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Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endo-
symbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. 
While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote–prokaryote 
endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precari-
ous to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. 
It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process 
of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multi-
ple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to 
prokaryote–prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned 
out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial 
interactions based on dependence, physical proximity, cost–benefit budget, and the types of benefits, investments, and con-
trols. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. 
Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their 
modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based 
on modern mitochondria–host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from 
exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of 
evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from 
an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
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Introduction

While the idea of endosymbiotic origin of organelles has 
emerged early in the twentieth century [1-3], it was a little 
more than 50 years ago that Lynn Margulis [4] has estab-
lished the prokaryotic ancestry of mitochondria and plas-
tids and the endosymbiotic origin of eukaryotes. According 
to theories, a bacterial species merged with another host 
microbe, presumably an archaeon, giving rise to eukaryotes. 
Eukaryotes are ancestrally nucleated, mitochondriate and 
seems to be phagocytotic since before the last eukaryotic 
common ancestor (LECA; [5-7]); however, their order of 
acquisition is unknown. Whether mitochondria were prereq-
uisites or results of eukaryogenesis is a matter of ongoing 
debate, aggravated by missing crucial details [8, 9]. They, 
nevertheless, have a fundamental role in the functioning of 
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most eukaryotic cells and they might had a pivotal role in the 
origin and early evolution of eukaryotes. Arguably, during 
mitochondrial integration, a new organism and a new level 
of complexity have emerged from individually reproducing 
cells, qualifying it as a major evolutionary transition [10, 
11].

Consequently, mitochondria became the flagship exam-
ple of endosymbiosis between prokaryotic partners, even 
though the (presumably) singular origin of eukaryotes con-
stitutes a single example. Other endosymbioses, involv-
ing only prokaryotes living outside of eukaryotic cells, 
are unknown thus far (except for a scarcely documented 
case in Cyanobacteria, see Table 1). This suggests that the 
origin was either a genuinely singular event or alternative 
lineages have disappeared. It is intriguing why endosym-
bioses of prokaryotic partners (presumably evolving many 
times during the ~ 3.5 billion years) have never reached a 
success comparable to eukaryotes and why current eukary-
otic diversity traces back to a single origin. As a result, it is 
precarious to draw general conclusions about prokaryotic 
endosymbiosis based on this singular example. Here, we 
explore prokaryotic endosymbioses starting from general 
mechanisms assumed to apply to any endosymbioses and 
discussing special properties relevant to unicellular partners.

Interspecific reciprocal beneficial interactions, in which 
both parties receive net benefit are quite common and are 
referred to as mutualism [12], while cooperation is more 
commonly used for intraspecific interactions. While defi-
nitions vary, symbiosis is often described as a prolonged, 
intimate relationship of different species in which partners 
live in physical contact, often physiologically integrated (in 
most or all of their life cycles) [12] and have already started 
to adapt to each other evolutionarily. While mutualism refers 
to the cost–benefit balance of the interaction, symbiosis 
refers to physical contact and dependence. Consequently, 
symbiosis is not necessarily mutually beneficial and can be 
asymmetrical with a conflict of interest (e.g., parasitism) or 
without a conflict of interest (e.g., commensalism). Endo-
symbiosis covers a spectrum of partially or fully obligate 
interactions with various levels of dependence, of which the 
absolute extremum is a mutually obligate, physically inte-
grated partnership with an exclusively vertically transferred 
symbiont [13]. Endosymbiosis can also range from being 
mutually beneficial to exploitative. For that matter, one can 
argue that modern eukaryotes simply exploit mitochon-
dria by tapping into their ATP reserves (see [14]). These 
definitions apply regardless of parties being unicellular or 
multicellular.

For an endosymbiotic partnership to be evolutionarily 
stable, there must be a selective advantage, so that the pair 
is favored by selection over individually reproducing par-
ties; otherwise, the former could be outcompeted by the 
latter. However, endosymbiotic partners (e.g., ancestral 

mitochondria and host) are not related genetically, and thus, 
they do not share genes by common descent and one cannot 
expect predisposition towards cooperation. For stable endos-
ymbiosis, cells of different lineages must align their interests 
and evolve synergies based on their different properties. In 
transitions theory, such partnerships are called egalitarian 
[15].

Different genetic backgrounds generally translate into dif-
ferent metabolisms. Such differences can enable division of 
labor if there is metabolic complementation, with minimized 
conflict and pre-aligned reproductive interests [13]. Meta-
bolic exchange due to complementation (e.g., syntrophy), is 
assumed to be a key factor in the establishment of microbial 
consortia, biofilms, and mats [16]. It is widely assumed that 
syntrophic interactions may have contributed enormously to 
the emergence of major endosymbiotic transitions including 
the origin of eukaryotes. In particular, various hypotheses of 
eukaryogenesis assume ancient syntrophic interactions [17-
19]. In syntrophy, organisms jointly catabolize a substrate 
that neither party can catabolize alone [20] (for a review on 
classification, see [21]).

We have recently reviewed our present knowledge and its 
gaps on the origin of mitochondria and eukaryotes [8]. Here, 
we explore the forms of interactions leading to symbiosis of 
unicellular (prokaryotic or eukaryotic) partners and general 
mechanisms that facilitate and stabilize such interactions, 
with a focus on potential endosymbiosis, especially of mito-
chondrial origins. Given that initial ecological interactions 
and conditions are debated, we extend our scope to a wide 
range of mechanisms that could set off such a partnership. 
We do not reiterate but call attention to the many unknowns 
of the nature and relation of ancestral symbiont and host; 
for further details, we refer the Reader to reviews [22-24].

Establishing and maintaining an interaction, internaliz-
ing a partner, and driving the partnership to mutual benefits 
entail different issues and require different solutions. We 
review these issues and the mechanism that may solve them, 
especially in case of the origin of mitochondria. First, we 
give an account of prokaryotic endosymbioses and briefly 
discuss the various benefits that can power symbiotic inter-
actions. Then, we review mechanisms that can help strong 
pairwise associations to emerge and stabilize. We briefly 
discuss central control mechanisms that cause irreversible 
dependency, ultimately leading to organellogenesis. Next, 
we provide a detailed investigation of certain issues pertain-
ing prokaryotic endosymbioses, discussing their relevance 
to various hypotheses of the origin of mitochondria. We 
conclude the paper pointing out the major issues of origin 
hypotheses and how researchers should employ evolution-
ary thinking and experimentation in figuring out details of 
prokaryotic endosymbiosis and organellogenesis.
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Prokaryotic endosymbioses

While endosymbiosis is widespread among eukaryotes and 
between eukaryotes and prokaryotes [25, 26], endosymbiosis 
among prokaryotes is rare [25, 27, 28]. In contrast, there 
seems to be a diversity of obligate ectosymbiotic organ-
isms belonging to both archaea and bacteria that depend 
on a prokaryotic partner [29-32]. However, no contem-
porary prokaryotic endosymbionts to archaeal hosts are 
known [33] and the known endosymbioses among bacteria 
[25] are not comparable to mitochondria. These are either 
limited to ectosymbiotic or periplasmic contact or embed-
ded in a eukaryotic “overhost” [34], where the immediate 
host is reduced so much that the inner symbiont is more 
the symbiont of the overhost. It is debatable how strong an 
analogy these instances represent of exclusively prokaryotic 
endosymbioses. The few prokaryotic examples are listed in 
Table 1, indicative of how little we know of archaeal sym-
bioses yet.

