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Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within 
the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of 
local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction 
with the immune system, with the gut microbiota and its involvement in the gut–brain axis, and neuro-epithelial interactions. 
Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there 
are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the 
current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and 
process external information, how these signals may be modulated by physiological and pathophysiological factors, and 
finally, how outputs are generated for integrated gut function.
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Introduction

The enteric nervous system (ENS) is critical for orchestrat-
ing gut motility, secretion, and blood flow along the entire 
gastrointestinal tract. These functions are in turn essential 
for a variety of gut processes including digestion and absorp-
tion, passage of content, as well as maintenance of body 
fluid homeostasis. The ENS also plays an important role in 
host defense, for instance by increasing motility and secre-
tion to expel noxious agents, and via neuro-epithelial and 
neuroimmune interactions [1, 2]. The importance of this 
neural network is exemplified not only by the life-threaten-
ing consequences when enteric neurons fail to develop, such 
as in Hirschsprung disease [3–5], but also in more subtle 
conditions when there are faults in ENS wiring during devel-
opment [6] and intestinal transit is severely delayed. Fur-
thermore, neuronal degeneration in the ENS may also con-
tribute to gastrointestinal symptoms commonly reported in 
neurodegenerative disorders such as Parkinson’s disease and 
Alzheimer’s disease [7]. For a clinically focused perspective, 

we direct readers to an excellent review by Schneider and 
colleagues [8], which comprehensively covers these many 
roles of the ENS in regulating gastrointestinal function and 
in the context of disease.

The ENS is an elaborate neural network equipped with 
a complete repertoire of intrinsic sensory neurons (intrinsic 
primary afferent neurons, IPANs), excitatory and inhibi-
tory interneurons, and motor neurons, as well as enteric 
glia. These basic elements form the building blocks of the 
enteric circuits underlying integrated gut function, enabling 
the system to receive external inputs, integrate information, 
and generate outputs. The millions of enteric neurons and 
glia within the gut wall are arranged in two ganglionated and 
interconnected plexus layers: the myenteric and submucosal 
plexus [9]. The myenteric plexus, situated between circular 
and longitudinal muscle layers, is well positioned for its key 
role in coordinating gut movements. The submucosal plexus 
situated beneath the mucosal epithelium lining the lumen 
is mainly involved in the control of water and electrolyte 
secretion, and blood flow. Indeed, all functional elements 
within the intestine including the epithelium, smooth mus-
cle, interstitial cells of Cajal (ICC), vasculature, and immune 
cells are innervated by the ENS, allowing the gut to moni-
tor and exert appropriate responses to the dynamic external 
environment. While the ENS can operate autonomously, it 

Cellular and Molecular Life Sciences

 * Pieter Vanden Berghe 
 pieter.vandenberghe@kuleuven.be

1 Laboratory for Enteric NeuroScience (LENS), Translational 
Research Center for Gastrointestinal Disorders (TARGID), 
University of Leuven, Leuven, Belgium

http://orcid.org/0000-0002-4277-3664
http://orcid.org/0000-0002-0009-2094
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-020-03543-6&domain=pdf


4506 C. Fung, P. Vanden Berghe 

1 3

also receives and integrates extrinsic inputs from the central 
nervous system (CNS)  [10].

Although many fundamental principles have been elu-
cidated, our understanding of various aspects of integrated 
ENS function remains limited owing to its complex organi-
zation, particularly with regards to its interactions with the 
microbiome and immune system [8]. With its components 
interspersed among a multitude of different cell types within 
the contractile intestine, studying the influence of luminal 
contents on functional enteric circuits has traditionally 
posed as a technically difficult task. Nevertheless, advances 
in imaging and genetic technologies have and will continue 
to facilitate this process [11]. This review highlights recent 
advances in unraveling the circuitry of the ENS and its 
diverse functions, the mechanisms by which local factors 
modulate its activity, and revisits some longstanding ques-
tions that remain to be addressed.

Cellular components of the enteric circuitry

Early descriptions of peristaltic reflexes in the intestine 
operating independently of the CNS were provided by Von 
Haller in 1755 [12]. Later, in 1899, Bayliss and Starling pre-
sented evidence that this reflex activity is attributed to local 
intrinsic nerve circuits present in the gut [13]. Around the 
same time, Dogiel published illustrations of three morpho-
logical subtypes of neurons in the ENS, defined as Dogiel 
Types I, II, and III [14]. It was not until 1974 that Hirst 
and colleagues then reported on their electrophysiological 
properties and classified them into AH- and S-type neurons 
[15]. AH neurons are typified by their larger action poten-
tials (APs) with an inflection on the falling phase and long 
afterhyperpolarizing potential (AHP; > 2 s) that follows. 
By comparison, S neurons are characterized by their brief 
APs that lack slow AHPs, and they display fast excitatory 
postsynaptic potentials (EPSPs). Subsequently, around the 
80–90s, Costa, Furness, and colleagues conducted an exten-
sive series of immunohistochemical and electron microscopy 
studies to group enteric neurons based on their distinct neu-
rochemistry, projection patterns, and ultrastructure [16–29]. 
These were further correlated with their electrophysiological 
and functional properties [30–34]. Collectively, these mor-
phological, electrophysiological, and neurochemical clas-
sification systems, informed by anatomical and functional 
studies, constitute the foundation of our standard enteric 
neuronal nomenclature and knowledge of the basic enteric 
circuitry.

Current studies often rely on inferring the function of 
neurons based on their neurochemical identity by immu-
nostaining for the expression of primary transmitters or their 
synthesizing enzymes, and cytoskeletal and calcium-binding 
proteins. However, due to obvious technical considerations, 

i.e., the number of different antisera that can applied at 
once is restricted, this methodology severely limits the pos-
sibility to further identify heterogeneity within major func-
tional subtypes of enteric neurons. Moreover, the neuronal 
markers applied may not necessarily directly correlate with 
their function. However, studies using various single-cell 
RNA-sequencing methods optimized for the ENS are now 
emerging, allowing for extensive gene expression profiling 
of functional molecular constituents of enteric neurons such 
as ion channels, transmitters and their synthesizing enzymes, 
as well as receptors [35, 36]. This methodology based on sta-
tistical clustering algorithms subdivided myenteric neurons 
into nine molecularly defined subpopulations. By compari-
son, ten different classes of myenteric neurons were identi-
fied from integrated anatomical, neurochemical, functional, 
and pharmacological analysis [10]. While this approach still 
provides indirect evidence for different functional subtypes, 
this information will undoubtedly generate important clues 
to facilitate our interpretation of the composition of enteric 
circuits and their higher order functions.

