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Abstract
Aims  Endocannabinoids are lipid mediators involved in the regulation of glucose homeostasis. They interact with the canoni-
cal cannabinoid receptors CB1 and CB2, and it is now apparent that some cannabinoid receptor ligands are also agonists at 
GPR55. Thus, CB1 antagonists such as SR141716A, also known as rimonabant, and AM251 act as GPR55 agonists in some 
cell types. The complex pharmacological properties of cannabinoids make it difficult to fully identify the relative importance 
of CB1 and GPR55 in the functional effects of SR141716A, and AM251. Here, we determine whether SR141716A and 
AM251 regulation of mouse and human islet function is through their action as GPR55 agonists.
Methods  Islets isolated from Gpr55+/+ and Gpr55−/− mice and human donors were incubated in the absence or presence of 
10 µM SR141716A or AM251, concentrations that are known to activate GPR55. Insulin secretion, cAMP, IP1, apoptosis 
and β-cell proliferation were quantified by standard techniques.
Results  Our results provide the first evidence that SR141716A and AM251 are not GPR55 agonists in islets, as their effects 
are maintained in islets isolated from Gpr55−/− mice. Their signalling through Gq-coupled cascades to induce insulin secre-
tion and human β-cell proliferation, and protect against apoptosis in vitro, indicate that they have direct beneficial effects 
on islet function.
Conclusion  These observations may be useful in directing development of peripherally restricted novel therapeutics that 
are structurally related to SR141716A and AM251, and which potentiate glucose-induced insulin secretion and stimulate 
β-cell proliferation.
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Introduction

The intracellular signalling network that regulates glucose-
stimulated insulin secretion from islet β-cells is extraor-
dinarily complex and multifactorial. Insulin secretion is 
modulated by nutrients, incretin hormones, neurotrans-
mitters and other secreted factors [1], including endocan-
nabinoids. Endocannabinoids are mediators that are syn-
thesised on demand from membrane phospholipids. They 
can regulate glucose homeostasis through interaction with 
the canonical cannabinoid (CB) receptors, CB1 and CB2, 
and with other cannabinoid-responsive G-protein-coupled 
receptors (GPCRs), such as G-protein-coupled receptor 55 
(GPR55) [2–4]. CB1 and GPR55 receptors are abundantly 
expressed in the hypothalamus, where centers regulating 
energy homeostasis are located, and peripherally in liver, 
muscle, adipose tissue, gastrointestinal tract and β-cells [2, 
3, 5]. In contrast, although CB2 receptors are also present in 
the central nervous system and endocrine pancreas, they are 
mainly expressed in cells and organs of the immune system 
[6], where endocannabinoids mediate immunomodulatory 
actions.

The role of endocannabinoids in appetite regulation has 
been extensively studied over the past 20 years [7, 8]. In 
particular, the CB1 receptor was considered to be a promis-
ing pharmacological target for weight management due to its 
activation being associated with hedonic feeding behavior. 
Rimonabant (SR141716A; Suppl. Fig. S1A) was the first 
selective antagonist described for CB1 receptors in in vitro 
and in vivo studies [9–11], and it was introduced into clini-
cal use in 2006 as an anti-obesity agent. Rimonabant use 
was associated with reductions in body weight and waist 
circumference, and improvements in the profile of metabolic 
risk factors in patients who were overweight or obese and 
had atherogenic dyslipidemia [12–15]. Despite being with-
drawn due to its adverse psychological effects, almost half 
of the metabolic benefits, including elevations in circulating 

adiponectin, occurred independent of weight loss, suggest-
ing direct peripheral effects of this compound [16]. The 
effects of SR141716A to improve glucose tolerance in obese 
animal models [17, 18] and humans [19, 20] are likely to 
have been due, at least in part, to its ability to improve insu-
lin sensitivity, but it is also possible that direct stimulatory 
effects on islets could contribute to the reductions in blood 
glucose levels. However, observations of potentiation of 
glucose-induced insulin secretion by CB1 agonists [21, 22] 
suggest that antagonism of β-cell CB1 receptors is unlikely 
to be responsible for the beneficial effects of SR141716A 
on glucose homeostasis. It is known that both SR141716A 
and its iodo analogue, AM251 (Suppl. Fig. S1B), can act 
as GPR55 agonists in some cell types [23–26]. We have 
previously reported that AM251 directly stimulated insulin 
secretion from human islets [21], and a neutral CB1 antago-
nist, LH-21, potentiated insulin release, Ca2+ signalling and 
β-cell survival by acting as a GPR55 agonist in isolated 
human and mouse islets [4]. It is therefore possible that 
AM251 and SR141716A have stimulatory effects in islets 
as GPR55 agonists, rather than CB1 antagonists.