If we assume that the host was not a proto-eukaryote, the 
only (putative) example remaining of a stable endosymbiosis 
of prokaryotes is the eukaryotic cell with its mitochondria. 
And the only cases of eukaryote–prokaryote partnerships 
that led to new organelles are the two primary plastids, those 
of Archaeplastida and Paulinella [35]. Unfortunately, we 
lack intermediates of the history from first to last eukaryotic 
common ancestor [9]. The limited number of prokaryotic 
examples might give the false impression that mitochondrial 
integration is the stereotypical form of endosymbiosis and 
its mutually beneficial state of affairs stems directly from 
ancestral mutualism. As a consequence, the eukaryogenetic 
endosymbiosis is often assumed to be of mutualistic nature. 
Symbiogenetic theories generally assume an initial syn-
trophic interaction between a prokaryotic (often archaeal) 
host and a bacterial partner (e.g., the hydrogen hypothesis 
[17], the syntrophy hypothesis [18], the reverse flow model 
[19], and others [36-40]). However, assuming an initial 
mutually beneficial interaction has at least three issues.

First, there is no direct evidence for the validity of syn-
trophic scenarios (neither is there for parasitic or phago-
trophic scenarios; see [8]). Second, obligately syntrophic 
partnerships can turn out to be facultative, if the required 
substrates are provided by another source or partner [41-43]. 
Third, the path to endosymbiosis cannot be explained by 
simply characterizing the end state. It is the result of millions 
of years of coevolution during which properties, costs, and 
benefits have changed as the association became increasingly 
intimate and dependent. As the sign of ecological interac-
tion (beneficial or exploitative) and the proximity in which 
parties live (internally or externally) are orthogonal dimen-
sions, evolution could independently advance along them. 
Multiple ecological routes can converge to stable, mutually 
beneficial endosymbioses (see Fig. 1 and [13, 44]). Even in 

one taxon, there could be multiple independent origins of 
endosymbiosis (as in trypanosomatids [24] or rickettsiales 
[45]), indicative of the ease of which some species team up 
and the variability of the initial conditions permissive toward 
integration. The variety of mitochondria-related organelles 
(MROs) and their polyphyletic origins in different eukary-
otic clades [46] indicate their capability for quick adaptation 
to new niches, which effectively mask the ancestral state 
of all modern mitochondria [47]. We, therefore, stress that 
the evolutionary history of any endosymbiosis cannot be 
deduced solely by looking at the existing relationship. This 
is particularly true to mitochondria which have evolved to 
the extreme, both in terms of gene-reduction (think of mito-
somes) and in terms of efficiency (ATP exchange). The trag-
edy of mitochondrial origin is that the initial conditions and 
the order of eukaryotic inventions are all hidden behind the 
event horizon of LECA [33].

For most endosymbioses, it is an open question if partners 
(extant, prokaryotic or eukaryotic) first established a sym-
biotic relationship funded on their initial parasitic (+|−) or 
commensalistic (+|0) interaction, or, alternatively, the ini-
tial relationship was already mutually beneficial (+| +) giv-
ing way to gradual coevolution to symbiosis [48-50]. Other 
pathways are also possible [13, 49]. It is reasonable to start 
investigating any endosymbiosis at the absolute initial stage, 
when the two species were living independently. Endobiotic 
interactions, even parasitism, often evolve to associations 
with mutual benefits [51, 52]. Endobiotic interactions were 
surely preceded by epibiotic interactions. The practical ques-
tion is: which came first, “endo” or “symbiosis”? That is, 
whether a non-cooperative interaction became endobiotic 
first, after which entirely different mechanisms ensured ben-
efits for both parties or it was an epibiotic association that 
evolved to mutual benefits and later turned to engulfment 
(see Fig. 1). Parasitism is generally present among prokary-
otes; therefore, integration could happen prior to coopera-
tion. While phagocytosis has thus far only been found in 
eukaryotes (and traces back to at least LECA [7]), it is not 
unlikely that the host relied on it to acquire the ancestor of 
the mitochondrion [53, 54]. Figure 2 illustrates some pos-
sible scenarios of mitochondrial origins.

Benefits of interactions

Biological interactions are complex, forming a continuum 
from fitness-reducing parasitism to fitness-increasing ben-
eficial symbiosis. However, host–symbiont interactions are 
not necessarily mutually beneficial; they could be context-
dependent [55, 56] with temporal shifts between mutual-
ism and antagonism [55, 57]. For example, photosynthetic 
symbionts may take more resource than they produce in the 
dark phase [24, 58]. When the cost of interacting with a 
partner becomes higher than the benefit obtained from that 
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interaction, mutualism can turn into unilateral exploitation 
[55]. Therefore, context-independent benefits ensure more 
robust interactions than environmentally driven, context-
dependent ones, although the former may be rare in nature 
(see [14]). For example, a host is expected to evolve stronger 
dependence in nutritional mutualism with continuous ben-
efit as opposed to defensive benefits that are beneficial 
only under certain conditions (Table 2) [59]. Nevertheless, 

context-dependent benefits can be adaptive if the geometric 
mean fitness over a longer timespan of environmental fluc-
tuations is larger than those of symbiont-free competitors’. 
For example, if the overall daily benefit is sufficiently large, 
hosts farming photosynthetic symbionts have a selective 
advantage over nonfarming phenotypes [58].