The most basic enteric circuit consists of a limited num-
ber of cellular elements: a sensory neuron directly, or via 
an interneuron, synapsing onto an excitatory or inhibitory 
output motor neuron. Although this minimal circuit is theo-
retically sufficient to elicit peristalsis, it has come to light 
that a fourth essential component, that is, the glial cell, 
also actively participates in modulating intestinal motility 
and secretion [37, 38], and possibly also in neuroimmune 
interactions [39]. These functional neuroglial units are dis-
tributed in an overlapping and repetitive fashion around 
the circumference and along the length of the gut. Further 
complexity arises with its convoluted organization, where 
heterogeneous populations of enteric neurons that innervate 
different targets are mixed within clusters of interconnected 
ganglia, making the decoding of this system exceptionally 
challenging.

Intrinsic sensory neurons

Intrinsic sensory neurons (or IPANs) are typically poly-
modal, possessing chemosensory and mechanosensory 
properties, and have Dogiel Type II morphology [40]. Fur-
thermore, they are associated with AH-type characteristics 
where their AHP enables them to set a level of excitability 
through somatic gating of activity within the network [41]. 
This in turn allows them to transduce the intensities, dura-
tions, and patterns of physiological stimuli. While intrinsic 
sensory neurons are often considered one population, single-
cell sequencing data provides evidence for several subclasses 
[35, 36]. One clear division is whether they are situated in 
the submucosal or myenteric plexus. Only the former subset 
are sensitive to subtle mechanical stimulation of the mucosa, 
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i.e., local mucosal deformation by pressure ejection from a 
micropipette [42, 43].

Intrinsic sensory neurons predominantly project circum-
ferentially almost encircling the full gut tube, but also extend 
local projections longitudinally in both directions, and pro-
vide extensive innervation of the mucosal epithelium [44] 
(Fig. 1). All their projections have transmitter release sites. 
These sensory neurons form interconnected networks which 
enable them to integrate and reinforce information not only 
locally but across a distributed network [41]. In this sense, 
intrinsic sensory neurons can act as interneurons. They also 
provide excitatory input to all other functional classes of 
enteric neurons [45].

In addition to Dogiel Type II (AH) neurons, a population 
of enteric neurons with Dogiel Type I morphology (identi-
fied as interneurons) can also behave as intrinsic mechano-
sensing neurons in the colon [46], and similarly in the small 
intestine, where mechanosensory properties were found in 

myenteric neurons that do not share morphological features 
with Dogiel Type II neurons [47].

Interneurons

Additional to intrinsic sensory neurons that can also function 
as interneurons [46], there are uniaxonal myenteric neurons 
that project orally or anally, i.e., ascending and descending 
interneurons, respectively (Fig. 1). The different neurochemi-
cal classes of interneurons can differ between gut regions. For 
instance, in the guinea pig ileum, there is one class of excita-
tory ascending interneurons, and three classes of descending 
interneurons, while in the colon, there are three neurochemi-
cal classes of ascending interneurons, and four classes of 
descending interneurons [48, 49]. Such regional differences 
may contribute to the different motor patterns that they display. 
Neurons within each of these different subclasses can inter-
connect with like neurons to form chains extending along the 

Fig. 1  Neuronal components of 
the enteric circuitry. Intrinsic 
sensory neurons form intercon-
nected networks encompassing 
the circumference of the gut 
wall, and provide extensive 
innervation of the mucosal 
epithelium. Within the myen-
teric plexus (MP), interneurons 
form chains along the length 
of the gut, with ascending 
interneurons projecting orally 
and descending interneurons 
projecting anally. Myenteric 
excitatory and inhibitory motor 
neurons innervate the circular 
(CM) and longitudinal muscle 
(LM), while secretomotor neu-
rons in the submucosal plexus 
(SMP) project to the mucosa
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length of intestine. Ascending interneurons also receive inputs 
from local sensory neurons and project to excitatory motor 
neurons, while descending interneurons receive inputs from 
local sensory neurons, and project to inhibitory motor neurons. 
Some interneurons may also provide inputs to sensory neu-
rons. Furthermore, descending interneurons, but not ascend-
ing interneurons, project to submucosal ganglia. Acetylcholine 
(ACh) is generally the primary transmitter of interneurons, 
but each subtype may use various co-transmitters or neuro-
modulators such as 5-hydroxytryptamine (5-HT), adenosine 
triphosphate (ATP), tachykinin (TK), nitric oxide (NO), and 
somatostatin (SOM) [45].

Motor neurons

In the myenteric plexus, excitatory and inhibitory motor neu-
rons supply the circular and longitudinal muscle to evoke mus-
cle contraction or relaxation (Fig. 1). Excitatory motor neurons 
tend to project orally and utilize ACh as their primary trans-
mitter, while inhibitory neurons project anally and use vari-
ous co-transmitters including NO, vasoactive intestinal peptide 
(VIP), and Pituitary adenylate cyclase-activating polypeptide 
(PACAP) [45]. In the submucosal plexus, secretomotor and 
vasodilator neurons innervate the mucosa and submucosal vas-
culature to regulate intestinal secretion and blood flow, respec-
tively [50]. The two key transmitters of submucosal neurons 
are ACh and VIP [45, 51, 52].

Enteric glia

Although enteric glia have previously been less extensively 
studied than their neuronal counterparts, it has become appar-
ent that they actively participate in regulating various gut 
functions [53], including the regulation of colonic motility in 
physiology [37, 54–57] and in pathophysiology such as colitis 
[58–61].

Enteric glial subtypes (I–IV) have been described based on 
their distinct morphology and location within the layers of the 
gastrointestinal tract, as well as different response signatures 
[62]. As with enteric neurons, enteric glia also label differen-
tially for various neurochemical markers such as Glial fibril-
lary acidic protein (GFAP), Sox10, and S100 calcium-binding 
protein β (S100β), but the various patterns of GFAP, S100β, 
and/or Sox10 are not unique to any one morphological glial 
subtype [62]. Through single-cell sequencing studies, seven 
distinct classes of enteric glial cells have been identified [35]. 
However, how their morphological features, spatial distribu-
tion, and genetic profile relate to functional diversity remains 
to be determined.