In the present study we have therefore evaluated the 
effects of SR141716A and AM251 on insulin secre-
tion, cAMP and IP1 levels, apoptosis and proliferation in 
human and mouse islets, and we used islets isolated from 
Gpr55−/− mice to determine the requirement for GPR55 in 
these effects.

Materials and methods

Reagents

Culture media and supplements, collagenase type XI, 
histopaque-1077, DMSO, EDTA, IBMX, carbachol, clo-
nidine, LiCl, exendin-4, forskolin, agarose, bionic buffer 
and BSA were obtained from Sigma-Aldrich (Dorset, UK). 
DNeasy Blood and Tissue, RNeasy Mini and QuantiTect 
SYBR Green PCR kits and qPCR primers for mouse and 
human CB1 (CNR1), GPR119, GPR18, GPR92 (LPAR5), 
delta-opioid receptor (OPRD1), transient receptor poten-
tial cation channel subfamily V member 1 (TRPV1), GPR3, 
GPR6, GPR12, and ACTB were from Qiagen (Manches-
ter, UK). PCR primers for Gpr55 genotyping were from 
Eurofins Genomics (Wolverhampton, UK). SR141716A 
was from Tocris Bioscience (Abingdon, UK). AM251 
and rabbit anti-Ki67 primary antibody were from Abcam 
(Cambridge, UK). cAMP HiRange and IP-one (IP1) assays 
were from Cisbio (Codolet, France). TaqMan RT-PCR kit, 
100 base pairs (bp) DNA ladder, SYBR® DNA gel stain, 
HEPES, HBSS and DAPI were from Thermo Fisher Scien-
tific (Paisley, UK). Caspase-Glo 3/7 and GoTaq® G2 Green 
Master Mix were from Promega (Southampton, UK). 
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Recombinant TNFα, IFNγ and IL-1β were from PeproTech 
EC (London, UK). Guinea pig anti-insulin was obtained 
from Dako (Cambridge, UK). AlexaFluor 488- and Alex-
aFluor 594-conjugated secondary antibodies were from 
Jackson ImmunoResearch Laboratories (Newmarket, UK).

Animals

A colony of C57BL/6J Gpr55 homozygous knockout 
mice (Gpr55−/−) was maintained at King’s College Lon-
don, with ad libitum access to food and water [3]. Age-
matched wild-type (Gpr55+/+) male C57BL/6J mice were 
purchased from Envigo (Bicester, UK) and maintained in 
the same conditions as the Gpr55−/− mice prior to islet 
isolation. All animal procedures were approved by the 
King’s College London Ethics Committee and carried out 
in accordance with the UK Home Office Animals (Scien-
tific Procedures) Act 1986.

Genotyping

Ear biopsies were removed from weaned mice and DNA 
samples were prepared using the Qiagen DNeasy Blood and 
Tissue Kit following the manufacturer’s instructions. DNA 
was amplified by PCR using 35 cycles with Gpr55 prim-
ers (94 °C: 60 s, 55 °C: 60 s, 72 °C: 60 s; forward: 5′TCT​
GGA​TTC​ATC​GAC​TGT​G3′, reverse 1: 5′TCC​ACA​ATC​
AAG​CTG3′, reverse 2: 5′GTC​ACC​CAT​CCA​GGT​GAT​3′. 
Products were fractionated by gel electrophoresis (150 V, 
40 min) using 1.8% agarose in bionic buffer, with predicted 
amplicons of 207 base pairs for wild-type mice and 299 base 
pairs for transgenic mice [27].