The literature differentiates three classes of benefits in 
mutualisms based on services: protection, nutrition, and 

Table 1  List of known (endo)symbioses of prokaryotic hosts and symbionts that evolved (presumably) after mitochondria

For reference, we have included the mitochondrial origin as well. Note, that in most cases, the symbiosis is epibiotic and true endosymbiosis is 
mostly restricted to prokaryotic hosts embedded in eukaryotic cells. Yellow background of Host and Symbiont columns stands for Proteobac-
teria, green for Cyanobacteria, blue for other bacteria, and red for Archaea, striped for unknown. Blue background for Type column stands for 
endosymbiotic organelle, green for endosymbiosis, and yellow for ectosymbiosis
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transportation [12] (see Table 2). Interactions can be also 
categorized based on the source of the benefit and the adap-
tive trait that controls it: (1) a by-product of an unrelated 
investment; (2) a direct investment; or (3) purloined [60-63] 
(see Fig. 3). In invested benefit, the adaptive trait in partner 
A provides the benefit of partner B. A direct investment is 
costly for the donor, hence receiving investment without 
reciprocation can pay off (cheating or free-riding), which 
leads to social dilemmas [44, 64, 65]. As the trait produc-
ing the beneficial by-product for the partner has evolved for 
purposes other than the mutualistic interaction, by-product 
benefits are ad hoc and context-dependent, and lack the con-
flict of interest between parties [60, 66]. In case of purloined 
(extracted) benefit, both the adaptive trait and the benefit 
are of one party [61], i.e., it evolves ways to extract ben-
efits from its defenseless partner. The way that eukaryotes 
exploit mitochondria by employing the adenine nucleotide 
translocator (ANT) to tap into the symbiont’s ATP pool is an 
example of purloined benefits. The different benefits, often 
in combination, have different consequences regarding the 
stabilization of complex interactions [67, 68].

Competition between partners of different qualities deter-
mines the fate of the mutualism: it can result in better ser-
vices and stronger dependence between partners or it can 
lead to the degradation of mutualism [57, 69]. To predict 
the outcome and to understand the underlying dynamics, 
it is useful to think of mutualism as a bi-directional con-
sumer–resource interaction in which both partners produce 
resources consumed by the other [65] with two types of a 
mutualist: high quality and low quality (or exploitative). 
The mutualistic interaction can be stable if the high-quality 
mutualist is competitively superior to the low-quality part-
ner. On the other hand, the degradation of the interaction 
is inevitable if the low-quality partner can outperform the 
high-quality mutualist [65]. The characteristics of such 
cooperation-competition trade-offs stipulate the trajectory of 
coevolution as well as the mechanisms necessary to stabilize 
these interactions [65]. Various mechanisms were proposed 
to address these social dilemmas, either punishing the low-
quality partner or helping to align the selective interests of 
the two partners (see partner control mechanisms below).

Mechanisms facilitating endosymbiosis

Mutualism often originates from asymmetrical, even exploit-
ative interactions [12]; most of them are facultative, and 
many have relatively recent origins [65]. Obligate mutual-
isms are rare and considered less stable, since there is a 
higher chance of (functional) degradation by occasional loss 
of partner [50, 65, 70]. Symbiosis is shaped by conflicts of 
interests which are probably harder to manage at the early 
stage of the association [14, 71]. Consequently, it is unlikely 
that the ancestors of mitochondria and host first met with 
perfect metabolic complementarity, so that their symbiosis 
was immediately mutually beneficial. On the other hand, 
these specialized obligate symbioses do exist and are persis-
tent for millions of years despite any conflicts, indicative of 
stabilizing mechanism. In turn, we will discuss mechanisms 
that can stabilize an emerging though suboptimal interaction 
so that in can be selected for.

Group selection in endosymbioses

If groups (associations) form among cells and these groups 
affect the selection of individual cells, selection appears at 
multiple levels: individual selection favors the interest of 
individual cells, while group selection acts in the interest 
of the associations [11, 72, 73], e.g., of symbiotic pairs. 
However, multilevel selection almost inevitably leads to 
between-level conflicts. To better understand group forma-
tion, multilevel selection was conceptually characterized into 
two types, multilevel selection 1 and 2 (MLS1, 2).

Fig. 1  Prototypical ecological interactions of host and symbiont ena-
bling endosymbiosis, along two orthogonal dimensions: symbiosis 
(physical contact) and net benefit of the interaction of populations 
(mutualism). All endobiotic partnerships are technically endosym-
biosis. It is trivial that endosymbiosis requires a transition from ecto- 
to endobiosis, but it is not necessary that the interaction converges 
to (+|+) . Transition between states is always continuous, rather than 
stepwise, and boundary states are not separating (i.e., one can go 
from syntrophy to by-product symbiosis). Mutually beneficial syn-
trophy, if internalized, could naturally yield metabolic endosymbio-
sis. Similarly, farming becomes mutually beneficial when the farmed 
partner survives in an otherwise lethal environment thanks to the 
host. On the other hand, two steps are needed to turn phagocytosis 
into mutually beneficial endosymbiosis: first, a mechanism is needed 
to turn the host to farmer then another mechanism must ensure ben-
efit for both parties. Green box indicates where phagocytosis seems 
indispensable. We exclude mutually disadvantageous cases (−|−) as 
those are unlikely to lead to association-level advantages
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In case of MLS1, only temporary groups form that peri-
odically disappear to revert to an unstructured population 
of cells (also called transient compartmentation) [74]. Fac-
ultative (endo- or ecto-) symbioses realize MLS1: partners 
re-associate better-than-random. Fixed spatial structure 
of cells can also act as implicit group structure. In dense 
biofilms, cells are practically immobile and the limited dif-
fusion of exchanged molecules localizes interactions. As a 
result, mutualist partners stay close and their implicit group 
can withstand cheating mutants or harmful competitors 
appearing at group edges [75]. In this case, splitting up the 
population into explicit, reproductively isolated groups is 
not required for selection to prefer mutualists [76]. It is yet 
unknown if endosymbiosis could or have ever evolved in 
biofilms.

MLS2, on the other hand, involves explicit group struc-
ture, i.e., groups that last and reproduce indefinitely. In sym-
biosis terms, this means exclusive partnership with strict 

vertical inheritance. If the group is selected for and can sta-
bly inherit group-related adaptations, it is a bona fide evolu-
tionary unit (an informational replicator [77]). When obli-
gate codependence of endosymbiotic partners is established, 
a new unit of evolution emerges [78] and selection of asso-
ciations dominates over selection of individuals. A major 
evolutionary transition happens when multilevel selection 
results in irreversible coupling where individuals forfeit their 
autonomous replication and gives rise to an association with 
potential for higher complexity [11]. For group selection to 
be effective, group members must reproduce together better 
than random and there must be a selective advantage at the 
group level. In turn, we will discuss mechanisms that can 
ensure positive assortativity of partners.