Inputs to enteric circuits

Intrinsic sensory pathways

The gut is constantly subject to a plethora of different sen-
sory stimuli including chemical and mechanical signals 
present in the luminal contents, as well as mechanical feed-
back from the contracting muscle. The ENS must be able to 
detect this information, integrate it, and regulate its activity 
to generate appropriate outputs accordingly. Thus, intrin-
sic sensory circuits are essential for the gut to monitor this 
dynamic environment. Morphologically, intrinsic sensory 
neurons are multipolar and branch extensively, giving rise 
to two routes by which APs may propagate. The majority of 
APs cross the soma to reach other efferent processes, while 
some bypass the cell body via an axon branch (i.e., axon 
reflexes). Thus, the integration of sensory inputs may occur 
at the level of the nerve process, in the soma, or at the level 
of the network [41]. Much of the information processing and 
sensory signal integration that occurs within this population 
of sensory neurons is thought to largely determine the func-
tional output of the intestine. This is most apparent in sim-
ple monosynaptic reflexes comprising an intrinsic sensory 
neuron and a motor neuron, where mucosal stimulation trig-
gers a burst of fast EPSPs in inhibitory  motor neurons and 
corresponding inhibitory junction potentials in the muscle 
that are similar in time course to the burst of APs recorded 
in the sensory neuron [41, 43]. However, the detection of 
mechanical stimuli in the gut may not be so straightforward. 
There is evidence that mechanosensitivity is not limited to 
the classic intrinsic sensory neuron, but is a property of a 
broader population of enteric neurons [63].

Acute detection of luminal nutrients

There is an extensive innervation of the mucosal epithelium 
from intrinsic sensory neurons, but these nerve endings do 
not come into direct contact with the luminal contents. Spe-
cialized enteroendocrine cells (EECs) scattered throughout 
the epithelium are responsible for first sensing the luminal 
milieu and then communicating these signals to the ENS. 
EECs are known to be widely activated by nutrient stimula-
tion [64, 65]. Accordingly, they are equipped with an array 
of molecular machinery to sense different chemicals within 
the lumen as well as mechanical distortion of the mucosa 
[66–68]. EECs also produce a range of signaling peptides 
and hormones to further transduce the signal through par-
acrine or endocrine mechanisms [69]. While chemosensory 
transduction in the epithelium has been extensively exam-
ined, our knowledge of the specific molecules involved in 
EEC signaling to the ENS is surprisingly lacking. EECs 
make specialized contacts via their ‘neuropod’ with extrinsic 
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sensory afferents innervating the epithelium [70–72], but 
the specificity of the intrinsic enteric circuitry involved in 
detecting different luminal stimuli remains unclear. The 
local application of various nutrient stimuli, and acidic or 
basic solutions to the mucosa can activate enteric neurons 
[43], but the exact mucosal mediators involved in the com-
munication between EECs and enteric neurons remain elu-
sive. Single-cell RNA-sequencing of small intestinal epi-
thelium shows that EEC-subtype-enriched genes encode for 
key peptides [substance P, glucagon-like peptide 1 (GLP-
1), cholecystokinin (CCK), neurotensin, secretin, glucose-
dependent insulinotropic polypeptide (GIP), and ghrelin] 
as well as synthesizing enzymes for signaling amines (e.g. 
5-HT) [69, 73]. Complementary to these data, single-cell 
RNA-sequencing of enteric sensory neurons indicate that 
they express genes encoding for many of the corresponding 
receptors including HTR3a (5-HT3 receptor), Tacr1 (Neu-
rokinin 1 (NK1) receptor), and Glp1r (GLP-1 receptor) [35, 
36]. Perhaps, one of the most well-characterized signaling 
pathways of mucosal chemosensory transduction is 5-HT 
release from EC cells, which then activates 5-HT3 receptors 
on intrinsic sensory nerve endings in the mucosa to further 
transmit the luminal signal [67, 74–76]. Nonetheless, the 
specificity of neuro-epithelial circuits involved in detect-
ing different luminal constituents and subsequent signaling 
within the ENS are still ill defined.

Long‑term interactions with symbiotic organisms

The intestinal microbiota is a component of the luminal 
content that has gained much attention given its importance 
in gut homeostasis and implications in a diverse range of 
diseases including autism, obesity, and Parkinson’s dis-
ease [77]. The ENS is in a prime position to serve as a key 
interface through which microbiota can influence intestinal 
physiology [78]. Thus, how the microbiota signals to the 
ENS has been an area of considerable interest. Intrinsic sen-
sory nerves may detect mucosal microbial products via vari-
ous mechanisms including the chemosensation of bacterial 
metabolites via EECs, through microbiota-produced neuro-
transmitters such as 5-HT, dopamine, gamma aminobutyric 
acid (GABA), and ACh (although the concentrations of 
these produced in vivo is unknown), or via the activation of 
innate immune pathways by microbe-associated molecular 
patterns (MAMPs) signaling [1].

Short-chain fatty acids (SCFAs) are a major candidate for 
mediating crosstalk between microbiota and the ENS. Nota-
bly, the most prominent metabolites of gut microbial fermen-
tation are the SCFAs’ acetate, propionate, and butyrate [79]. 
In the epithelium, many EECs express several G-protein-
coupled receptors (GPCRs) through which SCFAs may act, 
including the fatty acid receptor 2 (FFAR2 or GPR43) and 

3 (FFAR3 or GPR41). FFAR3 is also expressed by a subset 
of enteric neurons [80]. Whether SCFAs signal to neurons 
via signaling mediators released from EECs or may diffuse 
through the epithelium to directly act on underlying enteric 
neurons, or both, remains unclear. Nonetheless, commensal 
bacteria acting via SCFAs have been shown to increase the 
density of EC cells and upregulate Tph1 expression (Tph1 
encodes the synthesizing enzyme for 5-HT), which, in turn, 
impacts ENS activity by modulating serotonergic signaling 
[81, 82].