Isolation of mouse and human islets

Islets were isolated from 8–12-week-old male 
Gpr55−/− C57BL/6J mice and age-matched Gpr55+/+ mice 
by collagenase digestion of the exocrine pancreas [28], 
yielding ~ 350 islets per mouse. Human islets used for func-
tional studies and qPCR were isolated from 14 and 3 non-
diabetic (Suppl. Table S1), heart-beating pancreas donors at 
the King’s College Hospital Islet Transplantation Unit with 
appropriate ethical approval [29]. The average age (± SEM) 
of the donors for functional studies was 45 ± 2.8 years and 
the body mass index (BMI) was 28.4 ± 1.3 kg/m2, while 
islets used for qPCR were from donors with average age of 
49 ± 4.1 years and BMI of 22.7 ± 1.3 kg/m2. Isolated mouse 
and human islets were maintained in culture overnight 
(mouse: RPMI-1640; human: CMRL-1066) at 37 °C, 95% 
air/5% CO2 before experimental use [30].

Dynamic insulin secretion

Groups of 45 mouse or 55 human islets were perifused at a 
flow rate of 0.5 mL/min with a physiological salt solution 
[31] supplemented with 2 mM or 20 mM glucose in the 
absence or presence of compounds of interest using a tem-
perature-controlled perifusion system [30]. Perifusate frac-
tions were collected at 2 min intervals and secreted insulin 
was quantified by radioimmunoassay [32]. SR141716A and 
AM251 were dissolved to 10 µM in DMSO, such that the 
final DMSO concentration was 0.1%, which was also used 
for control (vehicle) perifusions.

RNA extraction and quantitative real‑time PCR

Total RNA was extracted from groups of 350 Gpr55+/+ or 
Gpr55−/− mouse islets or human islets using the Qiagen 
RNeasy Minikit according to the manufacturer’s instructions 
and quantified using a NanoDrop spectrophotometer. 500 ng 
of islet total RNA from mouse and human islets with A260/
A280 ratios between 1.8 and 2.2 were reverse-transcribed into 
cDNAs using the TaqMan RT-PCR kit. Quantitative real-
time PCR (qPCR) using islet cDNAs was performed on a 
Lightcycler 480 to quantify expression of genes encoding 
CB1, GPR119, GPR18, GPR92, OPRD1, TRPV1, GPR3, 
GPR6 and GPR12 and levels were normalised to Actb/ACTB 
mRNA expression in the same samples. All GPCR and ref-
erence gene primer efficiency (E) values were in the range 
of 1.85–2.15. For all gene quantifications, template cDNAs 
were diluted in such a way that all quantified genes returned 
cycle threshold (Ct) values < 30. The relative expression 
ratio of the targeted genes was calculated based on the E 
and Ct deviation of the employed mouse/human islet prepa-
rations, and levels were normalised to Actb/ACTB expression 
in the same samples. Genes expressed < 0.001% of the mean 
mRNA level of the reference gene used were considered to 
be present only at trace level, as their expression was less 
than the lower limit of linear quantification of the QuantiTect 
primer assays. The primers used for qPCR amplifications are 
listed in Suppl. Table S2.

IP1 and cyclic AMP accumulation

Groups of five mouse islets or seven human islets were trans-
ferred to white-walled 96-well plates in HBSS supplemented 
with 10 mM HEPES, 0.2% BSA, 5.6 mM glucose and 2 mM 
IBMX for quantification of cAMP or 50 mM LiCl for assay 
of IP1 levels. For cAMP measurements, islets were incubated 
for 1 h at room temperature in the absence or presence of 
10 µM SR141716A or AM251 using 20 nM exendin-4 as a 
positive control to induce Gs activation. For determination 
of Gi activation, 1 µM forskolin was added to the solutions 
to stimulate cAMP production so that the inhibitory effect 
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of agents on cAMP generation could be detected. 1 µM of 
the α2 agonist clonidine was used as a control Gi-coupled 
ligand. For IP1 accumulation, islets were incubated for 1 h at 
37 °C in the absence or presence of test agents and 500 µM 
of the muscarinic agonist carbachol was used as a control 
Gq-coupled ligand. Following the subsequent assay steps 
according to the manufacturer’s protocols, islet cAMP or 
IP1 levels were quantified by measuring the fluorescence 
emission intensity ratio at 665/620 nm using a Pherastar 
FS microplate reader (BMG Labtech Ltd, Aylesbury, UK).