The theory of group selection predicts that the group is 
favored by selection over individuals if there is a reason-
able selective advantage for the group, even if the net of 
benefits and costs is negative at certain times (i.e., the per 

Fig. 2  Hypothetical evolutionary scenarios of prokaryotic endosym-
biosis. The sign of the partner in the ecological interaction is indi-
cated by the cell color: green is beneficial toward the partner, red 
is exploitative, and yellow is neutral. The blue cell indicates a fully 
integrated symbiont species within the host cell, a new evolutionary 
unit. The interaction either starts in a dense multi-species biofilm 
where there is a network of various interactions among species (gray 
arrows) or as a pairwise interaction of two free-living species (blue 
arrows). A, B: Initial interaction is exploitative as the host feeds on 
the partner species (this could happen by assuming phagotrophy or 
external digestion). If the symbiont can maintain its population inter-
nally against host culling, there is a chance for coevolution and endo-
symbiosis. If the original interaction is non-specific, host is expected 
to maintain a diverse internal population (A). Exploitation can also 

emerge as a specific pairwise interaction either in the biofilm or of 
free-living forms (B). Resulting symbionts could defect due to muta-
tions (red symbionts). C: If symbiont is the exploitative partner (a 
parasite), its entry into the host does not depend on the host’s abil-
ity to phagocytose. A prolonged interaction could lead to temperated 
parasite costs, and, ultimately, to a tamed parasite (green symbiont) 
that stays with the host. D, E: Initial interaction is mutually beneficial, 
e.g., syntrophy. Partners can be specific and strictly pairwise (D) or 
work together as a multi-species network to utilize resources (E). In 
case endosymbiosis emerges from a non-specific network of interac-
tions of multiple species, one expects the resulting integrated pair has 
greater symbiont, organelle, or genetic diversity (especially in case of 
nucleated eukaryotes)
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capita growth rate of the association is smaller than that of 
individual cells under certain conditions). Accordingly, the 
initial partnership does not need to be directly mutually ben-
eficial for both parties at all times, as long as the partnership 
together enjoys selective advantage averaged over some time 
or over different environments. Nevertheless, there must be 
at least a hidden benefit for each party, so that reduced mean 
fitness in certain periods is compensated. There are at least 
two general mechanisms to draw such indirect benefits. 
One is to exploit heterogenous environments, for example 
temporally fluctuating or spatially differentiated, so that the 
mean fitness over a wider temporal or spatial range is larger 
than those of competitors. The other is bet-hedging, that 
compensates a reduced mean fitness with reduced fitness 
variance, e.g., with wider tolerance of harsh conditions [79]. 
This renders the species less prone to extinction in certain 
selective environments that are truncating, though rare. A 
prudent strategy counters or even anticipates the effects of 
a heterogenous environment (see the farming hypothesis, 
explored theoretically [53]).

Partner choice mechanisms

Pre- or post-infection partner choice can stabilize (partially) 
beneficial interactions [80]. Pre-infection partner choice is 
based on cues or signals or screening mechanisms to filter 
partner quality before actually establishing any association 
with the partner [65, 80, 81]. Quorum sensing, including 
intra- and inter-species communication, exists both in bac-
teria and archaea [82, 83]. There is, however, no guarantee 
that interacting cells are indeed of the cooperative type, as 
cheating in the form of dishonest signals can arise [84, 85]. 
Signals can be of two types: diffusive or contact molecules. 
Surface contact requires close proximity and these signals 
are usually partner-specific. Diffusive signal molecules can 
reach a larger number of cells, but are less effective (being 
diluted easily) and are usually not partner-specific, hence 
are less reliable. The specificity and reliability required for 
obligate pairwise symbiosis suggest that surface contact is 
preferred over diffusive signals (Fig. 4).

Post-infection partner choice is based on conditional 
investments, and involves various rewarding or sanctioning 
mechanisms, including the selective termination of the inter-
action and the possibility of switching partners [65, 86]. The 
prerequisite of post-infection partner choice is spatial sepa-
ration of the multiple partners, so that the host can differenti-
ate and then selectively treat high- or low-quality partners; 
a set-up often referred to as biological markets [13, 80, 87, 
88]. The quality of preferable partners depends on multiple 
factors [65, 87, 88], and often, a low-quality partner is better 
than no partner at all.

For most of the cases, there is an asymmetry between the 
mutualist partners in many aspects, such as power of control Ta
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over the partner, strategic options, availability of alternative 
partners, etc.[86]. The party with more power or control is 
expected to gain the higher profit from the interaction, which 
can even drive the interaction towards unilateral exploitation 
[58, 65, 88]. Nevertheless, such selectivity by partner control 
mechanisms can shift the balance in favor of high-quality 
partners in the population in spite of their competitive infe-
riority to low-quality partners without the intervention of the 

mutualist [65]. Additionally, control mechanisms may allow 
the host to manipulate symbiont behavior and to force higher 
returns from investing into the symbiont, and may also allow 
for context-dependent treatment of the partner [56, 58, 89].

Partner fidelity feedback and internalization

Partner fidelity mechanisms are able to reduce the con-
flict of interest between partners as the symbiont survival 
depends on the survival of the host [90]. Increasing invest-
ment toward the partner increases the amount or possibility 
of reciprocated investment, i.e., it is a favor returned [48, 
80]. The higher the quality of the mutualist, the higher the 
chances for survival [65]. Such feedbacks can be interpreted 
in two time-frames: in-generation or cross-generation. In a 
generation of a long-term partnership, increasing invest-
ments induce higher rates of nutrient flows (in nutrition 
mutualisms) or higher quality of services (in protection 
mutualisms) by the partner. Partner fidelity can also mani-
fest as a cross-generational effect, where the investment into 
a high-quality partner will also benefit the progeny [65].

Cross-generational partner fidelity is usually coupled 
with vertical (or pseudo-vertical) transmission mechanisms, 
and is similar in effect to spatial structure: it ensures that 
offspring can form associations with the same selection of 
partners as parents did. Strict vertical transmission is very 
rare (besides endosymbiotic organelles, and some cases of 
parasitism, like Wolbachia in wasps [48, 91]). Imperfect cor-
relation between partners across generations, called pseudo-
vertical transmission, is more frequent [48, 92]. Such loose 
correlations and feedbacks can stabilize mutualism and pave 
the way for the evolution of perfect cross-generational cor-
relation of partners.

Theory predicts that the evolution of symbiont capture 
and vertical transmission is driven by host mechanisms to 
control symbiont transmission [93]. First, because symbi-
ont capture involves the genome reduction of the symbiont 
while providing increasingly more benefit to hosts, second, 
because the processes during cell division affecting the dis-
tribution and the frequency of reproduction of both parties 
are controlled by the host, which thus can have the power of 
selecting which symbionts to transfer (probably restricted to 
multicellular eukaryotes, e.g., in Buchnera–aphid interac-
tions [94].