Microbial factors may also act via various Toll-like recep-
tors (TLRs) which specifically recognize the molecules of 
microbial origin, i.e. MAMPs. Lipopolysaccharide (LPS, 
the major membrane component of Gram-negative bacteria) 
via TLR activation stimulates hormone release and secre-
tion of inflammatory mediators from mouse EEC cell lines 
[83]. However, the effect of these mediators on activity of 
enteric neurons is not well understood. As with receptors for 
SCFAs, the overlapping expression of TLRs on epithelial 
EECs (TLR1, 2, 4, 5, 6, and 9) [83, 84], and enteric neurons 
(TLR2, 3, 4, 7, and 9) [85–87], as well as glia [88] makes it 
challenging to identify the relative contributions of specific 
receptor pathways to ENS activation.

Although the specific enteric circuits through which 
microbiota may act and how they are modulated by microbes 
are not well defined, it is clear that microbial composition 
impacts the electrophysiological properties of myenteric 
intrinsic sensory neurons. Two studies by McVey Neufeld 
et al. [89, 90] showed that myenteric AH neuronal excitabil-
ity was decreased in germ-free mice compared to specific 
pathogen-free control mice and conventionalized germ-free 
mice, as evidenced by a reduction in the number of APs 
generated at 2× threshold. The slow AHP was also reported 
to be prolonged in germ-free mice, although the underlying 
mechanism is unclear [89]. Nonetheless, it is apparent that 
the gut microbiota plays a key role in setting the excitabil-
ity of enteric neurons and it is likely that this results in the 
summation of multiple microbial factors acting via various 
signaling pathways. Most recently, Obata et al. identified a 
novel molecular mechanism linking luminal microbiota to 
the regulation of colonic motility. They show that micro-
biota, via activation of acryl hydrocarbon receptor (AhR) 
signaling, determine the transcription profile of enteric neu-
rons, and as a net result affect colonic motility [91].

Extrinsic inputs

The ENS is often described to be capable of functioning 
autonomously in its local regulation of intestinal motil-
ity and secretion, independently of the CNS. Nonetheless, 
gastrointestinal function ultimately depends on the integra-
tion of both local enteric and central nervous activity. The 
ENS, depending on the gut region, receives various forms 
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of efferent input from extrinsic neurons including vagal, spi-
nal thoracolumbar, and spinal lumbosacral innervation [10, 
92]. Vagal efferent motor neurons supplying the upper GI 
tract are cholinergic and originate from the nucleus ambigu-
ous and the dorsal motor nucleus in the brain stem. These 
pre-enteric pathways are mainly responsible for regulating 
esophageal propulsion, gastric distension, and antral contrac-
tility. While the majority of gastric enteric neurons receive 
vagal innervation, there is only a relatively minor contri-
bution of vagal efferent inputs to the distal intestine and 
colon, both structurally and functionally [10]. By contrast, 
enteric neurons of the small and large intestines are densely 
innervated by sympathetic efferent nerves, which have their 
cell bodies located in the prevertebral ganglia and utilize 
noradrenaline as their primary transmitter [10]. Enteric glia 
have also been found to receive sympathetic efferent input 
[93]. These sympathetic neurons act to slow intestinal transit 
and reduce intestinal secretion [10]. Towards the distal end 
of the gut, the pelvic innervation of the distal colon and 
rectum is responsible for maintaining fecal continence and 
coordinated emptying of the bowels via the ENS [10, 94].

Modulation of the ENS

Collectively, the summation of all the inputs that the gut 
receives critically determines the level of activity within the 
enteric neuronal network and subsequent output that it gen-
erates. However, the properties of enteric circuits are also 
subject to modulation by various physiological and patho-
physiological factors.

Physiological modulators

Mechanosensory feedback

Mechanical feedback informs the gut of its physical state, 
which is essential for effective mixing, propulsion, or stor-
age of the containing intestinal contents. Both mechanical 
distortion of the mucosa and muscle distension are detected 
by enteric neurons. While the classic model of GI neuronal 
mechanosensitivity attributes this property to IPANs, where 
distortion of their cell bodies or processes triggered action 
potential discharge [95, 96], there is increasing evidence that 
a broader population of enteric neurons, that is, including 
S-type neurons, also display mechanosensitive properties 
[46, 47, 63] and these have been termed more generally 
‘mechanosensitive enteric neurons’ (MEN) [97]. Thus, it 
is possible that motor neurons have the potential to regu-
late their own output directly via feedback from the muscle. 
While it has been demonstrated that the detection of mucosal 
distortion is mediated via mechanosensitive EECs [67, 68, 

98], it is unclear if there are mechanosensitive nerve endings 
that are also directly activated.

Neuroglia signaling

Enteric glial cells express a plethora of (predominantly 
G-protein-coupled) receptors for a broad range of neuro-
transmitters and modulators in the gut, and thus, they have 
the capacity to monitor and respond to enteric neurotrans-
mission [99]. The most well-studied form of enteric neuron-
to-glia communication is purinergic signaling and enteric 
glia express various nucleotide receptors including P2Y1 
[100–102], P2Y4 [103–105], and A2B receptors [106, 107], 
as well as eNTPDase2, which hydrolyses ATP (released 
from enteric neurons) to ADP—a glial cell agonist [99]. 
Furthermore, structurally defined neuroglia units have been 
described in the ENS. A mechanism by which enteric neu-
ronal cell bodies signal to a defined number of surrounding 
glia was identified, where neuron-to-glia communication 
occurs via purinergic signaling through pannexin channels 
[108]. There is increasing evidence from functional studies 
to suggest that activated enteric glia in turn modulate vari-
ous gut functions and this will be discussed in the following 
sections.

Macrophages

Self-maintaining gut macrophages closely situated near 
blood vessels, submucosal and myenteric neurons and nerve 
fibers, Paneth cells, and Peyer’s patches have recently been 
described. These macrophages were found to exert niche-
specific functions in intestinal homeostasis, including the 
regulation of intestinal secretion and motility [109]. In par-
ticular, muscularis macrophages confined to the muscularis 
externa have been shown to modulate peristalsis by a direct 
action on enteric neurons via the secretion of the growth 
factor bone morphogenetic protein 2 (BMP2), while enteric 
neurons reciprocally regulate macrophage numbers via col-
ony stimulating factor (CSF1). Furthermore, this interaction 
between enteric neurons and muscularis macrophages can be 
influenced by signals from the microbiota which tunes the 
levels of BMP2 and CSF1 [110].

