, 
programmed cell death protein-1 (PD-1) blocking monoclo-
nal antibody cemiplimab, has been approved for treatment 
of patients with locally advanced or metastatic cSCC [38]. 
Nevertheless, there is an urgent need for additional targeted 
therapies for advanced cSCCs and for prognostic biomarkers 
for predicting the risk of recurrence and metastatic potential 
of cSCC.

Long non‑coding RNAs

Long non-coding RNAs (lncRNAs) are single-stranded 
RNAs mainly transcribed by RNA polymerase II, which 
undergo post-transcriptional processing, such as 5′-capping, 
splicing and polyadenylation [8]. This way lncRNAs closely 
resemble messenger RNAs (mRNA), but they are not trans-
lated to proteins. Some lncRNAs are rapidly degraded after 
transcription, whereas others are extremely stable [39, 40]. 
A rapid turnover of lncRNAs enables a dynamic cellular 
response via specifically induced lncRNAs, for instance in 
DNA damage, immune response, and cellular differentiation 
[41–43].

LncRNAs are poorly conserved between species [44–46]. 
In general, lncRNAs are considered larger than 200 nucleo-
tides in size. This division, however, is not strict, as some 
lncRNAs are less than 200 nucleotides in size, and some 
lncRNAs can function both as regulatory lncRNAs and can 
be processed to sncRNAs [47]. Classification of lncRNAs 
into distinct subgroups is commonly based on their genomic 
location.

Long intergenic or intervening non-coding RNAs (lin-
cRNAs) are transcribed from distinct loci, often from their 
own promoters, whereas intronic lncRNAs are transcribed 
from intronic regions within protein-coding gene [45, 47]. 
Sense lncRNAs are transcribed from the sense strand also 
containing exons of protein-coding genes [47]. Natural 
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antisense transcripts (NATs) are transcribed from the anti-
sense strand of a protein-coding gene, overlapping either 
exonic or intronic regions [47]. Bidirectional lncRNAs are 
produced divergently from the same promoter of a protein-
coding gene. Circular RNAs (circRNA) are a recently dis-
covered group of lncRNAs structurally different from most 
lncRNAs. They are produced by back splicing of precursor 
mRNAs or lncRNAs, resulting in covalently closed circular 
RNAs without polyadenylation, and they can originate from 
intronic or exonic transcripts [48].

LncRNAs are specifically expressed during normal physi-
ological processes including cell differentiation and tissue 
development, whereas untimely and aberrant expression of 
lncRNAs in various pathological conditions is becoming 
evident [9–11]. Thus, alternative classification has been sug-
gested, for instance by grouping them into lncRNAs regulat-
ing gene expression locally (cis) or in distance (trans) [49], 
or by other criteria such as subcellular localization, asso-
ciation with DNA-elements, or functional mechanism [50].

Molecular functions of lncRNAs

In general, the regulatory role of lncRNAs is based on bind-
ing to specific effector molecules by sequence complemen-
tarity or structural recognition to mediate gene expression. 
The single-stranded structure of lncRNAs and folding into 
unique secondary and tertiary structures gives them the abil-
ity to bind to RNA, DNA or proteins and this way control 
diverse cellular functions [8, 51, 52] (Fig. 1). LncRNAs typi-
cally exhibit a strict cell and tissue-specific expression and 
subcellular localization, indicating strictly controlled regula-
tory role for distinct lncRNAs [44, 53]. Specific localization 
of distinct lncRNAs to cytoplasm, nucleus, or other cellu-
lar compartments is likely to reflect their function (Fig. 1). 
In addition, some lncRNAs are secreted in extracellular 
vesicles and exosomes, and can exert their effect in adja-
cent cells and in cells in other tissues [54, 55]. In general, 
lncRNA mechanism of action can be divided into four main 
types: signals, guides, decoys, and scaffolds [51]. Simply, 
they can also be classified as nuclear lncRNAs in mediating 
gene transcription [56] or cytoplasmic lncRNAs controlling 
post-transcriptional events and mRNA stability [57] (Fig. 1).