Undoubtedly, physical inclusion is the most advanced 
method of vertical transmission, but at the start of a symbi-
otic partnership, it is rarely available. In most prokaryotic 
symbioses, physical inclusion never happens, or is limited 
to a periplasmic space (e.g., Bdellovibrio [95], Chlorochro-
matium aggregatum [96]). There are some rare cases where 
the symbiont can enter the host’s cytoplasm, but, e.g., para-
sitic Daptobacter ultimately kills its host [97]. Phagotrophic 

Fig. 3  Interaction benefits based on investment. Green arrows indi-
cate evolutionary transitions. A: In by-product benefit, the recipi-
ent (purple cell) receives benefit that derives from the by-product 
of the donor (blue cell). The orange gradient and undulating arrows 
denote the release and diffusion of the by-product into the environ-
ment, which is then picked up by the recipient (black arrow). Both 
partners have genetic traits (blue and purple rectangles) that can 
only control their own actions (red arrows). As no costly investment 
is directed toward the partner [132], no mechanism is necessary to 
prevent the degradation of the interaction due to exploitative strate-
gies. Since the donor has no interest in the interaction, the benefit for 
the recipient can only increase in a long-term association by accident 
or by pseudo-reciprocity (i.e., an investment to enhance by-product 
benefits [60]), leading ultimately to evolved dependence when the 
recipient tries to maintain close proximity to harness the by-product 
more efficiently and stably. In evolved dependence, the removal of the 
partner from the association causes immediate fitness decrease; how-
ever, since one or both of the parties are better off without the other, 
they can still regain their original fitnesses if separated [62]. B: In 
invested benefit, the benefit of the recipient (purple cell) derives from 
the product of the donor (blue cell) which depends on the adaptive 
trait of the donor (blue rectangle). The maintenance of costly coop-
erative investments, and ultimately coexistence, becomes an issue: 
non-investing defectors (cheaters) enjoy a fitness advantage and can 
outcompete cooperative types [64]. Benefits are expected to be sta-
ble or increase if the donor either (i) increases its investment and as 
a result receives more; or (ii) evolves partner control mechanisms to 
force adequate or even increasing returns. C: In purloined benefit, 
the benefit of the recipient (purple cell) depends on its own adap-
tive trait (purple rectangle) controlling the investment (red arrow). 
Dependence keeps parties together without quantifiable benefits for 
the exploited party (called addiction [12]). Different mechanisms may 
be combined to form pairwise interactions (e.g., A–A yields mutual 
commensalism, B–B reciprocity, C–B exploitation, and parasitism)
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eukaryotes could store their captured symbionts in phago-
somes (symbiont-bearing vesicles or symbiosomes [98, 99]), 
but whether phagocytosis was the means of mitochondrial 
inclusion is not known yet. According to some hypotheses, 
the early host for mitochondria trapped its surface–contact 
partners in membrane protrusions [100, 101]. In case of a 
heterotrophic host capable of secreting extracellular diges-
tive enzymes, such entrapment could serve as a poor-man’s 
phagocytosis [102]. A mixed vertical and horizontal trans-
mission seems to be in effect in Burkholderia-infected Dic-
tyostelium [103], indicative of facultative endosymbiosis.

Central control and organellogenesis

As partners become more dependent on each other, and 
as one party starts to dominate the other, central control 
evolves. Its ultimate form is the nuclear transfer of symbiont 
genes, requiring the presence of a nucleus and a mechanism 
to import proteins from the host cytosol to the symbiont. 

Evolved dependence on protein and lipid import mecha-
nisms is a sign of endosymbiosis becoming irreversible.

For mitochondrial genes to undergo nuclear transfer, 
the host must have already been a (proto-)eukaryote. The 
ancestor of mitochondria could have been acquired before 
the nucleus, but only with the evolution of the true karyon 
could compartmentalized, safe transcription (safe from 
hybridization) be implemented. Symbiont genes relocating 
into the host nucleus are minimizing the effect of lower level 
of selection of the multilevel selection situation. With this 
step, eukaryotes left the prokaryotic domain for good.

After nuclear transfer of genes, it is necessary that pro-
teins not produced by the symbiont anymore find their way 
back into the symbiont. Usually, this is a translocon-medi-
ated protein import system installed by the host. With a pro-
tein import system in effect and a sufficient number of genes 
transferred to the nucleus, the symbiont could relinquish its 
protein-coding genes and protein-producing machinery, 
leveraging its genome. Moreover, this allows the host to 

Fig. 4  Basic steps of endo- 
symbiosis and organellogenesis. 
Geometric shapes represent var-
ious benefits (e.g., metabolites), 
solid black arrows represent the 
source and flow of the various 
benefits, dashed arrows indicate 
investments, and colored arrows 
indicate the option to leave the 
host. Note that the last step, if 
involves nuclear integration and 
protein import, is irreversible
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introduce proteins of its own interest into the symbiont’s 
membrane.

The adenine nucleotide translocase (ANT) was probably 
introduced by the host into the mitochondrial membrane 
to exchange host-cytosolic ADP with symbiont ATP [36, 
104]. ANT was most likely evolved within eukaryotes after 
the engulfment of the ancestral symbiont [105-107]. It was 
certainly in the host’s best interest to exploit the symbiont. 
If, however, it was the symbiont who invented ANT to give 
up ATP for the host, then any cheater bacterium capable 
of turning off its ANT while inside the host would have 
been under positive selection leading to the overpopulation 
of defecting symbionts, as was pointed out [108]. Group 
selection could have stabilized against cheaters, but only if a 
population of endosymbionts payed enough ATP to the host, 
so that host replicated faster (compared to other host cells); 
since the symbiont replicated with the host, the benefit was 
shared [109]. Other partner control mechanisms screening 
out cheaters are unknown yet.

No prokaryotic analogies of karyogenesis were found 
yet, though nuclear transfer is known in many eukaryotes 
[110]. Further features thought to be exclusive to mitochon-
drial and plastid integration have been recognized in more 
recent endosymbioses [71, 111, 112], drawing a picture of a 
continuum from symbiosis to organellogenesis (see Fig. 4). 
While nuclear integration renders the partnership obligate 
and irreversible, preventing the escape of the reduced part-
ner, such mechanisms by no means represent an end state. 
They do not even ensure the survival of the symbiont, as 
amitochondriate eukaryotes attest. In the next section, we 
explore mechanisms that work against and could even ruin 
endosymbioses.

Challenges of prokaryotic endosymbioses

In this section, we examine some of the issues of endosym-
biosis specific to prokaryotes and the origin of mitochondria. 
We omit discussing issues related to phagocytosis.

Symbiosis in syntrophic biofilms

Biofilms and microbial mats are commonly considered 
the cradles of multi-species metabolic syntrophies where 
microbial partners evolve complex dependence networks 
[25, 113]. According to syntrophic scenarios of the origin 
of mitochondria and eukaryotes, the merger between host 
and symbiont was initiated by a syntrophic interaction much 
like those in modern biofilms [17-19, 36-40], with the caveat 
that biofilms involve much more than two species and cheat-
ers are bound to arise. The evolution and stabilization of 
dependencies in biofilms are proposed to be driven by two 

mechanisms, the Black Queen hypothesis [114] and the 
foraging-to-farming hypothesis [115].

