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Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified 
to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This 
review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as 
well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance 
of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
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Abbreviations
ALL  Acute lymphatic leukemia
AML  Acute myeloid leukemia
ATF-1  Activating transcription factor 1
BC  Breast cancer
bZIP  Basic leucine zipper
CaMK  Calcium-activated calmodulin kinase
CBP  CREB-binding protein
CLL  Chronic lymphatic leukemia
CRE  cAMP response element
CREB  cAMP response element-binding protein
CREM  cAMP response element modulator
CRTC   cAMP response transcriptional co-activator
DNMT  DNA methyltransferase
ERK  Extracellular signal-regulated kinase
EWS  Ewing’s sarcoma
HR  Hazard ratio

KID  Kinase-inducible domain
KIX  KID-interacting domain
MAPK  Mitogen-activated protein kinase
MFS  Metastasis-free survival
miRNA  microRNA
OS  Overall survival
PI3K  Phosphatidylinositol 3-kinase
PK  Protein kinase
PP1  Protein phosphatase 1
PP2A  Protein phosphatase 2A
PTM  Post-translational modification
RBP  RNA-binding protein
RCC   Renal cell cancer
RFS  Recurrence-free survival
TCGA   The Cancer Genome Atlas
TF  Transcription factor
TME  Tumor microenvironment
TNBC  Triple negative breast cancer
UTR   Untranslated region

Major characteristics of CREB

Cyclic AMP (cAMP)-response element-binding protein 1 
(CREB) is a 43 kDa stimulus-induced transcription fac-
tor (TF). It can bind to the cAMP response element (CRE) 
sequence TGA CGT CA or the conserved half CRE TGACG 
and was first identified in the somatostatin gene promoter 
[1]. Genome-wide screening for CREB-binding sites sug-
gested that more than 4000 genes might be controlled by 
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CREB, postulating CREB as a general transcriptional acti-
vator [2].

Regarding its structure, CREB is made up of different 
domains with distinct functions. While the DNA binding 
and dimerization of CREB is mediated by a basic leucine 
zipper (bZIP) domain, CREB has nine serine residues in 
the kinase inducible domain (KID) that can be phosphoryl-
ated and activated by different kinases. Activated CREB can 
recruit coactivators, such as CREB-binding protein (CBP). 
The interaction between CREB and CBP is mediated via 
the interacting domain of CBP, named KIX. The CREB/
CBP complex recruits the transcription machinery at the 
gene promoter to initiate CREB-dependent gene transcrip-
tion [3]. The CREB complex upregulates the methylation 
of histones H3 and H4, which is essential for the initiation 
of the transcriptional machinery [4]. CREB activity is regu-
lated by the phosphorylation of amino acid (aa) residues, 
which are mainly localized in the KID region, thereby 
influencing the dimerization of CREB and its binding to the 
CRE sequence [5]. Phosphorylation of CREB at the Ser133 
residue frequently occurs, whereas phosphorylation at other 
serine tyrosine and threonine residues of CREB is observed 
at a lower frequency [5]. Interestingly, the different phos-
phorylation patterns of CREB are correlated with distinct 
cellular functions (Table 1) and can exert opposite effects: 
 CREBSer111 and  CREBSer121 inhibit transcription, while 
 CREBSer129 and  CREBSer133 induce transcription.

In the following chapters, the knowledge about CREB 
expression, activation and clinical relevance in tumors of 
distinct origin and modulators of CREB that could be used 
as therapeutics for the treatment of diverse cancers are 
summarized.

Function of CREB as a mediator 
of carcinogenesis: a general dogma

Under physiological conditions, CREB is expressed in all 
nucleated cells. Its expression is essential for major cellular 
functions, as CREB knockout mice exhibit embryonal and 
neuronal deficits and have a reduced lifespan [6–8]. CREB is 
often overexpressed in hematopoietic and solid tumors com-
pared with control tissues, which has led to the identification 
of CREB-associated cancers (Fig. 1). These include acute 
lymphoblastic leukemia (ALL), acute myeloid leukemia 
(AML), Hodgkin’s lymphoma, chronic lymphatic leukemia 
(CLL), melanoma, hepatocellular, renal cell, ovarian, pros-
tate, lung, gastric, esophageal, pancreatic and breast carci-
noma, and brain tumors [9–11] (Supplementary Table 1).

In these malignancies, overexpression of CREB is asso-
ciated with aberrant signal transduction caused by the 
deregulated expression of downstream genes that control 
the hallmarks of cancer, such as proliferation, apoptosis, 
angiogenesis, metastasis, immune surveillance, and metab-
olism, and the generation of tumor stem cells, which lead 
to the initiation and progression of tumors (Fig. 2). These 
different CREB activities result in increased tumor growth, 
resistance to antiproliferative signals, decreased apoptosis, 
enhanced angiogenesis, increased metabolism, and reduced 
immunogenicity [11–18].