LncRNAs in cutaneous biology

Regulation of epidermal differentiation by lncRNAs

The skin serves as a protective barrier against several envi-
ronmental threats, including microbes, chemicals, and physi-
cal insults, and it also controls water loss and thermoregula-
tion. Skin consists of several different cell types and stem 

cell populations, which co-operate to maintain and regen-
erate its structure and function [58]. The epidermal layer 
of skin is under continuous turnover, as the cells generated 
from the basal keratinocytes lose their proliferative capac-
ity, commit to terminal differentiation, and move towards 
skin surface [59]. During this process, keratinocytes undergo 
major morphological and mechanical changes due to spati-
otemporal alteration in their transcriptional program [60]. 
Several markers for keratinocyte differentiation have been 
identified and the chromatin dynamics play a crucial role 
during this process [61–63].

Transcriptional changes during differentiation of epider-
mal keratinocytes also involve alterations in the expression 
of non-coding RNAs and accordingly specific lncRNAs 
have been implicated in keratinocyte differentiation [64, 
65] (Fig. 2). Differentiation antagonizing non-protein cod-
ing RNA (DANCR) is downregulated during terminal differ-
entiation of keratinocytes and it is required for maintaining 
the undifferentiated phenotype of epidermal progenitor cells 
[66]. DANCR is a negative regulator of MAF and MAFB 
transcription factors, which are important regulators of dif-
ferentiation in various cell types [67]. DANCR represses the 
expression of MAF and MAFB epigenetically by guiding a 
chromatin-modifying protein complex to the promoters of 
their genes [66]. In contrast to DANCR, terminal differenti-
ation-induced ncRNA (TINCR) is highly expressed in dif-
ferentiating keratinocytes specifically in the suprabasal lay-
ers of human epidermis [68]. TINCR promotes keratinocyte 
differentiation by stabilizing mRNAs coding for proteins 
involved in keratinocyte differentiation e.g. transcription 
factors MAF and MAFB, together with an RNA-binding 
protein STAU1 [68]. Together, DANCR and TINCR are 
able to regulate the expression of a broad range of genes in 
keratinocytes and this way function as pivotal regulators of 
epidermal differentiation.

The expression of LINC00941 is downregulated upon 
keratinocyte differentiation, and it antagonizes the func-
tion of small proline rich protein 5 (SPRR5), which pro-
motes differentiation of keratinocytes [69]. The expression 
of beta1-adjacent long non-coding RNA (BLNCR) is also 
downregulated during keratinocyte differentiation, preced-
ing downregulation of ITGB1, which codes for integrin β1, 
an epidermal stem cell marker adjacent to BLNCR gene [70, 
71]. BLNCR and ITGB1 are both transcriptionally regulated 
by transcription factors p63 and AP-1, and loss of BLNCR 
and ITGB1 expression may be an early event resulting in loss 
of proliferative capacity of keratinocytes and in subsequent 
terminal differentiation [71].

Progenitor renewal associated non-coding RNA, 
(PRANCR), is one of the most recently characterized lncR-
NAs involved in epidermal homeostasis [72]. Depletion 
of PRANCR leads to reduced proliferative capacity and 
differentiation of keratinocytes. PRANCR regulates the 
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Fig. 1  Molecular functions of lncRNAs. Nuclear lncRNAs can regu-
late epigenetic changes by a decoying or b guiding chromatin-mod-
ifying complexes to specific genomic loci. c lncRNAs can induce 
chromosomal looping to control gene expression by simultaneously 
binding to protein complexes or specific DNA elements. LncRNAs 
can inhibit gene transcription d by blocking a transcription factor 
binding site or f by binding to RNA polymerase. g LncRNAs may 
contribute to transcriptional activation by guiding transcription fac-
tors or other co-factors to gene promoters. e LncRNAs can regulate 
alternative splicing that can occur by lncRNA binding to mRNA and 