Caspase 3/7 activities

Groups of five mouse or human islets were maintained 
in culture for 24 h in the absence or presence of 10 μM 
SR141716A or 10 µM AM251, then incubated for a fur-
ther 20 h in RPMI-1640 with 2% FBS (mouse) or CMRL 
with 0.2% albumin (human), in the absence or presence of 
a cytokine cocktail (0.025 U/μL IL-1β, 1 U/μL TNFα, and 
1 U/μL IFNγ). Islet cell apoptosis was determined using the 
Caspase-Glo 3/7 assay [30].

Islet β‑cell proliferation

Groups of 250 mouse or human islets were incubated for 
48 h at 37 °C (95% air/5% CO2) in RPMI-1640 with 2% 
FBS (mouse) or CMRL with 0.2% albumin (human), sup-
plemented with 10 μM SR141716A, 10 μM AM251 or vehi-
cle (0.0001% DMSO). Islets were then pelleted at 135 g, 
fixed with 4% paraformaldehyde and embedded in paraffin. 
Sections of 5 μm thickness were dewaxed, then antigens 
were retrieved using citrate buffer (10 mM citric acid, 0.05% 
Tween 20, pH 6.0). Sections were incubated overnight at 
4 °C with primary anti-insulin (guinea pig) and anti-Ki67 
(rabbit) antibodies at 1:200 dilution, then incubated with 
anti-guinea pig AlexaFluor 594 and anti-rabbit AlexaFluor 
488 antibodies (1:150 dilution) for 1 h at room temperature. 
The primary and secondary antibodies are listed in Suppl. 
Table S3. Images were visualized using a Nikon A1 Inverted 
Confocal microscope and analysed blindly before quantifi-
cation using Fiji Image J software (https​://fiji.sc) [4]. For 
each experiment, the images were acquired with the same 
settings and histological quantifications were performed in 
paraffin sections that had been immunostained under the 
same conditions.

Statistical analyses

Data are shown as mean ± SEM. GraphPad Prism 8.0 
(GraphPad Software, Inc.) was used for statistical analyses. 
Comparisons were analysed by unpaired Student’s t test, 
Wilcoxon signed-rank test and one-way or two-way ANOVA 

with repeated measures followed by post-hoc tests, as appro-
priate. P < 0.05 was considered statistically significant.

Results

SR141716A and AM251 stimulate insulin secretion 
from human islets

Dynamic perifusions of isolated human islets indicated 
that SR141716A initiated insulin secretion at 2 mM glu-
cose and it also potentiated glucose-stimulated insulin 
secretion (Fig. 1a, c and d), and similar stimulatory effects 
were observed when human islets were exposed to the 
SR141716A structural analogue, AM251 (Fig. 1b, e and f). 
These effects on insulin secretion showed a rapid onset and 
they were readily reversible upon removal of SR141716A 
or AM251.

SR141716A and AM251 increase insulin secretion 
through a GPR55‑independent mechanism

SR141716A and AM251 were initially classified as selec-
tive CB1 receptor antagonists/inverse agonists but they also 
show GPR55 agonist activities in the micromolar range [23, 
33] and we have recently reported that another CB1 neutral 
antagonist/inverse agonist, LH-21, stimulated insulin secre-
tion through GPR55-dependent signalling [4]. The ability 
of SR141716A and AM251 to act via GPR55 in β-cells was 
investigated by quantifying their effects on insulin secretion 
from islets isolated from Gpr55+/+ and Gpr55−/− mice. In 
these experiments 10 μM SR141716A significantly stim-
ulated insulin secretion at 2 and 20 mM glucose in islets 
from Gpr55+/+ mice, and it had similar stimulatory effects 
in islets isolated from Gpr55−/− mice (Fig. 2a). Calculation 
of AUC data indicated that there was no statistically sig-
nificant difference in the responses to 10 μM SR141716A 
in Gpr55+/+ and Gpr55−/− islets at either 2 mM or 20 mM 
glucose (Fig. 2c, d). AM251 (10 μM) also potentiated insulin 
secretion from islets of both genotypes, but it did not sig-
nificantly stimulate basal insulin secretion (Fig. 2b). As for 
SR141716A, the effects of AM251 on insulin secretion were 
not significantly altered by deletion of GPR55, calculated by 
AUC (Fig. 2e, f).