Opposing the clinical relevance of CREB 
in different cancers and its association 
with therapeutic resistance

In addition to the role of CREB expression and activity in dif-
ferent tumor entities, CREB protein levels are often correlated 
with clinical parameters. These include tumor grading and 
staging, metastasis formation, increased recurrence rates, and 
worse prognosis of tumor patients [19–23]. Using the KMplot 
mRNA gene chip and RNA-seq analysis (https ://kmplo t.com/

Table 1  Distinct functions of the phosphorylation sites in CREB

Serine residue Molecular 
association

Induction 
of activity

Inhibition 
of activity

Cell growth Cell mobility Inhibition of 
apoptosis

Cell dif-
ferentia-
tion

Induction of 
transcription

Inhibition of 
transcription

Ser108 X
Ser111 X X
Ser114 X
Ser117
Ser121 X X
Ser129 X X
Ser133 X X X X X X

https://kmplot.com/analysis/


4051What turns CREB on? And off? And why does it matter?  

1 3

analy sis/), a link between CREB mRNA expression and the 
overall survival (OS) of patients with different tumors and 
tumor subtypes was reported and is summarized in Fig. 3 [24]. 
For example, ALL and AML patients with enhanced expres-
sion and phosphorylation of CREB at Ser133 had a decreased 
OS and a higher risk of tumor relapse [19, 25]. Similar data 
were obtained for hepatocellular carcinoma (HR 2.05, CI 1.43-
2.94, p < 0.01), esophageal adenocarcinoma (HR 2.09, 95% CI 
1.06–4.15, p = 0.031), and stomach adenocarcinoma (HR 1.64, 
95% CI 1.18–2.29, p = 0.003), in which low CREB expres-
sion was associated with reduced OS (Fig. 3a). In contrast, 
other tumor types benefit from high CREB expression, such 
as clear cell renal cell carcinoma (ccRCC) (HR 0.38, 95% CI 
0.14–1.03, p < 0.001), lung adenocarcinoma (HR 0.76, 95% 
CI 0.55–1.03, p = 0.077), esophageal squamous cell carcinoma 
(HR 0.38, 95% CI 0.14–1.03, p = 0.05), and breast cancer (BC) 
(HR 0.56, 95% CI 0.41–0.79, p < 0.001).

Regarding BC, overexpression of CREB in all intrinsic 
BC subtypes has been associated with improved survival 
of patients (Fig. 3b). In contrast, patients with HER-2/neu-
positive or basal-like BC expressing high CREB levels had 
worse recurrence-free survival (RFS), while luminal-type A 
BC had an even higher RFS with enhanced CREB expres-
sion (Fig. 3c). Since CREB is often overexpressed in different 
tumor types, but is associated with different outcomes, the 
quantity of CREB (expression levels of mRNA and protein) 
might be less important than the quality of CREB (posttrans-
lational modifications and dimerization). Therefore, the dual 
role of CREB in different tumor entities must be addressed in 
additional studies to obtain further insights into the underlying 
mechanisms of CREB regulation and function.

In addition, there is limited information about the role of 
CREB in therapy resistance. In BC, downregulation of CREB 
was associated with altered BRCA1 expression and increased 
expression of aromatase, a key enzyme in estrogen biosynthe-
sis. The latter is transcriptionally regulated by CREB and asso-
ciated with the development of resistance to tamoxifen [26]. 
Furthermore, CREB phosphorylation is involved in the devel-
opment of tumor resistance to inhibitors of the MEK–ERK 
and PI3K/AKT pathways [26, 27]. In contrast, resistance 
against MAPK inhibition in BC is induced by reactivation of 
CREB, which is linked to an altered histone acetylation pattern 
[27]. In-depth characterization of the mechanisms involved in 
CREB-mediated therapy resistance is mandatory and relevant 
for improved therapeutic decision-making in tumor patients.

Regulation of CREB activity by influencing 
its phosphorylation

There exists evidence that CREB activity is tightly regu-
lated and could be either upregulated or inhibited by diverse 
factors. Until now, a large number of modulators known to 

induce CREB phosphorylation have been described in tumor 
cell lines and tissues of distinct origin, which include growth 
factors, steroid and peptide hormones, cytokines, stress, 
lipids, calcium and nitric oxide signaling, various viral, bac-
terial, and plant components, chemotherapeutics, and others 
(Supplementary Table 2). These stimuli exert their activities 
by phosphorylation of distinct CREB residues, but mainly 
of  CREBSer133, thereby affecting different signal transduc-
tion pathways, such as ERK1/2, MAPK, PI3K/AKT, CaMK, 
PKC, and PKA, which are known to be activated in different 
tumor entities.

Furthermore, high-throughput screening with compound 
libraries identified 1800 additional substances that were 
able to enhance CREB-mediated gene transcription [28]. 
However, most of these substances have not yet been tested 
in vitro and in vivo in (tumor) cell models.