ENS modulation in pathophysiology

Crosstalk between the enteric neurons, glia, and intestinal 
immune cells is important in inflammation. Their mode 
of communication is via the release of various mediators 
including cytokines, neurotransmitters, and neuromodu-
lators. While neurons do not form synapses onto immune 
cells, their axons come into close proximity to immune cells 
and various inflammatory mediators can, in turn, act on the 
ENS [2].
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Noxious agents and allergens

Whereas the lack of microbiota decreases AH neuronal 
excitability, a common characteristic of gut inflammation 
and infections—whether it be due to bacteria, viruses, 
parasites, toxins or dietary allergens—is that AH neurons 
become hyperexcitable with an attenuation of its AHP 
through slow EPSPs. Although, the specific mechanisms by 
which ionic currents are altered may differ and are not com-
pletely understood. cAMP is thought to be a key mediator 
of slow EPEPs, with the primary slow EPSP-evoking trans-
mitter being the tachykinin, substance P. Indeed, cholera 
toxin from the diarrhoea-inducing bacterium Vibrio cholera 
appears to induce hyperexcitability in myenteric AH neurons 
via tachykinins and NK3 receptors [111]. The elevation in 
cAMP may also result from the release of other factors that 
act through adenylyl cyclase (AC), including inflammatory 
and immune mediators, e.g., histamine and prostaglandins. 
For instance, sustained AH cell hyperexcitability following 
infection with the GI parasite Trichinella spiralis was associ-
ated with upregulated AC cAMP signaling, protein kinase A 
(PKA) activation [112], and histamine release [113]. Simi-
larly, in guinea pigs sensitized by milk ingestion, hyperexcit-
ability in colonic submucosal AH neurons was associated 
with histamine release from mucosal mast cells acting on 
 H2 receptors, which couple to AC [114]. While in the TNBS 
(2,4,6-trinitrobenzene sulfonic acid) model of inflammation, 
there is evidence for the involvement of prostaglandin E2 
(PGE2), since Cox-2 inhibition prevents the AH neurons 
from becoming hyperexcitable [115].

The role of enteric glia in inflammation

Enteric glia actively participate in inflammatory states and 
can respond to various pro-inflammatory mediators, e.g., 
cytokines, and when activated can promote the secretion 
of proteins such as S100β, which subsequently triggers NO 
production by inducible NOS (iNOS) and increases oxida-
tive stress to induce neuronal damage [116]. In colitis, NO 
production from glial iNOS induces ATP release via the 
opening of glial connexin-43 (Cx43) hemichannels [60]. 
ATP generated from activated glia can in turn stimulate a 
signaling complex comprising neuronal purinergic P2X7 
receptors, pannexin-1 channels, the adaptor protein ASC, 
and caspases to mediate neuronal cell death [101]. It has also 
been shown that increased iNOS activation in enteric glia 
contributes to disrupted epithelial permeability in colitis and 
this was restored by perturbing enteric glial function using 
fluoroacetate [59]. However, contrary to its intended pur-
pose, fluoroacetate itself may in fact induce reactive gliosis 
and only has a minor effect on glial  Ca2+ signaling at the 
population level [117].

Another mechanism by which enteric glia may be acti-
vated during inflammation was recently shown to involve 
tachykinins [118]. Thus, tachykinins not only contribute to 
inflammation through their effect on neurons, but also via 
mechanisms involving neuron–glia signaling. Tachykinins 
acting through NK1 and NK2 receptors on enteric neurons 
were shown to recruit glia by stimulating ATP release and 
activating P2Y1 receptors. This then drives glial ATP release 
via Cx43 hemichannel opening to trigger P2X7-mediated 
inflammation.

Macrophages

In addition to their role in homeostasis, macrophages can 
also contribute to inflammation. Enteric neurons and vagal 
neurons interact with macrophages to form a cholinergic 
anti-inflammatory pathway [119]. Vagal nerve stimulation 
can cause ACh release from cholinergic myenteric neurons 
onto closely apposed α7nAChR-expressing muscularis mac-
rophages. This in turn inhibits ATP-induced calcium signal-
ing in the macrophages, which attenuates their activation 
and was seen to reduce inflammation in a murine model of 
postoperative ileus.

Mast cells

Mast cells are mainly found in the lamina propria and sub-
mucosal plexus, where they are closely associated with the 
intestinal nerves [120]. In rodent models, mast cells respond 
to a variety of neurotransmitters including substance P, cal-
citonin-gene related peptide (CGRP), ATP, and SOM [121]. 
Since mast cells are generally sparse under physiological 
conditions and are more abundant during inflammatory 
states, for instance with food allergies or parasite infec-
tions [113, 114], it is likely that mast cell to nerve signaling 
is more prominent in disease states. Accordingly, a  Ca2+ 
imaging study of the human submucosal plexus showed that 
under physiological conditions, communication from mast 
cells to nerves was rarely observed when mast cells were 
activated by IgE receptor crosslinking, which induces the 
release of a cocktail of mediators including proteases, his-
tamine, and cytokines [122, 123]. On the other hand, nerve 
to mast cell signaling could be readily triggered by electrical 
stimulation [122].

Functional outputs of the ENS

Intestinal motility

Motility reflexes can be elicited by a broad range of chemical 
and mechanical stimuli including luminal nutrients, mechan-
ical stimulation of the mucosa, and intestinal distension 



4512 C. Fung, P. Vanden Berghe 

1 3

[124]. The GI tract displays a wide range of complex motor 
patterns to serve different purposes depending on the intesti-
nal region and the nature of the sensory inputs received. Two 
of the major neurogenic contractile behaviors are segmenta-
tion contractions that mix luminal contents back and forth to 
optimize digestion and nutrient absorption [125–127], and 
peristalsis, a propagating contraction that propels content 
along the tract [13, 128–130]. The basis of most propulsive 
motility patterns is peristaltic reflexes which involve the acti-
vation of ascending interneurons which synapse excitatory 
motor neurons to evoke a contraction immediately oral to 
the stimulus site, while a concurrent activation of descend-
ing interneurons contacting motor neurons evokes relaxation 
anally [124] (Fig. 2).