Expression of other islet cannabinoid receptors

In an attempt to identify possible receptors through which 
SR141716A and AM251 could mediate their functional 
effects, mRNAs encoding the cannabinoid-responsive 
GPCRs Cnr1 (CB1), Gpr119, Gpr18, Lpar5 (GPR92), 
Oprd1, Gpr3, Gpr6 and Gpr12 and the non-selective chan-
nel Trpv1 were quantified by qPCR using cDNA samples 

https://fiji.sc


4713The cannabinoid ligands SR141716A and AM251 enhance human and mouse islet function via…

1 3

from Gpr55+/+ and Gpr55−/− mouse islets. It can be seen 
from Fig. 3 that Cnr1, Gpr119, Gpr18, Lpar5, Trpv1 and 
Gpr6 mRNAs were readily detectable in mouse islets, while 
Gpr3 and Gpr12 were expressed at only trace levels and 
Oprd1 was not detected. Lpar5 and Trpv1 mRNAs were sig-
nificantly upregulated in islets isolated from Gpr55−/− mice, 
as was expression of Cnr1 mRNA. Conversely, Gpr119 
mRNA levels in islets were reduced following GPR55 dele-
tion, and there was no significant change in Gpr18 or Gpr6 
expression. We also quantified expression of these receptors 
in human islets and found that expression levels of CNR1 
and GPR119 were significantly lower in human islets than in 
wildtype mouse islets; LPAR5 and TRPV1 expression levels 
were similar between mouse and human islets, and while 
GPR18 and OPRD1 were present and absent in mouse islets, 
respectively, the opposite was true in human islets (Fig. 3).

SR141716A and AM251 do not modulate islet cAMP 
levels

The possibility that the inverse agonist activity of 
SR141716A and AM251 at islet CB1 receptors or their 

activation of a Gs-coupled GPCR such as GPR119 could 
lead to activation of adenylyl cyclase and increase cAMP 
levels [34] was investigated, to determine if this could 
explain the stimulatory effects of these ligands on insulin 
secretion and their independence of signalling via GPR55. 
However, cAMP quantification indicated that neither ligand 
had a stimulatory effect on basal or forskolin-stimulated 
cAMP levels in islets isolated from Gpr55+/+ (Fig. 4a, d) or 
Gpr55−/− (Fig. 4b, e) mice, or in human islets (Fig. 4c, f). 
In these experiments the GLP-1 agonist exendin-4 caused 
the expected increase in cAMP in both mouse and human 
islets, and the α2-adrenergic agonist clonidine significantly 
inhibited forskolin-induced elevation in cAMP (Fig. 4).

SR141716A and AM251 increase islet IP1 levels

As elevations in Ca2+ are required for the exocytotic 
release of insulin and islets express Gq-coupled puta-
tive cannabinoid receptors we investigated the effects of 
SR141716A and AM251 on Gq coupling in islets by quan-
tification of the stable IP3 metabolite, IP1. Both ligands 
significantly increased IP1 levels in mouse (Fig. 5a) and 

0
100
200
300
400
500
600
700

20 mM glucose (min 70-90)

A
re

a
un

de
rt

he
cu

rv
e

(A
U

C
)(

pg
is

le
t-1

)

Vehicle 10 µM
AM251

****

0
100
200
300
400
500
600
700

2 mM glucose (min 10-30)

A
re

a
un

de
rt

he
cu

rv
e

(A
U

C
)

(p
g

is
le

t-1
) ****

Vehicle 10 µM
AM251

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45
10 µM AM251

or vehicle
10 µM AM251

 or vehicle

Time (min)

In
su

lin
(p

g
is

le
t-1

m
in

-1
) ####

  2 mM glucose 20 mM glucose

Treatment

Control

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

10 µM SR141716A
or vehicle 10 µM SR141716A

or vehicle

Time (min)

In
su

lin
(p

g
is

le
t-1

m
in

-1
)

####

  2 mM glucose 20 mM glucose

Treatment

Control

0
100
200
300
400
500
600
700

2 mM glucose (min 10-30)

A
re

a
un

de
rt

he
cu

rv
e

(A
U

C
)(

pg
is

le
t-1

)

****

Vehicle 10 µM
SR141716A

0
100
200
300
400
500
600
700

20 mM glucose (min 70-90)

A
re

a
un

de
rt

he
cu

rv
e

(A
U

C
)(

pg
is

le
t-1

)