In addition to stimulators of CREB activity, inhibitors of 
CREB phosphorylation at  Ser133 have been identified, which 
might have therapeutic potential. To date, no information 
exists about substances negatively interfering with other 
CREB phosphorylation residues, as shown for the c-MET 
inhibitor SU11274 targeting the MET pathway [29] and for 
serotonin [30]. Other signal transduction inhibitors were 
tested in various murine and human cell systems regard-
ing their effect on CREB expression and phosphorylation, 
such as H89, lapatinib, LY294002, PD98059, Ro31-8220, 
trametinib, the COX-2 inhibitor NS398, and the EP4 inhibi-
tor AH23848 [31, 32]. However, these signal transduction 
inhibitors were not helpful for functional analysis of CREB, 
since they do not specifically block the phosphorylation of 
CREB or influence the activity of other signaling molecules. 
More specifically, the phosphatase-mediated dephosphoryla-
tion of CREB leads to reduced CREB activity. Most phos-
phatases that inactive CREB, such as protein phosphatase 
2A (PP2A) [33], protein phosphatase 1 (PP1) [34], or the 
nuclear form of PTEN phosphatase [35], are localized to 
the nucleus. These phosphatases can be targeted by inhibi-
tors, such as okadaic acid blocking both PP2A and PP1 
[36]. Their deregulation is associated with altered CREB 
activity: under hypoxic conditions, these phosphatases are 
inactive, while CREB is activated and hyperphosphorylated 
under oxygen limitations, a condition that often occurs in the 
tumor microenvironment (TME).

Other regulators of CREB expression and/
or activity

Mutations in the CREB gene

Structural alterations of CREB have been reported in 
tumor cell lines and lesions of distinct origin, but their 
frequency is highly varied. These alterations are diverse 

https://kmplot.com/analysis/
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and include amplification, homozygous deletions, mis-
sense, and in-frame and truncated mutations and fusions, 
as summarized in Supplementary Tables 3 and 4. Muta-
tions of the CREB gene are most common in neuroendo-
crine prostate cancer and cervical carcinoma. Missense 
mutations or truncated mutations have been found, but are 
not associated with the function of CREB. Furthermore, 
amplification of the CREB gene has been reported in many 
tumors. The structural abnormalities of CREB are often 
accompanied by alterations of other genes known to be 
involved in tumorigenicity.

A number of studies described gene rearrangements of 
the Ewing’s sarcoma (EWS) gene with CREB1 in vari-
ous rare diseases, such as clear cell sarcoma (CCS), CCS 
associated with the gastrointestinal tract, and angiomatoid 
fibrous histiocytoma [37–40]. EWS/CREB fusion in CCS 
associated with the gastrointestinal tract resulted in the 
loss of KID and was accompanied by melanin pigmenta-
tion of these tumors [37]. This is caused by low expression 
levels of genes involved in melanogenesis, such as MITF 
and TYR, representing an indicator of deregulated CREB 
activity. In addition, gene fusions were reported for the 
CREB family members ATF1 and CREM, particularly in 
tumors of young children [39], in rare cases of angiomy-
eloid fibrous histiocytoma [41] and in myxoid neoplasms 
[40].

Regulation by epigenetic modification, such 
as methylation and histone modification

There exists only limited information on the epigenetic con-
trol of CREB. By employing TF arrays, CREB was identi-
fied among 42 TFs to interact with the DNA methyltrans-
ferases DNMT3A and DNMT3B [42]. In addition, there 
is an epigenetic modification switch mediated by the CRE 
element. After methylation of the central CpG, binding of 
CREB and related TFs to CpMetG is not possible [43, 44], 
while binding of the TF C/EBPα is promoted [45], result-
ing in the control of tissue-specific gene expression [46]. A 
well-studied example is the CRE site in the BRCA1 gene 
[47]. CREB is considered a positive regulator of BRCA1, 
since the methylation of CpG islands significantly reduces 
its expression. A similar relationship has been reported for 
MMP-13 [48], which is only transcribed upon demethyla-
tion. Nuclear magnetic resonance studies suggest that meth-
ylation affects the flexibility of DNA, thereby reducing the 
ability of TFs to bind to DNA [49].

microRNAs

Posttranscriptional regulation is of crucial importance for 
the control of gene expression and is mainly mediated by 
the interaction of RNA-binding proteins (RBPs) and/or 
microRNAs (miRNAs) with the 3′-untranslated region (3′-
UTR) of the respective gene [50–53]. Discordant CREB 
mRNA and protein expression has been found in some 
tumor cells, suggesting the regulation of CREB at the post-
transcriptional level. Furthermore, it is noteworthy that 
the annotated ~ 9.000-nucleotide-long 3′-UTR of CREB 
(ENST00000432329.2) is well above average (~ 800 
nucleotides) [54] and gives rise to extensive regulation 
via this region. In silico analysis and CLIP data revealed 
a number of well-characterized RBPs potentially binding 
to CREB, e.g., FUS/TLS (Fused in Sarcoma/Translated 
in Sarcoma) and RBM10 (RNA-binding protein motif 10) 
[55, 56]. However, to the best of our knowledge, there is 
no proven interaction between RBPs and CREB, illustrat-
ing the need for further research. In contrast, a number 
of CREB-regulating and CREB-regulated miRNAs have 
been recently described in tumor cell lines and in tumors 
of distinct origin, which are summarized in Table 2 [57].