While the underlying mechanisms of neurogenic peristal-
sis have been largely resolved [131], the circuits involved in 
other motility patterns such as mixing, and especially how 
the gut transitions between different motility patterns remain 
elusive. Since excitatory and inhibitory motor neurons are 
polarized, with ascending interneurons coupled to excita-
tory motor neurons and descending interneurons coupled to 
inhibitory motor neurons, monosynaptic reflexes would pro-
duce oral contractions and anal dilatations, not the stationary 
contractions seen in mixing motor behaviors. A combined 
computational modelling and in vitro study demonstrated 
that spatially localized contractions can arise from a local 
imbalance in ascending excitatory or descending inhibitory 
muscle inputs due to variations in the activity within ascend-
ing or descending reflex pathways [132]. It was proposed 

that variations in the activity within these pathways may 
be mediated by locally released neuromodulators, or may 
result from receptor desensitization or synaptic rundown. 
Furthermore, an observation from in vitro studies is that 
stationary contractions often occur repeatedly at the same 
location [127]. It was shown that this could be induced by 
an incision made through the myenteric plexus and muscle 
layers around the full gut circumference to severe ascend-
ing and descending pathways, where localized contractions 
occur either side of this lesion when exposed to a nutri-
ent solution [132]. This suggests that structural differences 
may give rise to localized activity. Physiologically, this may 
be the number of neurons or synaptic contacts. Addition-
ally, a prerequisite of this model was that the sensory input 
into the ascending and descending pathways is distributed 
along the length of the intestine to first leave the muscle 
in a resting state, which would then allow local variations 
to produce stationary contractions. Hence, a potential trig-
ger for the switch from peristalsis to segmentation may be 
the shift from a localized to a distributed stimulus, or vice 
versa [132]. Another means of switching between propul-
sive and mixing patterns has been demonstrated by Ferens 
et al. who showed, using pharmacological agents, that this 
can be achieved by modulating the AHP of intrinsic sensory 
neurons [133].

Although intrinsic neural circuits are known to be impor-
tant in mediating these various motor behaviors, how the 
gut transitions between states of quiescence and activity is 
another open question. Aspects of this have been recently 

Fig. 2  Simplified schematic representing the enteric circuitry under-
lying the peristaltic reflex. Intrinsic sensory neurons synapse with 
ascending and descending interneurons that form chains along the 
length of the intestine, as well as excitatory and inhibitory motor neu-
rons. Interneurons also innervate motor neurons which in turn sup-
ply the circular and longitudinal muscle (musculature represented by 
grey lines; note that different muscle layers and their innervation are 

not defined). Upon detection of a luminal stimulus, the activation of 
ascending interneurons connected to excitatory motor neurons evoke 
a contraction orally, while the activation of descending interneurons 
connected to inhibitory motor neurons elicit a relaxation anally to 
propel the contents along. Enteric glia also plays an active role in reg-
ulating intestinal motility
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studied in the context of rhythmic propulsive contractions 
which occur in the large intestine, termed colonic migrating 
motor complexes (CMMCs) [131]. Using mice that selec-
tively expressed the  Ca2+ indicator GCaMP3 in either cho-
linergic or nitrergic enteric neurons, it was shown that these 
two populations are differentially involved in coordinating 
CMMCs and tonic inhibition, respectively [134]. Further, 
optogenetic activation of channelrhodopsin2 (ChR2) in 
nitrergic neurons inhibited ongoing CMMCs. In a separate 
study, optogenetic activation of ChR2 in cholinergic cal-
retinin neurons was shown to increase CMMCs and colonic 
propulsion and transit in vitro. It was further demonstrated 
using wireless optogenetics that colonic transit could also be 
increased in vivo, in conscious, freely moving mice [135]. 
Another study combined fluorescent  Ca2+ imaging with elec-
trophysiology to examine the activity of large populations 
of nitrergic inhibitory and cholinergic excitatory myenteric 
neurons simultaneously. It was found that both populations 
displayed a rhythmic firing pattern and discharge during 
CMMCs at the same time in repetitive bursts [136]. This 
supports the previous findings that showed disinhibition dur-
ing CMMCs was not due to a “switching off” of a population 
of enteric neurons, but rather presynaptic inhibition of tonic 
inhibitory neurotransmitter release [137]. However, it is yet 
to be determined whether the behavior displayed by these 
neuronal populations arises from a specific set of pacemaker 
neurons, or emerges from the enteric network, such that it 
is not evident from examining the properties of individual 
neurons alone.

The diversity of intestinal motor behaviors exhibited 
can vary depending on the given gut region and the tasks 
required of it. For instance, the proximal colon exhibits a 
relatively diverse repertoire of motility patterns including 
anti-peristaltic waves that mix contents to maximally reab-
sorb water and electrolytes from the lumen, while the distal 
colon predominantly generates peristaltic contractions with 
its primary role in fecal pellet propulsion. Recent work sug-
gests that this depends at least in part on the specific con-
nectivity of the enteric circuitry in these different regions. 
 Ca2+ imaging was performed at low magnification to study 
responses to focal electrical stimulation in a large population 
of neurons within a single field of view [138]. Data from this 
study indicate that there are more diverging, polysynaptic 
connections present in proximal colon as compared to the 
distal colon, which mainly utilizes monosynaptic circuits 
and is more dependent on nicotinic transmission. Indeed, 
recent electrophysiological studies also confirm that dif-
ferent neurogenic patterns of electrical activity exist in the 
smooth muscle of the proximal colon, compared with the 
distal colon [139].

Interstitial cells of Cajal (ICCs)

In the myenteric plexus, interstitial cells of Cajal (ICCs) 
(ICC-MY) serve as pacemakers and generate rhythmic pat-
terns of depolarizing activity in the muscle termed slow 
waves [140]. It has been suggested that motor neurons inner-
vate ICCs, and ICCs may in turn play a role in neurotrans-
mission by transducing neuronal signals to regulate muscle 
activity [141]. For instance, an earlier study in the gastric 
fundus showed that excitatory junction potentials in the 
smooth muscle evoked by cholinergic excitatory inputs were 
attenuated in mutant mice lacking most intramuscular ICC 
[142]. However, in mutant mice lacking pacemaker-type ICC 
and electrical slow waves (at least in the small intestine), the 
neurogenic migrating motor complexes (MMCs) still occur 
and these mice have no apparent gastrointestinal problems 
[143]. Nonetheless, there is yet to be a consensus on the 
contribution of ICC to motor neurotransmission, and this 
topic has been extensively reviewed by others [144–146].