blocking the splice-site. LncRNAs can also recruit and guide splicing 
factors to the sites of transcription. Cytoplasmic lncRNAs can regu-
late mRNA stability h directly by binding to mRNAs or i indirectly 
by sequestering miRNAs by complementary base pairing. j Some 
lncRNAs can be secreted to extracellular vesicles or exosomes allow-
ing them to mediate intercellular signaling. k LncRNAs can serve as 
scaffolds to promote the assembly of active ribonucleoprotein com-
plexes in the cytoplasm or nucleus. l LncRNAs can aid intracellular 
translocation of proteins
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expression of several genes coding for cell cycle regula-
tors, including E2F transcription factor target genes [72]. 
In addition, H19 imprinted maternally expressed transcript 
(H19) and SCC misregulated transcript-2 (SMRT-2) are 
recently identified lncRNAs induced during differentiation 
of epidermal keratinocytes [73, 74]. Depletion of SMRT-2 
results in repression of several genes associated with epi-
dermal differentiation and development [74]. These genes 
are also regulated by zinc finger protein 750 (ZNF750) 
and Kruppel like factor 4 (KLF4), suggesting that SMRT-
2 functions upstream of the ZNF750-KLF4-axis [74]. 
ZNF750 functions downstream of p63 in driving epider-
mal differentiation by upregulating KLF4 [75]. Moreover, 
ZNF750 upregulates expression of lncRNA TINCR [76]. 
Taken together, these observations provide a regulatory 
link between SMRT-2, ZNF750 and TINCR in regulation 
of epidermal keratinocyte differentiation.

As aberrant keratinocyte differentiation and stem-cell 
characteristics are involved in KC tumor development [77, 
78], it is not surprising that the expression of keratinocyte 
differentiation inducing lncRNAs, SMRT-2 and TINCR, are 
strongly downregulated in cSCC [66, 74, 79]. Many of the 
lncRNAs associated with epidermal differentiation listed 
here are not implicated in cSCC and it will be important to 

investigate their mechanistic role in progression of cutane-
ous cancers.

LncRNAs in cutaneous wound repair

Cutaneous wound repair is a complex and strictly controlled 
process, which involves co-operation of several different cell 
types, including keratinocytes, fibroblasts, endothelial cells, 
and inflammatory cells [80]. Delayed wound healing result-
ing in chronic ulcers is usually associated with an underlying 
condition, such as insufficient arterial or venous circulation, 
diabetes or prolonged inflammation [80]. Chronic wounds 
also carry a risk of developing to cSCC [81].

The role of lncRNAs in normal wound repair or in patho-
genesis of chronic ulcers is largely unknown. LncRNA 
expression profile in Marjolin ulcer, a rare, aggressive type 
of cSCC that evolves in scars or chronic wounds has been 
reported, but functional characterization of the lncRNAs 
in this condition is lacking [82]. Growth arrest-specific 5 
lncRNA (GAS5) is a repressor of glucocorticoid receptor 
expression, which serves as a tumor suppressor in many can-
cers [83]. GAS5 has been shown to promote wound healing 
by inducing epithelialization and angiogenesis via c-myc 
inhibition [84]. Metastasis associated lung adenocarcinoma 

Fig. 2  An overview of lncRNAs implicated in epidermal homeostasis 
in normal skin and in cSCC progression. Solar ultraviolet radiation 
(UVR) induces a stress response and altered expression of specific 
lncRNAs, such as PRINS and lincRNA-p21 in normal keratinocytes. 
Cumulative exposure to UVR predisposes epidermal keratinocytes 
to DNA damage and malignant transformation, which eventually 
lead to development of invasive cSCC. Several lncRNAs have been 
shown to be involved in cutaneous homeostasis. TINCR, PRANCR, 

and SMRT-2 promote and DANCR, BLNCR, and LINC00941 inhibit 
keratinocyte differentiation. Deregulation of lncRNAs is becoming 
evident in cSCC progression. The expression of TINCR, SMRT-2, and 
LINC00520 is downregulated and the expression of PICSAR, PREC-
SIT, MALAT1, AK144841, LINC00319, and LINC01048 is upregu-
lated in cSCC. These lncRNAs could be used as new prognostic 
markers and as novel therapeutic targets in cSCC
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transcript 1 (MALAT1), a tumor-promoting lncRNA in many 
cancers [85] has been shown to stimulate repair of ischemic 
wounds by promoting migration of human dermal fibroblasts 
through hypoxia-inducible factor-1α (HIF-1α) signaling [86, 
87]. In addition, lncRNA H19 has been shown to promote 
wound healing via HIF-1α pathway [88, 89].