In leukemia, the CREB protein is overexpressed, which 
is associated with a poor outcome in these patients [58, 
59]. Pigazzi and coworkers demonstrated that miR-34b 
is involved in the oncogenesis of various tumors and is a 
major regulator of CREB expression. A direct interaction 
of this miRNA with the 3′-UTR of CREB was described. 
In AML, the miR-34b/-34c promoter is hypermethylated 
and provides a mechanism for the low miR-34b expression 
in this disease [60].

However, particularly in the context of a general TF 
such as CREB, it is obvious that miRNA-dependent 
deregulation is more than a one-to-one relationship. For 
example, a regulatory mechanism was reported for miR-9 
and CREB, whereby CREB promotes the transcriptional 
expression of miR-9, and in turn, miR-9 directly targets the 
3′-UTR of CREB. The balance between these two players 
is supposed to coordinate the migration and proliferation 
potential of glioma cells, which may help cells adapt rap-
idly to environmental changes [61]. Furthermore, miR-
27b targeted CREB, demonstrating a positive correlation 
between CREB and miR-27b in gastric cancer, suggests 
a bidirectional CREB–miR-27b interaction. This hypoth-
esis is supported by the presence of several CREB-binding 
sites in the putative promoter of miR-27b [62]. Thus, a 
better understanding of the CREB–miRNA regulatory net-
works may open new perspectives for novel therapeutic 
targets in human malignancies.

Fig. 1  CREB expression in cancer patients. The in silico transcrip-
tomics database (http://ist.medis apien s.com/) was employed for 
CREB expression in cancer and normal tissues (tissue boxplot). 
Green represents healthy tissue, while red represents tumor tissues

◂

http://ist.medisapiens.com/
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Posttranslational modifications with the exception 
of phosphorylation

It is generally accepted that posttranslational modifications 
(PTMs), such as acetylation, phosphorylation, glycosylation, 
SUMOylation, and ubiquitination, often occur (Supplemen-
tary Fig. 1) and are altered during physiologic and patho-
physiologic cellular processes. Furthermore, these PTMs 
were also found for CREB and were associated either with 
increased or decreased CREB activity, which was mediated 
by distinct mechanisms, as summarized in Table 3. Several 
PTMs of CREB can affect the progression of cancer and 
have been recently extensively reviewed [63].

Dimer formation of CREB (homodimers 
and heterodimers)

The dimer formation of CREB has been controversially dis-
cussed. For example, CREB dimerization with ATF1 was 

described in HeLa cells, but these heterodimers had a lower 
stability and CRE binding activity than the CREB homodi-
mers [64]. Furthermore, the CREB:ATF1 heterodimers 
were predominantly found in undifferentiated cells, while 
homodimer formation was mainly detected in differentiated 
cells [65, 66]. Regarding jun/fos, CREB:fos heterodimers 
exist, but their formation is ineffective [67]. In contrast, 
Muchardt and coauthors reported that neither jun nor fos 
form heterodimers with CREB, suggesting cell-specific con-
trol of this process [68]. In line with these data, no ATF1:jun 
or ATF1:fos heterodimers could be detected, but heterodi-
mer formation between ATF4 and jun/fos occurred [69]. 
However, dimer formation of CREB with other bZip TFs 
has not yet been analyzed in detail in different tumor entities.

Localization‑dependent activity of CREB

Under physiological conditions, CREB is localized in the 
nucleus, while under pathophysiological conditions, e.g., in 

Fig. 2  Link of the hallmarks of cancer with CREB expression and activation
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a hypoxic microenvironment, CREB is shuttled to the mito-
chondrial matrix [57], where it binds to the mitochondrial CRE 
sequence. This process results in the control of mitochondrial 
gene transcription [70], which can be blocked by H89. These 
data suggest a localization-dependent activity of CREB. 
Chalovich and coauthors demonstrated that the equilibrium 
between nuclear and cytoplasmic CREB can be triggered to 
the site of cytoplasmic localization by 6-hydroxydopamine 
(and therefore enhancing the levels of mitochondrial CREB) 
[71, 72]. While Cammarota and coworkers localized phospho-
rylated CREB in the mitochondria [73], the antibody reacts 
with an epitope of mitochondrial pyruvate dehydrogenase, 
suggesting a non-CREB-specific signal [74]. In more recent 
studies, different CREB-specific antibodies directed against 
different epitopes of the non-phosphorylated form, gel shift 

assays [57, 72, 75] or 35S-methionine-labeled CREB have been 
applied, demonstrating that CREB could be localized in mito-
chondria under certain conditions [70]. In addition, irradiation 
can increase the amount of  CREBSer131 in the nucleus, which 
might represent a resistance mechanism of prostate cancer 
cells [21]. Furthermore, the quantity and activity of the CREB 
protein in the nucleus can be increased by high glucose lev-
els [76], which are often associated with enhanced tumor cell 
metabolism, calcium influx [77], or thrombin [78].