The role of enteric glia in intestinal motility

Fluorescent  Ca2+ imaging studies have demonstrated that 
activity within the enteric glial network appears to be syn-
chronized with nerve activity during CMMCs [55] and this 
glial activity is important for intestinal motility [57, 102]. 
Interestingly, enteric glia have also been reported to regu-
late GI motility in a sex-specific manner [37], where the 
ablation of PLP-1 expressing glia decreased GI transit time 
and increased CMMC frequency in female, but not male 
mice. While the involvement of enteric glia in the regula-
tion of intestinal motility is becoming apparent, still little is 
known regarding the specific transmitter pathways involved. 
Although enteric glia in the myenteric plexus express both 
M3 and M5 muscarinic receptors, it has been shown that 
muscarine-evoked  Ca2+ responses in glia are mainly medi-
ated by M3 receptors [147]. The functional role of glial M3 
receptor signaling was further examined using a DREADDs 
(designer receptors exclusively activated by designer drugs) 
system, where mice were generated to express a modified 
human M3R (hM3Dq) exclusively on  GFAP+ glia that can 
be directly and selectively activated by the synthetic ligand 
clozapine-N-oxide (CNO). CNO activation of enteric glia 
enhanced colonic motility, suggesting an endogenous role of 
glial M3 receptor signaling in modulating intestinal motility 
[147]. In addition to ACh, other neurotransmitters includ-
ing 5-HT and ATP, which mediate fast synaptic neurotrans-
mission, also stimulate enteric glia in vitro [148]. However, 
whether these endogenous transmitters signaling pathways 
are involved in enteric glial modulation of motility reflexes, 
and the mechanism by which enteric glia may exert effects 
on intestinal motility still requires further study.
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Intestinal vasodilation and secretion

The coupling of intestinal secretion and vasodilation is 
crucial for the movement of water and electrolytes across 
the mucosal epithelium [149]. These processes are largely 
regulated by vasomotor and secretomotor neurons located 
in the submucosal plexus. Depending on the species, these 
may be mutually exclusive populations or the same neurons 
which innervate both the epithelium and vasculature. The 
two major subtypes of vasodilator/secretomotor neurons are 
often distinguished by their expression of VIP or choline 
acetyltransferase (ChAT) [50, 52, 150, 151].

Vasodilator reflexes

Intestinal blood flow is critical for maintaining intestinal 
epithelial health, supplying the water and electrolytes to the 
secretory epithelium, and for fueling its metabolic needs, 
especially during digestion [8, 149]. Studies of vasomotor 
reflexes have demonstrated that the enteric innervation of the 
vasculature is responsible for vasodilation and is important 
in the local physiological regulation of mucosal blood flow, 
while vasoconstriction regulated by the extrinsic nerves sup-
plying the gut has been proposed to have a more prominent 
role in inflammatory states [152]. Local vasodilator reflexes 
can be triggered by chemical or mechanical stimulation of 
the mucosa. Studies in guinea pig small intestine have also 
provided evidence for the presence of short vasodilator 
reflexes confined to the submucosal plexus and long vaso-
dilator reflexes that run through the myenteric plexus [50, 
152, 153] (Fig. 3). The activation of these intrinsic pathways 
leads to the release of ACh onto endothelial cells to activate 
muscarinic M3 receptors, which triggers NO release and 
evokes vasodilation [152]. In human studies, postprandial 
hyperemia has been shown to involve cholinergic neurons, 
although it is unclear whether they were of intrinsic or 
extrinsic origin [154].

Secretomotor reflexes

Distension [155], mechanical distortion of the mucosa 
[156, 157], luminal chemicals and nutrients [158], and vari-
ous noxious agents [159] all trigger secretomotor reflexes 
(Fig.  3). The submucosal plexus may contain both the 
efferent and afferent elements of the secretomotor circuit, 
depending on the region and species. For instance, com-
plete secretomotor circuits have been described in the sub-
mucosal plexus of guinea pig and rat colon [156, 157, 160]. 
These in vitro secretion studies using preparations with the 
myenteric plexus removed showed that mucosal stroking 
excites submucosal intrinsic sensory neurons and stimulates 
the release of endogenous purines to activate postsynaptic 
P2Y receptors on cholinergic and VIPergic secretomotor 

neurons. Subsequent ACh or VIP release activates mucosal 
muscarinic M3 receptors or VPAC1 receptors, respectively, 
to trigger a secretory response [161]. In addition to this con-
ventional circuit, the activation of axon reflexes may cause 
substance P release from intrinsic sensory neurons with col-
laterals in the mucosa to directly activate epithelial NK1 
receptors and stimulate secretion [162]. Retrograde tracing 
of submucosal neurons innervating the mucosa of guinea 
pig colon showed that the majority of their projections were 
less than 5 mm longitudinally or circumferentially [163]. 
This is consistent with the proposal that intrinsic secretomo-
tor reflexes are predominantly localized and confined to the 
site of the stimulus, i.e., are short reflexes. However, there 
is also evidence for long secretomotor reflex pathways that 
run through the myenteric plexus in the guinea pig small 
intestine [164]. This study showed that applying an electri-
cal stimulus to intact mucosa evoked fast EPSPs in submu-
cosal neurons located 0.7–1 cm anally from the point of 
stimulation. The number of neurons displaying fast EPSPs 
was reduced by severing the connections between the sub-
mucosa and the underlying muscle and myenteric plexus 
layers. Furthermore, fast EPSPs were absent after a lesion 
in the myenteric plexus was made between the stimulus site 
and the recording site but were still observed if the lesion 

Fig. 3  Schematic illustrating neurons involved in vasodilator and 
secretomotor reflexes. Chemical or mechanical stimulation of the 
mucosa activates myenteric and/or submucosal sensory neurons 
which then excite secretomotor/vasodilator neurons directly or via 
interneurons to stimulate secretion and/or vasodilation. Intrinsic 
sensory neurons may also directly evoke a secretory response via an 
axon reflex
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was made in the submucosal plexus. Thus, the reflex exam-
ined likely involves myenteric sensory afferents innervating 
the mucosa, and that the circuit activated runs through the 
myenteric plexus.