Vehicle 10 µM
SR141716A

**

(A) (B)

(C) (D) (E) (F)

Fig. 1   Effects of SR141716A and AM251 on dynamic insulin secre-
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lated from human donors over time (0–110 min) (a, b) and total insu-
lin AUC (pg islet−1) in the absence and presence of SR141716A (c, 
d) and 10 μM AM251 (e, f) at 2 mM glucose (c, e) and 20 mM glu-
cose (d, f). 10 μM SR141716A (a, c and d) and 10 μM AM251 (b, e 
and f) significantly stimulated insulin secretion from human islets at 
2 and 20 mM glucose. Data are mean + SEM representative of three 

separate experiments, each of four replicates, 55 islets per channel. 
a, b ####P < 0.0001 AUC min 50–70 vs. min 0–10; one-way ANOVA, 
Tukey’s multiple comparisons post test; c ****P < 0.0001 AUC 
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nificantly increased insulin secretion at 2 mM glucose in islets from 
Gpr55+/+ and Gpr55−/− mice (a). Data are mean + SEM of five inde-
pendent experiments, each of four replicates, 45 islets per channel. 

a ##P < 0.01 AUC min 50–70 WT vs. min 0–10 WT, ####P < 0.0001 
AUC min 50–70 KO vs. min 0–10 KO, **P < 0.01, AUC min 70–90 
SR141716A WT vs. min 0–10 WT, ****P < 0.0001, AUC min 70–90 
SR141716A KO vs. min 0–10 KO; two-way ANOVA, Tukey’s multi-
ple comparisons post test; ***P < 0.001 AUC min 10–30 SR141716A 
WT vs. min 0–10 WT, **P < 0.01 AUC min 10–30 SR141716A KO 
vs. min 0–10 KO, unpaired Student’s t test. b ###P < 0.001 AUC min 
50–70 KO vs. min 0–10 KO, ####P < 0.0001 AUC min 50–70 WT vs. 
min 0–10 WT, **P < 0.01, AUC min 70–90 AM251 KO vs. min 0–10 
KO, ****P < 0.0001, AUC min 70–90 AM251 WT vs. min 0–10 
WT; two-way ANOVA, Tukey’s multiple comparisons post test
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ACTB mRNA. **P < 0.01; ***P < 0.001; ****P < 0.0001. Data 

are expressed as mean + SEM of three non-pooled Gpr55+/+ and 
Gpr55−/− mouse islet preparations (350 islets per mouse) and three 
non-pooled non-diabetic human islet preparations (1000 islets per 
preparation) and they were analysed by one-way ANOVA. A: mRNA 
absent (i.e., not detected), T: trace mRNA expression
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human (Fig. 5c) islets, as did the muscarinic receptor ago-
nist carbachol (Cch), which signals via Gq-coupled M3 
receptors in islets [35]. Consistent with the maintenance 
of their stimulatory effects on insulin secretion in islets 

from Gpr55−/− mice, SR141716A and AM251 also sig-
nificantly elevated IP1 in islets in which GPR55 had been 
deleted (Fig. 5b).
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***P < 0.001 and ****P < 0.0001 exendin-4 vs. basal; data were ana-
lysed using one-way ANOVA, followed by Dunnett’s multiple com-
parisons post test
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SR141716A and AM251 decrease mouse and human 
islet apoptosis

Investigation of the effects of SR141716A and AM251 on 
caspase 3/7 activities in mouse and human islets indicated 
that both ligands significantly reduced apoptosis induced 
by 20 h exposure to a cocktail of inflammatory cytokines 
in islets isolated from Gpr55+/+ mice (Fig. 6a) and these 
anti-apoptotic effects were also observed in islets from 
Gpr55−/−mice (Fig.  6b). In addition, SR141716A and 
AM251 totally blocked cytokine-induced apoptosis in 
human islets (Fig. 6c). However, although these compounds 
exerted protective effects against cytokines, they had no 
effect on basal levels of caspase activity in the absence of 
cytokines in either mouse or human islets.