Fig. 3  Log-rank test of continuous CREB1 expression as a prognos-
tic marker for recurrence-free survival and overall survival. a Hazard 
ratio (HR) of overall survival from different cancer entities (pan can-

cer). b HR of overall survival from breast cancer and intrinsic sub-
types. c HR of recurrence-free survival from breast cancer and intrin-
sic subtypes
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Experimental modulation of CREB 
expression and/or activity

Molecular approaches by CREB silencing

In addition to chemical compounds, diverse experimental 
approaches, e.g., shCREB, siCREB, double negative (DN) 
CREB, and CRISPR/CAS, have been used to downregu-
late or inhibit CREB expression. Although CREB protein 
expression can be transiently repressed by siRNA binding to 
CREB1 mRNA [79, 80], long-term experiments exceeding 
96 h were not possible. Therefore, shRNA constructs against 
CREB1 have been commonly used for analyses of the long-
term effects of CREB [32, 81]. The specificity of these con-
structs was proven by monitoring the expression of CREB-
related ATF1 and CREM. The implementation of a dominant 
negative construct as well as reconstitution of CREB knock-
down is necessary to rule out unspecific effects. Different 

Table 2  Characterization of CREB-regulating (RC) miRNAs or 
CREB-regulated (CR) miRNAs in human tumors and tissues or cell 
lines

Name Cell line/tumor CR, RC
miRNAs

References

miR-181b Gastric cancer RC [132]
miR-34b AML RC [60]
miR-200b Astrocytoma RC [133]
miR-181a PC12 (pheochromocytoma) RC [134]
miR-9 Glioblastoma RC, CR [61]
miR-433-3p Glioblastoma RC [135]
miR-372 Liver cancer RC [136]
miR-1271 Prostate cancer RC [137]
miR-760 Colorectal cancer RC [138]
miR-23a Glioma CR [139]
miR-27b HepaRG liver cells CR, RC [223]

Table 3  Different PTMs of CREB and their functional relevance

Species: M mouse, H human, R rat, D dog, BT cow, Mo monkey; n/a not analyzed
a Triple mutants only; in single mutants, no changes were observed; enhanced CREB-mediated gene expression, when inhibition of histone dea-
cetylase activity by trichostatin A
b Polyubiquitinated chain, CREB aa not assigned
c Polyubiquitinated chain and monoubiquitination, presumably CREB-K330 or K339

Modification aa residue in CREB CREB activity Mechanism Species References

Acetylation K136 Increased Recruitment of CBP/p300 M, 3T3-L [140]
K136 Increased Deacetylation by SirT1 H, HEK293T [141]
K91, 94, 136 Decreaseda Acetylation by CBP/p300 R, F9; Mo, COS-7 [142]
n/a Increased HDAC9 regulating CREB mRNA H, HuH7 [143]
K136 Increased CREB acetylation increased by low glucose M, hippocampal cells [144]

Ubiquitination K48-linkedb Decreased TRAF3 increasing ubiquitination M, B cells [145]
n/a Decreased MTUS1 deubiquitinating CREB H, THP-1 cells [146]
K48-linkedc Decreased Hypoxia-mediated ubiquitination M, NIH3T3 cells [147]
n/a Decreased H2O2-induced ubiquitination D, in vivo [148]
n/ac Decreased PDGF-stimulated phosphorylation of S103/

S107
R, pulmonary artery [149]

n/a Decreased Hypoxia-mediated loss of PP1 activity H, CaCo-2 cells [150]
n/a Decreased Hypoxia-mediated ubiquitination H, HeLa; BT, T84 [151]

SUMOylation K271, K290 Increased PIAS1-induced modification with SUMO-1 H, HEK293T [152]
K285, K304 Increased Hypoxia mediated by SUMO-1 H, HeLa; BT, T84 [151]
K285, K304 Increased Hypoxia mediated by SUMO-1,2,3 M, NIH3T3 cells [147]

O glycosylation S40, T228 Decreased Elevated CRTC/TORC interaction R, neuronal cells [153]
n/a Decreased Nuclear import under high glucose H, HuH7 [154]
T256, S260 Decreased Disrupted interaction with TAFII130 R, brain [155]
n/a Decreased Iron-induced decreased levels of O-Glc-

NAcylated
M, 3T3-L [156]

phosphoryla-
tion (not in 
KID)

S270/S271 Decreased DNA damage H, HeLa; H, HEK293T [157, 158]
S271 Increased Genotoxic stress H, SH-SY5Y; H K562 [158]
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dominant negative forms of CREB to block its expression 
or activity were developed, including a construct named 
A-CREB, in which the bZIP domain was replaced with an 
acid amphipathic sequence [82]. This construct mimics the 
polarity of the CRE sequence and can form a heterodimeric 
complex with CREB, resulting in decreased CREB binding 
to the CRE sequence. Another dominant negative form of 
CREB is the overexpression of a mutated CREB protein, 
which contains a KID with a replaced amino acid. Further-
more,  CREBSer133 has been mutated to  CREBAla133, which 
prevents CREB phosphorylation at this position [83, 228]. 
A similar approach has been employed for the inhibition 
of phosphorylation at other serine residues [84]. Further-
more, the DNA-binding domain has also been mutated [83], 
while Aucoin and coworkers (2004) used double-negative 
forms of CREB to efficiently block the invasion potential 
of melanoma cells [226]. Dominant CREB repressors were 
successfully used both in vitro and in vivo [85], resulting in 
increased oxidative stress in a transgenic mouse model. In 
this context, it is noteworthy that silencing or deleting CREB 
by, e.g., CRISPR/Cas-9, has not been successfully estab-
lished [86], since CREB is critical for the survival of cells. 