The Black Queen hypothesis claims that a division of 
labor can evolve as a result of adaptive gene loss in microbial 
communities in which certain metabolites serve as ‘leaky’ 
public goods. Producers suffer a competitive drawback; 
hence, losing such functions has an advantage, given that 
others produce the diffusible good in the vicinity. The theory 
claims that the fastest evolving species wins by losing the 
function, and the last one retaining it carries the burden of 
producing for the entire community [115]. Such processes 
pave the way for stronger dependency between species, and 
in an ideal situation, the complete metabolic functionality 
will be distributed between community members, resulting 
in a metabolome [115]. Such division of labor can be stable, 
providing significant fitness advantage to the obligate sym-
bionts compared to the metabolically autonomous wild type 
[116, 117]. Nevertheless, if partners differ in dependencies 
and in generation times, the one with a faster life-cycle can 
outcompete its partner, unless the slowest growing partner 
is indispensable for the association or has means to control 
its partner [49, 118].

Foraging-to-farming claims that obligate dependence 
evolves because of recurrent, or continuous, ecological inter-
action between partners complementing each other’s meta-
bolic functioning [115]. Some initial asymmetry regarding 
the efficiency of producing a certain product can lead to 
the loss of functionality in the less efficient producer, as 
independency is not crucial any more [115]. Evolution can 
lead from loose, facultative associations with horizontally 
transferred partners, often called farming (externally), via 
tightened association and privatization of the symbiont and 
its product to obligate mutualism with vertical symbiont 
transfer (internal farming). The last step can be driven by 
genetic drift as the privatized and vertically transmitted sym-
biont’s population size becomes so small that accumulation 
of deleterious mutations becomes inevitable, as is expected 
by Muller’s ratchet [13].

Reductive evolution and Muller’s ratchet

Obligate endosymbionts (especially parasites) undergo 
reductive evolution due to two factors. One is the loss of 
non-essential genes, especially if the host complements 
functionality [119]. The other is Muller’s ratchet [120], 
according to which a small, asexual population is subject 
to the accumulation of maladaptive or deleterious muta-
tions resulting in gene and functionality loss [121, 122]. It 
is especially true for endosymbiont populations that are very 
small [123]. Gene loss degrades functionality in the symbi-
ont rendering it dependent on the host, ultimately becoming 
incapable of free living. This inevitable spiral, called the 
‘evolutionary rabbit hole’, leads to increased dependencies 
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of the partners and have been reported in several cases of 
mutualisms (with eukaryotic hosts) [13, 48, 121, 123]. In 
nutritional symbiosis, in which during nutrient rich times, 
the selection pressure is relaxed for maintaining symbiont 
pathways, deleterious mutations may more likely degrade 
the symbioses [121]. As a result, obligate dependence 
evolves not necessarily because it was advantageous, but 
because it was inevitable given the bottleneck in symbiont 
population size, lack of recombination, and the accumula-
tion of deleterious mutations [122]. The result can be robust 
partner fidelity feedback with aligned interests that emerges 
due to genetic drift and not due to the selection for better 
quality partners, as often hypothesized [13].

Extreme gene loss of symbiont can lead to a symbiont 
devoid of useful function which then becomes a burden for 
the host [121]. Reduction can be extreme (MROs [22]) and 
can ultimately lead to symbiont loss [14, 124] or replace-
ment [125, 126]. On the other hand, once the endosymbiotic 
organelle has emerged, strong host-level selection can pre-
vent the spiral [121].

Deleterious mutations occur in mitochondria and these 
do not often get fixed [121, 127, 128]. There is indication 
that the host can restrict the transfer of mitochondria with 
degraded functionality due to deleterious mutations in some 
cases [129], and thus, a sort of selective choice based on 
partner functionality has the potential to counteract the 
decaying spirals of mutualisms. Alternatively, recombina-
tion of short mtDNA sequences [130] and mitochondrial 
fusion (possibly originating from before LECA) could coun-
ter the accumulation of deleterious mutations and equilibrate 
nuclear-encoded proteins over all mitochondria in the host 
[131].

Issues of syntrophic consortia

While syntrophy (in general, metabolic cross-feeding) seems 
to be widespread and the most common basis of symbio-
sis among prokaryotes, it is perplexing why no obligate, 
intimate symbiotic associations are known other than that 
of mitochondria. Syntrophy might seem to be a dead end 
that never leads to endosymbiosis. In turn, we discuss some 
issues that might account for the lackluster nature of syn-
trophy and that seriously undermine syntrophic theories of 
mitochondrial origins.

First, syntrophic communities are usually diverse, multi-
species systems [25]. No case is known where strong pair-
wise obligate (endo)symbiosis emerged in such multi-spe-
cies consortia; never was it modeled under what conditions 
pairwise interactions emerge in such a network.

Second, cooperative, complementary (labor-divided) 
microbial metabolic interaction networks might be unstable 
and prone to collapse due to cheaters. Theoretical models 
have demonstrated that exploiters (partial secretors with 

a reduced genotype) actually cheat on full secretors [132, 
133]. It was found that the loss of a gene from a full secretor 
meant that the external product concentration (and thus over-
all group growth) is decreased, contrary to how the Black 
Queen hypothesis suggests the emergence of streamlined 
cooperative genotypes. For example, in synthetic commu-
nities, gene loss in secretors resulted in decreased external 
product concentration and lower overall group growth [134], 
rendering the efficiency of the Black Queen hypothesis ques-
tionable. Furthermore, specialized genotypes being able to 
modulate their secretion levels when others invest enough, 
can further destabilize cooperation [132]. If secretion rates 
are increased, it renders the collective more vulnerable to 
cheaters [133]. In in vivo experiments an initially comple-
mentary cooperation can easily collapse as one of the prod-
ucts is overdosed, while the other lags [135]. This leads to 
the vanishing of one product and either one or both species 
(depending on how dependent they were on each other). 
Consequently, the winning species is better off evolving the 
missing function for itself than to team up.