Wound and keratinocyte migration-associated lncRNA 1 
and 2 (WAKMAR1 and WAKMAR2) are two recently identi-
fied lncRNAs, which play an important role in cutaneous 
wound repair [90, 91]. Expression of WAKMAR1 is highly 
upregulated in keratinocytes during wound repair and its 
expression stimulates keratinocyte migration and wound 
re-epithelization [90]. Expression of both WAKMAR1 and 
WAKMAR2 is induced by TGF-β and downregulation of 
their expression inhibits migration of keratinocytes, result-
ing in delayed wound re-epithelization [90, 91]. Accord-
ingly, the expression of both WAKMAR1 and WAKMAR2 
is reduced in keratinocytes in the edge of chronic wounds 
in vivo [90, 91]. Moreover, upregulation of WAKMAR2 
expression inhibits production of inflammatory chemokines 
by keratinocytes, and this way promotes wound healing [91]. 
WAKMAR1 exerts its function by sequestering DNA meth-
yltransferases, resulting in upregulation of the expression of 
E2F1 transcription factor and subsequent regulation of the 
expression of its target genes [90].

Regulation of lncRNAs by UVR

Exposure of skin to UVR induces several cellular responses. 
Activation of the inflammatory response manifesting as 
erythema in skin is an acute response after UV exposure 
[92]. UVR induces DNA damage in epidermal keratino-
cytes, which triggers a stress response, activation of p53 
and DNA repair [93]. UV-induced DNA damage leads to 
systemic immunosuppression [94–96] which is exploited in 
treatment of inflammatory skin diseases, such as psoriasis 
and atopic dermatitis [97].

UVR leads to altered lncRNA expression in epidermal 
keratinocytes [98], melanocytes, [99] and dermal fibroblasts 
in culture [100–103]. The biological response of skin to 
UVA and UVB is distinct due to their different penetration 
to the skin and they trigger distinct expression pattern of 
lncRNAs in HDFs [101]. It is possible, that some of these 
lncRNAs play a role in the early cellular stress response or 
acute inflammation following exposure to UV. Also, sev-
eral UV-regulated lncRNAs in keratinocytes show a similar 
expression trend in cSCC and BCC, suggesting a role for 
them in epidermal carcinogenesis [98].

A subset of UV-induced lncRNAs has been functionally 
characterized [102–105]. In keratinocytes, the expression 
of lincRNA-p21 is markedly induced by UVB through a 
p53-dependent mechanism and it exerts a tumor suppres-
sive role by triggering UVB-induced apoptosis and cell 

cycle arrest [105]. Accordingly, a tumor suppressive func-
tion for lincRNA-p21 has been reported in head and neck 
SCC [106]. Psoriasis susceptibility-related RNA gene 
induced by stress (PRINS) is a lncRNA induced by UVB 
and other stress signals, such as serum starvation or trans-
lational inhibition in HaCaT cells, an epidermal keratino-
cyte derived cell line, which lacks functional p53 [104]. 
Elevated expression of PRINS in psoriatic epidermis has 
also been reported, suggesting a role for PRINS in patho-
genesis of psoriasis [104].

Vitamin D is photochemically synthesized in the skin by 
UVB and recent findings support a cancer protecting role for 
vitamin D [107]. Interestingly, keratinocytes lacking vitamin 
D receptor show a distinct lncRNA expression pattern with 
increased expression of oncogenic lncRNAs and decreased 
expression of tumor-suppressive lncRNAs, including lin-
cRNA-p21 [108]. It appears, that UVR plays a dual role in 
skin by inducing the innate immune response, but predispos-
ing to systemic immunosuppression and genomic mutations 
[1, 92, 97]. It is not known, what is the feasible level of UV 
exposure and to what extent lncRNAs can mediate the bal-
ance between skin homeostasis and carcinogenesis.

LncRNAs in keratinocyte carcinomas

The UV-induced alteration of lncRNA expression in epi-
dermal cells suggests that some of these lncRNAs exert a 
protective role against carcinogenesis by triggering UV-
induced early stress response [98–105] (Table 1). On the 
other hand, some of them may play a role at the early stage 
of epidermal carcinogenesis and loss of some differentiation-
associated lncRNAs may serve as markers for tumor ini-
tiation. In keratinocyte carcinomas, particularly in cSCCs, 
several lncRNAs are differentially expressed as compared to 
normal skin or keratinocytes, suggesting a role for them in 
cSCC progression [109, 110]. Some of the deregulated lncR-
NAs may function in signaling pathways, which are already 
mutationally activated or suppressed in cSCC. On the other 
hand, it is likely that some of these lncRNAs are targeted by 
UV-induced mutations or by genomic alterations within the 
lncRNA gene itself, as has been observed in several cancer 
cell lines [111, 112]. As none of the BCC-associated lncR-
NAs have been functionally characterized so far, we will 
focus on lncRNAs implicated in cSCC (Table 1).