CREB knockout is lethal in mice, as CREB knockout causes 
deficits in embryonal development [6, 87]. To circumvent 
cell death mediated by CREB knockout, the generation of 
inducible constructs is suggested. Interestingly, the CREB-
mediated transduction of cAMP signaling and CREB func-
tion in vivo could be partially compensated by CREM [7].

Chemical compounds

Small molecule inhibitors

Two different strategies are currently used to block CREB 
activity with high specificity using chemicals/inhibitors. 
Based on nuclear magnetic resonance (NMR) analysis dem-
onstrating the binding of CREB KID to CBP KIX [88–90], 
the interaction between CREB and the coactivator CBP 
was targeted using CREB-CBP inhibitors, such as different 
naphthol derivatives [91] (Fig. 4). Furthermore, the binding 
of CREB to the CRE-DNA element can be blocked with 
substances binding to the DNA major groove (positively 
loaded substances) or directly to the bZIP of the TF (nega-
tively loaded substances). A live imaging system using a 

Fig. 4  Chemical structure of CREB-specific small molecule inhibitors. NSC 146443 is a 1:1 mixture of 2-methylenesuccinic acid and acrylic 
acid and can form a polymer (Pubchem CID: 161509)
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bioluminescence-based detector system for the analysis of 
the interaction of KID and KIX was developed by Ishimoto 
and coworkers [92], which enables screening for CREB 
inhibitors, e.g., in herbal extracts [93].

CREB‑CBP inhibitors targeting the KID‑KIX interaction

Various CREB-CBP inhibitors exhibit distinct activities, 
which are summarized in Supplementary Table  5. The 
CREB-CBP inhibitor naphthol-AS-E-phosphate (KG-501) 
was identified by Best and coworkers [94] based on molec-
ular modeling for chemicals binding to the pocket of the 
KID domain, and was the first inhibitor used for this block-
ing mechanism in cell culture [95]. KG-501 is specific for 
CREB, as it blocks the interaction between KID and KIX 
only at the CREB-specific binding site of KIX, named the 
c-myb site [96], where the nonphosphorylated proteins 
c-myb, p53, and BRCA1 can bind [97, 98]. The other bind-
ing site of KIX (MLL), where MLL, c-jun, and HIV-1 TAT 
can bind, is blocked by pamoic acid (KG-122). However, 
CREB Ser133 had the highest affinity for the c-myb site 
(Kd CREB − CBP = 700 nM; Kd c-myb − CBP = 15 µM, 
Kd p53 − CBP > 90 µM) [99]. The unphosphorylated form 
as a physiological inhibitor was analyzed in different tumor 
cells using an FRET-based test system. In ALL cell lines, 
this inhibitor caused increased apoptosis [25], while it 
blocked CREB phosphorylation induced by curculigoside 
A and diminished tube formation [100]. In HER-2/neu-
overexpressing cell lines, KG-501 decreased migration and 
anchorage-independent growth without influencing CREB 
expression and phosphorylation [32]. Due to the relatively 
low potency of this inhibitor (Ki ~ 90 µM) and its reduced 
solubility, different structural analogs have been synthesized 
in recent years [91, 101–103], such as naphthol-MX-phos-
phate and naphthol-AS-TR-phosphate. However, MX-phos-
phate is less efficient than KG-501 (IC50 9.7 µM vs 6.9 µM), 
while AS-TR-phosphate is more potent, as decreased anchor-
age-independent growth and cyclin expression were detected 
at lower concentrations (IC50 3.7 µM) [104].

The 3-(3-aminopropoxy)-N-[2-[[3-[[(4-chloro-2-hy-
droxyphenyl)amino]carbonyl]-2-naphthalenyl]-oxy]ethyl]-
2-naphthalenecarboxamide hydrochloride inhibitor (666-
15) is an improved, highly efficient CREB-CBP inhibitor 
(IC50 ~ 80 nM) [94, 167] that weakly affects NF-κB activity 
by blocking the CBP–NF–κB interaction (IC50 5290 nM). 
In vivo experimental murine studies of 666-15 revealed its 
quick bioavailability; no effects were found on kidney and 
heart functions [105], and it was, therefore, well tolerated 
in the mouse model. The synthesis of this chemical was 
first described by Xie et al. [183], followed by the synthe-
sis of different regioisomers [106]. Some modifications for 
higher aqueous solubility were recently introduced to the 

backbone of this inhibitor, and results showed that 666-15 
had a higher IC50 but inhibitor combinations conferred an 
additional effect [107]. In a murine xenograph model, 666-
15 suppressed the tumor growth [183].