Third, stable cooperation often relies on partner choice/
recognition—but are interactions specific in a diverse syn-
trophic biofilm? According to a fresh view of holobionts 
[41], taxonomic units can be and are indeed frequently 
replaced by other species with similar functionality, called 
phenotypic exchange. It is, therefore, more appropriate to 
view such interactions as inter-guild rather than pairwise 
[136]. Furthermore, as asexual reproduction and gene loss 
degrades the symbiont partner (see Reductive evolution and 
Muller’s ratchet), it is better for the host to replace it with a 
more efficient (perhaps genetically related) partner, as it hap-
pened to the proteobacterial endosymbionts of spittlebugs 
[125]. In a biofilm, this effectively means that functionally 
equivalent metabolic partners can freely be replaced within 
the consortium. Accordingly, these partnerships are not 
specialized and partners are not inherited strictly vertically. 
Consequently, the endosymbiotic unit emerging from such 
a scenario would show a more diverse genetic background 
with traces of ancient partnerships, assuming nuclear trans-
fer of genes from, and residual adaptations to, ex-partners. 
All modern mitochondria go back to a single ancestor [137, 
138] and we do not see genetically diverse MROs. The non-
eukaryotic gene content of the eukaryotic genome correlates 
strongly with Alphaproteobacteria [139, 140] with no other 
significant bacterial contribution comparable in size to Alp-
haproteobacteria [141]. Either there were no competitors to 
mitochondria, or there were multiple closely related (poten-
tially metabolically equivalent) Alphaproteobacterial part-
ners before the establishment of the mitochondrial ancestor. 
However, the minor bacterial contributors to the eukaryotic 
genome might indicate (among others) that mitochondria 
have indeed emerged from an already diverse metabolic 
consortium (see [142, 143]). Due to the at least 1 billion 
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years of streamlining ([144], but probably more [145]), it is 
very hard to find out whether (Alphaproteo)bacterial genes 
in eukaryotes originate from genetically closely related bac-
terial partners or diverged from a single ancestor. There may 
have been a long series of endosymbiotic partners all paving 
the road to successful mitochondria (cf [146].).

A continuum between exploitation and mutualism

Recent experimental results support the theory that uni-
lateral or mutual exploitation can also serve as the basis 
of endosymbiosis [58, 147]. Experiments with unicellu-
lar eukaryotes feeding accidentally on algae can result in 
highly dependent endosymbiosis in a resource-fluctuating 
environment [148]. It is not clear whether the alga receives 
any metabolic help in exchange of its photosynthate [149], 
though they can benefit indirectly from the partnership if 
this is their only chance to survive a harsh environment. This 
experiment is formally analogous to the bet-hedging strategy 
assumed by the farming hypothesis [53].

Somewhat contrarily to the above considerations, bacte-
rial genes appearing in archaeal genomes could be due to 
occasional endoparasites leaving a footprint in the host’s 
genome [150]. They hypothesize that archaea were fre-
quently parasitized and that the mitochondrial ancestor 
could have been just one of the invaders who managed to 
take a foothold after being trapped in the endomembranes 
of the host. It is certainly not unreasonable to assume a 
parasitic interaction at the origin of mitochondria (as was 
suggested previously by many, see list at [8]). Several mutu-
ally beneficial associations were suggested to have evolved 
from ancient parasitic infections [48, 50, 52] and there are 
artificially infected eukaryotic cells that after several years 
became dependent on their bacterial parasites [98, 151]. 
However, there is no direct support for a parasitic ancestral 
mitochondrion. Most importantly, there are no examples of 
bacteria preying on or parasitizing archaea [33]. Neverthe-
less, there are many cases of bacteria–bacteria endoparasit-
ism (Bdellovibrio bacteriovorus [95, 152, 153], indicating 
the likeliness of bacteria to become parasites of other bacte-
ria (and, of course, unicellular and multicellular eukaryotes).

In case of unilateral exploitation, on the other hand, con-
trol mechanisms enable the host to exert such a tight control 
over the symbiont that the interaction becomes disadvanta-
geous for the latter. In an experiment, the ciliate host has 
practically enslaved the symbiont green alga striving to 
maximize the benefit-to-cost ratio by means of triggering 
a stress response in the symbiont [58, 154], resulting in a 
strict, exploitative control by the host over the symbiont and 
a strongly environmentally context-dependent interaction. In 
such cases, the retention of the autonomously-living form 
proves to be advantageous for the symbiont, which might 

hinder the evolution of a more dependent association [58, 
59, 154].

Controlling the symbiont population

Control mechanisms are not only important for selecting the 
most beneficial partner but also to avoid asynchronous repro-
duction of the partners. In some cases, cell-cycle synchro-
nization of host and symbiont might happen before inter-
nalization: in Chlorochromatium aggregatum the host and 
its epibionts seem to divide synchronized and orchestrated 
[155, 156]; however, the mechanisms are unclear. After 
internalization of the partner, synchronization becomes 
even more important. Successive division of the host halves 
a slower growing population of symbionts, ultimately con-
verging to zero density, called divisional dilution. This can 
be observed in ciliates with photosynthetic algae growing 
in the dark [157] (also in silico [53]). On the other hand, an 
internal parasitic population growing faster than the host 
will ultimately burst it. These render the interaction instable 
and temporal unless there are means to control the symbiont 
population. Presumably, the host’s symbiont uptake alone 
cannot counter the net deficit caused by elimination (of para-
sites), digestion (of farmed prey), extinction, and divisional 
dilution, and hence, autonomous symbiont growth within 
the host seems essential to compensate [53].

There are multiple mechanisms to control the internal 
population size. In case of metabolic coupling, host can reg-
ulate the partner’s reproduction by controlling nutrient feed. 
If the host is in control of partner uptake, it can simply cease 
capturing new individuals [48]. Synchronized cell division 
can be selected for and is evolutionarily stable if symbionts 
can limit their own cell division and if both parties’ benefit is 
large, as some theoretical results show [158]. Alternatively, 
if the symbiont is constantly growing faster, which can be 
seen as parasitism, host might evolve to counter symbiont by 
faster digestion, leading to a coevolutionary arms race [158]. 
While both are costly processes, controlled lysis (digestion) 
may return some benefit by salvaging the eliminated partner. 
While intracellular digestion is only known in eukaryotes, 
an (auto)phagocytic host to mitochondria is not ruled out 
yet [54, 104, 142, 159]. Modern mitochondria are subject to 
autophagy and this mechanism might have evolved in eukar-
yotes to control defective or corrupted symbionts, as was 
hypothesized by [160] based on the similarity of mitochon-
drial protein importing and eukaryotic autophagy‐related 
proteins.
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Conclusions

We have reviewed the ecology and evolutionary stability 
of inter-species microbial interactions along six orthogonal 
dimensions: dependence (facultative or obligate), physical 
proximity (symbiosis), net of costs and benefits (commen-
salism, mutualism, parasitism), type of benefit (nutrition, 
protection, transportation), type of investment (by-product, 
invested, purloined), and type of control (partner choice, 
vertical transmission, nuclear integration, etc.). Each actual 
(endo)symbiosis can be characterized as a point in this 
multi-dimensional space, where probably no single trait can 
be optimized independently of the others. Hence, any discus-
sion of prokaryotic endosymbiosis must involve them all.