Aberrant activation of the ERK1/2 MAPK pathway is 
one of the central drivers in the molecular pathogenesis of 
cSCC [113–115]. ERK1/2 pathway is activated by UVA 
radiation [116]. Moreover, mutational activation of epider-
mal growth factor receptor (EGFR) results in sustained acti-
vation of the RAS-RAF-MEK-ERK signaling pathway and 
promotes cutaneous carcinogenesis [117].



4607Long non-coding RNAs in cutaneous biology and keratinocyte carcinomas  

1 3

PICSAR plays a tumorigenic role in cSCC

p38-inhibited cutaneous squamous cell carcinoma-associ-
ated lincRNA (PICSAR) represents the earliest evidence of 
a functionally characterized lncRNA in cSCC [110]. The 
expression of PICSAR is upregulated in cSCC tumor cells 
in culture and in vivo compared to normal human epider-
mal keratinocytes (NHEKs) and normal skin [110]. Elevated 
expression of PICSAR was also noted in vivo in actinic kera-
tosis and cSCC in situ, suggesting a role for PICSAR at the 
early stage of epidermal carcinogenesis [110]. Silencing of 
PICSAR expression potently suppresses growth of human 
cSCC xenografts [110]. Interestingly, PICSAR serves as a 
regulatory link between p38 and ERK1/2 mitogen-activated 
protein kinase (MAPK) pathways (Fig. 3a). Inhibition of p38 
activity induces PICSAR expression and PICSAR promotes 

cSCC cell proliferation by promoting ERK1/2 activity via 
downregulation of dual specificity phosphatase DUSP6 
[110]. In addition, PICSAR potently regulates cell adhesion 
and migration by regulating integrin expression [118], and 
may this way contribute to cSCC progression and invasion 
(Fig. 3a).

MALAT1 and LINC00520 play opposite roles in cSCC

MALAT1 is a lncRNA, which has been reported to be dereg-
ulated in different types of cancer [85]. Elevated expression 
of MALAT1 was recently reported in cSCC tumors and it 
was shown that the expression in cSCC cells is induced by 
UVB [119]. MALAT1 promotes proliferation, migration, 
and invasion of cSCC cells and growth of cSCC tumors 
in  vivo and suppresses apoptosis of cSCC cells [119]. 

Table 1  Long non-coding RNAs with a potential role in cSCC or BCC development

LncRNA Expression Function References

TINCR Downregulated in cSCC Promotes human epidermal differentiation by 
stabilization of mRNAs coding for differentiation 
specific genes

[68]

SMRT-2 Downregulated in cSCC Induced during keratinocyte differentiation. Knock-
down in human organotypic skin downregulates 
several differentiation specific genes, including 
ZNF750 and KLF4

[74]

LINC00520 Downregulated in cSCC Inhibits cSCC progression by downregulating 
expression of EGFR and its downstream targets, 
e.g. PI3K, AKT, and VEGF

[123]

PICSAR Upregulated in cSCC Promotes cSCC progression by activating ERK1/2 
by downregulating DUSP6. Decreases cSCC cell 
adhesion and increases cSCC cell migration by 
downregulating integrin expression

[110, 118]

PRECSIT Upregulated in cSCC Promotes cSCC cell invasion through STAT3-
mediated upregulation of production of MMP-13, 
MMP-3, MMP-1, and MMP-10

[129]

LINC00319 Upregulated in cSCC Increases cSCC cell growth, migration, and 
invasion. Suppresses apoptosis by upregulat-
ing cyclin-dependent kinase 3 via miR‐1207‐5p 
decoy

[130]

LINC01048 Upregulated in cSCC Interacts with TAF15 transcription factor to induce 
YAP1 transcription and tumorigenic function via 
Hippo signaling pathway

[126]

MALAT1 Upregulated in cSCC Positively regulates EGFR protein expression via 
c-MYC and KTN1