The N-(4-cyanophenyl)-3-hydroxy-2-naphthamide inhibi-
tor (XX-650-23) was synthesized by Li et al. and Xie et al. 
[101, 103]. XX-650-23 blocks the interaction of CREB and 
CBP in AML cells expressing high CREB levels, leading to 
cell cycle arrest and apoptosis by activating caspase-3 activ-
ity and decreasing the expression of the antiapoptotic CREB-
regulated BCL-2 protein [108]. XX-650-23 is more efficient 
than KG-501 (IC50 ~ 3 µM in a luciferase detection system). 
AML cells with higher CREB protein expression, such as 
HL-60 cells, had an IC50 < 1000 nM, while the CREB low-
expressing MOLM-13 cells had an IC50 > 2000 nM. Thus, a 
specific inhibitory potential seems to be possible for patients 
with higher CREB levels. Indeed, patients with primary 
AML or relapsed AML showed higher CREB expression 
than healthy individuals, and treatment of bone marrow with 
2 µM XX-650-23 for 48 h increased the number of dead cells 
in AML samples but not in normal bone marrow cells [108]. 
Niclosamide, a molluscicide, had similar effects to XX-650-
23 on CREB activity and viability of AML cell lines, but 
lacks the naphthalene ring [109]. As shown in a recent study 
further modifications of the XX-650-23 compound lead to 
better physiological stability and improve the potency [230]. 
N-(4-Chlorophenyl)-3-hydroxy-2-naphthamide is a cell per-
meable naphthamide compound that directly binds to the 
KIX of CBP with an IC50 < 3 µM. It blocks firefly luciferase 
activity (IC50 ~ 1 µM) but not Renilla luciferase activity.

CREB‑CRE inhibitors targeting the interaction of CREB 
and DNA

Different CREB-CRE inhibitors have also been developed, 
but are currently less frequently used than KID-KIX inhibi-
tors. These include Surfen (Surfen hydrate, Alias: NSC 
12155; CAS-No: 3811-56-1), which is commonly used 
as a disinfection agent in wound healing solutions or as a 
depot in combination with insulin, but was withdrawn due 
to strong allergic reactions. Surfen is an antagonist for hep-
aran sulfate [110], and its potential CREB-CRE blocking 
mechanism was described by Rishi and coworkers (2005), 
who reported that Surfen has a higher specificity for CREB 
than for C/EBPβ (EC50 0.6 µM vs. 2.5 µM) [112]. Surfen at 
lower concentrations has been shown to block the binding of 
CREB to a CRE oligonucleotide, accompanied by reduced 
proliferation of BC cell lines [111].

Stibavirin (Alias: NSC 13778; CAS-No: not registered) is 
an arylstibonic acid that was proven to bind the basic leucine 
zipper of CREB but not to DNA [112]. It is, therefore, a 
specific inhibitor for CREB but also for fos/junD (EC50 13.9 
vs. 2.5) [113] and binds to  CD4+ T cells [114]. Furthermore, 
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NSC 13778 blocks the binding of TFE3 type 1/2 to the spe-
cific promoter element [115], while its derivative P6981 had 
a stronger effect on CREB inhibition [116]. However, neither 
substance is commercially available.

The inhibitor 5-[(2-hydroxy-1-naphthalenyl)azo]-2-naph-
thalenesulfonic acid (Alias: NSC 45576; CAS-No: 68133-
05-1) has been proposed as a therapeutic agent for AML, 
because it decreases the proliferation of AML cell lines. 
Furthermore, NSC45576 influences cAMP/PKA signaling 
by reducing the activity of PKA holoenzymes [117, 118].

CREB, ATF2, and c‑jun: “It stays in the family”

CREB is a member of the bZIP TF family consisting of 
approximately 20 ATF/CREB family members [119, 120]. 
Since many TFs can bind to CREB-binding elements, the 
analysis of whether CREB can be replaced by other TFs 
is crucial for targeted therapies. Studies have revealed that 
knocking down CREB expression or activity significantly 
decreases the transcription of many CRE-regulated genes, 
such as bcl-2 [18], suggesting that CREB is the major regu-
lator of these genes. Furthermore, genes with a nonpalindro-
mic CRE regulator element, e.g., a half CRE element such as 
TCAGC, are often downregulated in CREB deficiency and 
sometimes more efficient than full CRE genes. This could 
be explained by a stronger induction of CREB at a half CRE 
sequence than at a full CRE sequence [68] due to a higher 
competition to members of the CREB-ATF family at the 
complete CRE site. Interestingly, the activity of the full CRE 
sequence is higher than that of half CRE sequences in the 
absence of CREB [68]. Therefore, it is likely that ATF1 can 
partially compensate for the loss of CREB activity, which is 
limited due to the lower stability of ATF1 and CREM homo- 
and heterodimers [3].