Obligate, irreversible endosymbiosis is the result of pro-
longed coevolution of host and symbiont. While mutualistic 
associations as well as symbioses are widespread among 
prokaryotes, endosymbiosis is restricted to the single (pre-
sumed) example of the ancestors of the eukaryotic cell and 
its mitochondria. The initial interaction that set off this 
partnership is debated, but a mutually beneficial relation-
ship is often preferred, assuming such a relationship favors 
endosymbiosis by default. Consequently, there are many 
syntrophic theories of eukaryotic origin, assuming an inher-
ently mutually beneficial interaction of ancestral partners. 
However, convincing theoretical or experimental results 
supporting the idea that syntrophy (or any directly mutu-
ally beneficial metabolic interaction) can actually lead to 
endosymbiosis are lacking. Many metabolically intertwined 
microbial assemblies exist—none of them seems to be in 
an advanced stage of endosymbiogenesis. Syntrophy (meta-
bolic cross-feeding in general) is remarkably prevalent, and 
presumably was so ~ 2 billion years ago—how come that no 
other endosymbiosis emerged and survived till today involv-
ing only prokaryotes?

It is not enough for endosymbiosis that the interaction is 
mutually beneficial, it must also provide a selective advan-
tage for the partnership over competitors (possibly other syn-
trophic partnerships in the neighborhood) and must account 
for partner control. Even if positive selection is granted, 
microbial syntrophy cannot explain how one partner gets 
inside the other. Protrusions or pockets of the host mem-
brane might have been able to trap the symbiont (as was 
hypothesized based on the nature of the recently cultivated 
Asgard archaeon [101]; also earlier by [161]), but trapping 
is far from internalization. From a mechanistic point of view, 
the only known way that one cell can enter another is either 
phagocytosis (predation) or parasitism—none of them is 
mutually beneficial. Accordingly, partners might have asym-
metrical relations and selection is not guaranteed to favor the 
“partnership” above individuals.

As a matter of fact, most of the symbiotic interactions 
in nature are not symmetric and are certainly not always 
beneficial for both parties. Likely, exploitation rather than 
mutualism is responsible for mutualistic symbioses among 
microbes [162, 163]. It is very unlikely that the ancestral 
host symbiont of eukaryotic origin, at the very onset of their 
joint history, met as a jolly joker pair with immediate mutual 
benefits, synchronized cycles, and negligible costs. Benefits 
are either direct or indirect, and can range from trophic to 
metabolic contribution, safe habitat providing or new habitat 
colonization, prudent provisioning, acquired resistance, etc. 
While certain types of benefits render mutualists better com-
petitors, other effects enable the pair to escape direct compe-
tition to become better “explorers”. The latter option might 
have been crucial in mitochondrial origins, where the sym-
biont might have allowed the host to venture into oxic or 
colder environments or to grow bigger than its predators.

Costs also vary and could be considerable. At the 
extreme, autonomous reproduction is waived, to contribute 
more to the “greater good”. For the group to be favored by 
selection over independent individuals, group-level benefits 
must dominate over group-level costs—for individuals, costs 
could sometimes be enormous and benefits indirect. A part-
nership with reduced mean fitness at certain times can still 
enjoy selective advantage over individuals if the group can 
better exploit spatially or temporally heterogenous environ-
ments than individuals. If there is advantage for the group, 
partners benefit from staying and reproducing together. If 
mechanisms allow, this could lead to the inclusion of one 
party within the other.

However, having a symbiont internalized is not the end 
of story. Maintaining an internal population against dilution 
by successive fissions, degradation due to Muller’s ratchet 
and digestion by a possibly (auto)phagotrophic host are all 
issues that need to be tackled. Restocking symbionts from 
the outside to update the symbiont gene pool is one method 
to counter both divisional dilution and asexual genetic deg-
radation. This suggests that the host might have a mechanism 
to actively capture prey (phagocytosis) or the prey was rather 
an invading parasite. If eukaryotic phagocytosis indeed 
stems from archaeal components [7], it is possible that it 
was evolved in an archaeal lineage that became the host.

The vast number of prokaryote–prokaryote mutualisms 
and the lack of standalone prokaryote–prokaryote endo-
symbioses suggest that endosymbiotic interactions are not 
easy to stabilize for a long time. This is certainly a result of 
the fast adaptation of prokaryotes to new conditions and the 
ease of which endosymbionts can streamline their genomes 
(cf [119, 164].) and can exchange partners (cf [41].). How 
could the mitochondrion stably remain in its host then? The 
obvious solution to this paradox would be the earlier (or 
contemporary) emergence of the cell nucleus, a safe place 
to protect host genome against hybridization with partner 
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and parasite genes [150] and the place to integrate symbi-
ont genes to exert central control and to mitigate the effect 
of Muller’s ratchet. Many hypotheses assumed a nucleated 
proto-eukaryotic host since [165], e.g., the Archezoa hypoth-
esis [166]. While Archezoa were taxonomically disproved, 
their phylogenetic possibility was not ruled out yet. Simi-
larly, a phagocytotic host to mitochondria remains a reason-
able alternative to syntrophic or parasitic scenarios [54, 104, 
142, 159, 167, 168], see Fig. 2. If the host was nucleated, 
it would mean that prokaryotic endosymbiosis is indeed 
extremely unlikely or transitional, and we should look for 
analogies of the endosymbiogenetic origin of eukaryotes 
among protists instead of among archaea and bacteria. How-
ever, whether mitochondria came after or before the nucleus 
and phagocytosis is not known yet.

While mitochondria and plastids seem to be the text-
book cases of permanent, stable endosymbiosis, we must 
emphasize (as did [14]) that neither represent the end of 
their respective evolutionary histories. With the change of 
context (environmental or host conditions), functions and 
even endosymbiotic organelles can turn out to be hindrances 
that are ultimately lost. This has happened multiple times 
to plastid-bearing protists [169] and even to mitochondri-
ate eukaryotes [124]. Whether the organelle could be rein-
troduced into these hosts by the artificial integration of a 
new bacterial partner remains to be seen in the lab. There 
are already cutting-edge experiments with genetically engi-
neered symbionts: an auxotrophic, ANT-expressing E. coli 
was successfully integrated within a respiration-devoid yeast 
where the bacterium can export ATP while depending on 
host’s thiamine [170]. Similar tools can be employed to engi-
neer endosymbioses with immediate purloined benefits for 
the host and dependence benefits for symbiont, due to auxo-
trophy. This line of research will become extremely impor-
tant as for now any assumption on the endosymbiogenetic 
origins of eukaryotes (and in general, prokaryote–prokaryote 
endosymbiosis) is based on the single example of alphapro-
teobacterial integration into an archaeal or proto-eukaryotic 
host (of which the details are still debated).
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