[119]

lincRNA-p21 Induced in mouse and human keratinocytes by 
UVB

Tumor suppressive role by triggering UVB-
induced apoptotic death

[105]

AK144841 Induced in mouse DMBA/TPA-induced cSCC Downregulates several anticancer and cell differen-
tiation genes in mouse

[79]

H19,Hottip, Nespas, 
mHOTAIR, MALAT1, 
SRA

Upregulated in vitamin D receptor (VDR) deleted 
mouse keratinocytes and epidermis

Potential oncogenes in skin cancer progression [108]

Kcnq1ot1, lincRNA‐p21, 
Foxn2‐as, Gtl2‐as, 
H19‐as

Inhibited in VDR-deleted mouse keratinocytes and 
epidermis

Potential tumor suppressors in skin cancer forma-
tion

[108]

H19, CASC15, SPRY4-IT Upregulated in BCC Potential oncogenes in BCC [131]
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Mechanistically, MALAT1 interacts with c-Myc to activate 
transcription of kinectin 1 (KTN1) gene, which is one of the 
top downregulated genes after MALAT1 depletion. Knock-
down of MALAT1 also results in decreased level of EGFR 
protein, but not EGFR mRNA [119]. These results suggest 
that MALAT1 contributes to cSCC pathogenesis by upregu-
lating EGFR protein levels via c-Myc and KTN1 [119].

Marked expression of lncRNA AK144841 has been noted 
in chemically (DMBA/TPA) induced mouse cSCCs com-
pared to healthy skin [79]. The histology and the genomic 
background of these tumors are very similar to human 
cSCCs [120]. Sustained activation of HRAS, which is 
caused by highly carcinogenic DMBA, results in marked 
induction of EGFR and its ligands in cSCC mouse model 
[121, 122]. In this regard, induction of AK144841 in murine 
cSCC may be related to EGFR activation. A potential human 
ortholog with homology to AK144841 has been shown to 
be expressed at high level in cSCC cell lines compared to 
NHEKs suggesting, that it may be involved in human cSCC 
progression [79].

Downregulation of LINC00520 has been noted in A431 
cSCC cell line, compared to NHEKs, and overexpres-
sion of LINC00520 in A431 cells results in suppression 
of tumor growth and lymph node metastasis [123]. A431 
cells express high levels of EGFR [124]. Reduced expres-
sion of EGFR and its downstream targets, PI3K, AKT, 
VEGF, MMP-2, and MMP-9 was noted in A431 cells 

overexpressing LINC00520, whereas an opposite effect 
was noted after LINC00520 depletion [123]. Altogether, 
these results suggest that LINC00520 plays a tumor sup-
pressive role in cSCC by targeting EGFR [123].

TINCR and SMRT‑2 are potential tumor suppressors 
in cSCC

Poor differentiation of cSCC is associated with risk for 
metastasis and poor prognosis [77, 78]. TINCR and SMRT-
2 both promote differentiation of keratinocytes and may 
this way serve in a protective role in keratinocyte carcino-
genesis [68, 74]. Accordingly, decreased expression of 
TINCR and SMRT-2 has been noted in human cSCCs [68, 
74], and a notable decrease in TINCR expression has been 
reported in DMBA/TPA-induced murine cSCC tumors 
compared to normal skin [79]. In addition, marked sup-
pression of SMRT-2 expression has been noted in Ras-
driven human organotypic epidermal neoplasia [74]. 
Together, these two lncRNAs may function as potential 
tumor suppressors in cSCC. In this context, it is interesting 
that ZNF750 which upregulates the expression of TINCR 
in keratinocytes, was recently shown to exert a tumor-
suppressive role in SCCs of head and neck, lung, cervix, 
and skin [76].