Other bZIP TFs, such as ATF2 or ATF3, which cannot 
form heterodimers with CREB or ATF1 [119], can also bind 
to the CRE element. They can form heterodimers with jun 
and fos, and allow binding to the CRE element but with a 
lesser affinity than CREB. Experiments performed by Hai 
and Curran [69] revealed that jun/fos heterodimers with 
ATF2/3 can bind to CRE but not to half CRE. Furthermore, 
jun and fos heterodimers can bind with higher affinity to 
AP-1 and full CRE sequences compared to half CRE sites 
[225]. Therefore, CREB competes with the heterodimers 
jun-fos/ATF2/3 at CRE but not at half CRE, as summarized 
in Fig. 5a, b.

Furthermore, CREB prefers the central CpG dinucleotide 
of CRE/half CRE, which explains the lack of CREB bind-
ing to the CRE-similar AP1 sequence [121]. A methylated 
CpG dinucleotide is a binding site for C/EBPα but not for 
CREB [46]. Genes with a CRE element and a TATA box 
could show different regulation than CRE genes without a 

TATA box. Binding of CREB to the 8 bp CRE sequence and 
the variable half CREs depends on different mechanisms 
[122]. Exclusively, CREB can bind to two different half CRE 
motifs with a dissociation constant that is comparable to that 
of the full CRE sequence [68, 119, 123].

In addition to ATF1 and CREM, the cAMP response 
transcriptional coactivators (CRTCs), comprising the three 
members CRTC1, CRTC2, and CRTC3, represent an addi-
tional family of CREB coactivators with similar modular 
structures. CRTCs are evolutionarily highly conserved and 
sequestered in the cytoplasm [124]. They have been shown 
to regulate transcriptional activation and pre-mRNA splicing 
via distinct functional domains [125]. CRTCs upregulate the 
activity of CREB by association with residues in the bZIP 
domain. However, CRTCs not only regulate CREB-depend-
ent target genes but also CREB-independent transcriptional 
responses. The aberrant activation of CRTCs in tumors is 
linked with oncogenic activities, such as migration, inva-
sion, and metastasis formation, representing all hallmarks of 
cancer [126, 127]. This is also strengthened by the fact that 
mutations in CRTCs have been shown to be key drivers in 
the development and progression of cancer [128].

Conclusion: CREB as a prognostic biomarker 
or therapeutic target?

Based on the central role of CREB in the initiation, mainte-
nance, and progression of many cancer types (Supplemen-
tary Fig. 2), CREB is considered a prognostic biomarker 
and an excellent therapeutic target structure for tumors. 
This claim is supported by expression analyses of the early, 
inducible cAMP repressor (ICER), an inhibitor of CREB, 
which is downregulated in BM cells of AML patients [60]. 
An advantage of using CREB as a target structure is its 
ability to regulate different signal transduction pathways, 
which are often aberrantly activated in tumors. However, 
it is noteworthy that high CREB expression in some tumor 
types is associated with better patient outcomes. To date, 
the underlying mechanisms of these opposing effects are not 
well understood and require further investigation.

Several strategies are currently used to inhibit CREB 
function in tumor cells: (1) Initial studies focused on domi-
nant negative CREB mutants (KCREB) to block CREB 
transcription. KCREB cannot bind to CRE sequences but 
forms heterodimers with wild-type CREB. Overexpression 
of KCREB in metastatic tumor cells decreases the meta-
static potential in vitro and in vivo [129]. (2) CREB decoy 
oligonucleotides that efficiently inhibit CREB-mediated 
gene transcription and therefore negatively influence tumor 
growth have been developed [130]. (3) CREB expression is 
silenced by RNA interference, which not only modulates cell 
viability and growth properties but also enhances apoptosis. 
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shRNA-mediated silencing of CREB expression is coupled 
with diminished growth of tumor cells, increased apopto-
sis, cell cycle arrest in the G0/G1 phase and suppression of 
anchorage-independent growth [32, 61, 131].

Since these proof-of-principle studies have revealed 
therapeutic effects, alternative strategies to inhibit CREB-
mediated gene transcription with small molecule inhibitors 
have been developed. For example, kinase inhibitors can 
prevent phosphorylation and, therefore, inhibit the activa-
tion of CREB. In addition, chemical inhibitors can block 
the interaction of CREB-CRE or CREB-CBP [91, 94, 101, 
103]. Naphthol-AS-E-phosphate (KG-501) reversibly and 
dose-dependently disrupts the interaction between the KID 
domain of CREB and the KIX domain of CBP but not for-
skolin-stimulated phosphorylation at Ser133. Micromolar 
concentrations of KG-501 can modulate the cAMP-depend-
ent expression of CREB target genes without off-target 
inhibition. Another strategy is the modulation of CREB-
regulating miRNAs [22]. Since CREB has many oncogenic 
properties and participates in the induction of resistance 
mechanisms, it is a promising target for the treatment of 
many tumor types; nevertheless, for tumor types in which 
high levels of CREB expression are associated with better 
outcomes, this approach may not be suitable.
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