The role of enteric glia in intestinal secretion

Like the regulation of intestinal motility, enteric glia 
may also contribute to the control of intestinal secretion. 
Although the gliotoxin fluorocitrate (a metabolite of fluoro-
acetate) did not induce any apparent changes to intestinal 
secretion [165], it has been reported that glial-specific Cx43 
knockout mice (in which the propagation of glial  Ca2+ sig-
nals is disrupted) produce fecal pellets with higher water 
content [102]. Furthermore, the disruption of glial activ-
ity in Cx43 knockout mice attenuated neurogenic secre-
tory responses [38] and selective glial activation can evoke 
secretory responses equal in magnitude to that elicited by 
neuronal depolarization. These responses were substantially 
reduced, but not abolished by the  Na+ channel blocker tetro-
dotoxin (TTX). This suggests either the involvement of neu-
rons expressing TTX-resistant  Na+ channels, or that enteric 
glial may also modulate intestinal secretion via a mechanism 
that does not involve neurotransmission within the enteric 
circuitry, i.e., by directly signaling to epithelial cells.

ENS contribution to epithelial homeostasis

Intestinal stem cells are important for the continual replen-
ishment of the epithelium as it is replaced every 3–5 days 
[8, 166]. Intestinal stem cells are housed at the base of the 
crypts, a compartment of the epithelium that is less acces-
sible to luminal contents and thought to rely more on neural 
regulation [167]. Epithelial composition critically depends 
on the regulation of intrinsic developmental signaling 
pathways in actively cycling  Lgr5+ intestinal stem cells, 
which is in turn influenced by extrinsic environmental cues 
[168, 169]. These regulatory mechanisms must be tightly 
controlled to ensure sufficient proliferation for epithelial 
replacement, but must be limited to prevent hyperprolifera-
tion and tumor growth.

There is accumulating evidence for a modulating role of 
the ENS in epithelial proliferation where the involvement 
of various neuromediators (including ACh and 5-HT) have 
been implicated [8]. Notably, it has been suggested that ACh 
stimulates intestinal stem cell proliferation [170, 171]. The 
activation of 5-HT2A receptors on cholinergic neurons via 
neuronal 5-HT has also been associated with enhanced ACh 
release and epithelial proliferation [172].

Studies further point to an ENS contribution to the regu-
lation of intestinal stem cell fate and differentiation [170, 
173, 174]. Specifically, co-culturing murine small intestinal 

stem cells with enteric neurons and glia have suggested that 
the ENS contributes to promoting their differentiation into 
EECs [173]. It has also been demonstrated that vagal neural 
crest cells innervated pluripotent stem cell-derived human 
intestinal organoids when grown together in culture. Here, 
differentiated β-tubulin- and S100β-expressing neuronal and 
glial cells respectively  influenced epithelial differentiation 
by regulating the expression of genes related to various epi-
thelial phenotypes [175, 176].

The innervation of Peyer’s patches and host defense

Peyer’s patches are a component of the gut-associated lym-
phoid tissue that is responsible for maintaining tolerance to 
food antigens and commensal microbes, as well as triggering 
immune responses to infection by luminal pathogens, such 
as Salmonella and Shigella [177]. The specialized follicle-
associated epithelium covering the Peyer’s patches comprise 
‘microfold’ M cells that capture antigens from the lumen and 
transport them into the underlying lymphoid follicular dome 
regions for processing by antigen-presenting cells [178]. 
Although M cells constitute a first line of defense, they can 
also be exploited by pathogens as a route of invasion [179]. 
The innervation of Peyer’s patches has been anatomically 
characterized by various studies and they are found to be 
more densely innervated by intrinsic and extrinsic fibers than 
other regions of the mucosa [180–182]. Extrinsic  TRPV1+ 
dorsal root ganglia nociceptor neurons have been shown 
to play a critical role in host protection against Salmonella 
typhimurium [183]. However, the contribution of the intrin-
sic nerve supply to Peyer’s patches in host defense is less 
clear. The enteric innervation mainly originates from sub-
mucosal neurons including intrinsic sensory neurons [182]. 
It is likely that these submucosal neurons are involved in 
detecting invading pathogens and in regulating the follicular 
blood supply and lymphocyte trafficking [180–182]. It is 
also feasible that the activation of submucosal neurons and 
secretomotor reflexes triggers a hypersecretory response as a 
means of clearing the invading pathogen such as in cholera, 
salmonella, and rotavirus infections [159, 184, 185]. Nota-
bly, interleukin-8 derived from enteric neurons has recently 
been shown to regulate the production of antimicrobial pro-
tein by goblet cells, which target bacterial pathogens such 
as S. typhimurium [186].

Conclusion and future perspectives

Much of the groundwork has been laid for understand-
ing the various components of the enteric circuitry, but 
we are only beginning to comprehend how these elements 
are interconnected and interact to ultimately give rise to 
coordinated intestinal function. One substantial obstacle 



4516 C. Fung, P. Vanden Berghe 

1 3

has been the technical limitations associated with simul-
taneously measuring the rapid changes in nerve activity 
and in motility and secretion. Moreover, earlier method-
ologies lacked the temporal and spatial resolution nec-
essary to identify the specific neural elements involved. 
However, recent advances in imaging technology together 
with transgenic reporter mice have greatly facilitated the 
study of enteric network activity and the corresponding 
output underlying complex gut behaviors [187–191]. For 
example, synchronous activity of myenteric and submu-
cosal neurons during CMMCs can be observed using 
fluorescent  Ca2+ imaging [192]. While detailed analysis 
of the enteric circuitry still proves challenging in such 
studies with movement artefacts inherently being a lim-
iting factor [188], analytical methods are being devel-
oped to address these issues [189]. On the other hand, 
the measurement of these intestinal movements and their 
correlation with nerve activity may provide an informative 
readout. Advances in intravital abdominal imaging tech-
niques [193–195] also open up further possibilities for the 
addressing longstanding questions on the coordination of 
intestinal secretion and motility. With these developments, 
we are well positioned in our pursuit of a more compre-
hensive understanding of integrated gut physiology and 
we anticipate interesting times ahead.
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