Fig. 3  Proposed molecular functions for lncRNAs PICSAR and 
PRECSIT in cSCC. a Expression of PICSAR is suppressed by the p38 
signaling pathway. PICSAR promotes activity of ERK1/2 and cell 
proliferation by inhibiting expression of dual-specificity phosphatase 
DUSP6 in cSCC cells. In addition, PICSAR modulates cSCC cell 
adhesion and migration by regulating integrin expression on the cell 
surface. b Expression of PRECSIT is suppressed by functional p53 

signaling, and elevated PRECSIT expression in response to p53 inac-
tivation contributes to STAT3 activation, which in turn upregulates 
matrix metalloproteinases MMP-13, MMP-3, MMP-1, and MMP-
10 in the MMP cluster in 11q22.3 and this way promotes proteolytic 
remodeling of extracellular matrix and basement membrane, and 
cSCC cell invasion
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LINC01048 and Hippo pathway in keratinocyte 
carcinoma

Hippo pathway is a well-conserved signaling pathway, 
which is important in skin development, cutaneous homeo-
stasis and tissue regeneration, and aberrant Hippo signal-
ing has been noted in non-melanoma skin cancers [125]. 
Recently, upregulation of a previously unknown lncRNA, 
LINC01048, was reported in cSCC associated with lower 
overall survival of cSCC patients [126]. LINC01048 pro-
motes cSCC cell growth via the Hippo pathway [126]. 
Depletion of LINC01048 regulates the levels of the 
downstream effectors of the Hippo signaling, including 
yes-associated protein 1 (YAP1) and transcriptional co-
activator with PDZ-binding motif (TAZ). Mechanistically, 
LINC01048 interacts with transcription factor TAF15 to 
promote transcription of YAP1 gene [126]. Accordingly, 
YAP1 and TAZ function as oncogenes in many cancers, 
including BCC and cSCC [127, 128]. Together these 
results provide interesting new evidence for the role of 
LINC01048/TAF15/YAP1-axis in cSCC progression.

PRECSIT and LINC00319 regulate invasion of cSCC

p53-regulated carcinoma-associated STAT3-activating 
long intergenic non-protein coding transcript (PRECSIT) 
is a recently identified lncRNA with elevated expression 
in cSCC [129]. PRECSIT is a nuclear-enriched lncRNA 
downregulated by p53 signaling, and a high level of 
PRECSIT expression is associated with the absence of 
functional p53 in cSCC tumor cells in vivo [129]. Deple-
tion of PRECSIT inhibits cSCC cell invasion by downregu-
lating STAT3 expression and activation, and production 
of matrix metalloproteinases (MMPs), MMP-13, MMP-3, 
MMP-1, and MMP-10 [129], suggesting a tumor-promot-
ing function for PRECSIT (Fig. 3b). These results provide 
interesting new evidence that p53/PRECSIT/STAT3 axis 
regulates the expression of invasion proteinases in the 
MMP gene cluster in 11q22.3: MMP-13/MMP-3/MMP-1/
MMP-10.

LINC00319 is a recently identified lncRNA with ele-
vated expression in cSCC shown to correlate with larger 
tumor size and lymphovascular invasion of cSCC [130]. 
LINC00319 promotes cSCC cell migration and invasion, 
and upregulates expression of MMP-2, MMP-9, and mark-
ers for epithelial–mesenchymal transition, E-cadherin, and 
vimentin [130]. PRECSIT regulates the invasion of cSCC 
cells specifically without affecting cell growth [129], 
whereas LINC00319 has an anti-apoptotic function and 
promotes cSCC cell proliferation via miRNA-mediated 
mechanism [130].

Concluding remarks

The role of lncRNAs in epidermal biology is slowly emerg-
ing. The recent findings summarized here elucidate the 
functional role of lncRNAs in physiological conditions 
and keratinocyte cancer development, specifically in cSCC 
(Fig. 2, Table 1). It is noteworthy, that none of the BCC-
associated lncRNAs have been functionally characterized 
yet. Moreover, considering UVR as a common nominator 
for the development of cSCC and BCC, it remains unclear 
whether they share the same UV-regulated lncRNAs. These 
cancers have distinct mutational background and different 
oncogenic signaling pathways. Therefore, it is likely that 
there are also specific lncRNAs which, by function, are 
associated with either cSCC or BCC development by co-
operating with various signaling molecules to mediate the 
expression of tumor promoting or tumor suppressing genes. 
LncRNAs present great potential in developing new diag-
nostic and therapeutic approaches. Along with conventional 
molecular markers, distinct lncRNA expression signature 
may provide better diagnostic accuracy of the disease. 
Moreover, therapeutic targeting of tumorigenic lncRNAs 
may enhance the efficacy of cancer therapy.
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