SR141716A and AM251 stimulate human β‑cell 
proliferation

Confocal fluorescence immunohistochemistry indicated 
that the low level of β-cell proliferation in vehicle-treated 
Gpr55+/+ and Gpr55−/− mouse islets, identified through 
co-expression of insulin and the proliferative marker Ki67, 
was abolished when islets were incubated with 10  μM 
SR141716A for 48 h (Fig. 7a, b). 10 μM AM251 had simi-
lar effects to SR141716A and there was also a trend towards 
decreased islet area (Fig. 7c) and number of β-cells per islet 
(Fig. 7d) following 48 h exposure to 10 μM SR141716A 
or 10 μM AM251. In contrast, exposure of human islets to 
SR141716A or AM251 for 48 h induced significant increases 
in the small number of insulin-positive cells expressing 

Ki67, indicative of increased human β-cell proliferation 
(Fig. 8a, b). Quantification of human islet confocal images 
indicated that the ligands also significantly increased islet 
area (Fig. 8c) and the number of β-cells per islet (Fig. 8d).

Discussion

The effects of SR141716A on insulin secretion in vitro and 
in vivo in rodents have been a point of controversy in the 
literature. Thus, it is reported to decrease insulin hyper-
secretion in islets isolated from diabetic rats [36] and glu-
cose-induced insulin secretion from mouse islets [37], but 
another study showed that SR141716A did not significantly 
affect insulin secretion from mouse islets [38]. Conversely, 
SR141716A was found to reversibly stimulate insulin secre-
tion from human islets [39], and its chronic administration 
improved islet function and morphology in diabetic rats 
[40]. The reasons for discrepancies between different stud-
ies are not immediately obvious, but in in vitro experiments 
with isolated islets stimulatory effects are more likely to be 
observed in dynamic perifusions [39] rather than in static 
incubations of islets [37], where potentially inhibitory par-
acrine mediators such as somatostatin and GABA may accu-
mulate. The effects of the SR141716A analogue, AM251, 
on insulin secretion are more consistent, with reports that 
it has insulinotropic effects in mouse islets and BRIN-
BD11 cells [41], in βTC6 cells [42] and in human islets 
[21, 42]. Analysis of the functional effects of SR141716A 
and AM251 often focus on their classification as CB1 recep-
tor antagonists/inverse agonists but they also act as GPR55 
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Fig. 6   Effects of SR141716A and AM251 on mouse and human islet 
apoptosis. Effects of 10 μM SR141716A and AM251 on apoptosis of 
Gpr55+/+ (a) and Gpr55−/− (b) islets and human (c) islets after 20 h 
of culture in the absence or presence of a cytokine cocktail (grey 
bars). Apoptosis was detected by luminescence assay of caspase 3/7 

activities. Data are expressed as mean + SEM representative of five 
independent experiments for both mouse and human islets, each of 
6–8 replicates. **P < 0.01, ***P < 0.001, ****P < 0.0001. Data were 
analysed using one-way ANOVA with repeated measures, followed 
by Tukey’s multiple comparison post test
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agonists in some cell types [23–26], with EC50 values of 
3.9 μM and 9.6 μM, respectively [33]. Experiments in which 
10 mg/kg SR141716A was delivered to mice indicate that 
it reached 1.9 μg/mL 1 h after i.p administration, equivalent 
to 4.1 μM in plasma [43], a concentration that is sufficient 
to induce activity at GPR55 in vivo. GPR55 is expressed by 
islet β-cells, with its activation enhancing glucose-induced 
insulin secretion [3–5, 41] so it is possible that the stimula-
tory effects of SR141716A and AM251 on insulin release 
could be mediated via their agonist action at β-cell GPR55. 
Thus, in the current study we investigated the effects of these 
ligands on insulin secretion, β-cell mass and downstream 
coupling, and determined whether their effects were depend-
ent on GPR55.

We found that both ligands reversibly stimulated insulin 
secretion from isolated mouse and human islets, in agree-
ment with earlier reports of direct stimulatory effects of 
AM251 and SR141716A [21, 39] in perifused human islets. 
Our observations that SR141716A evoked insulin release 

at 2 mM glucose are in agreement with the requirement 
for some rimonabant-treated patients to reduce their anti-
diabetic medication [15], and induction of hypoglycaemic 
episodes by rimonabant in some insulin-treated patients with 
type 2 diabetes [44]. AM251 also increased insulin secretion 
from human islets at 2 mM glucose, but was without effect 
in mouse islets at this sub-stimulatory glucose concentra-
tion. These differences in the glucose-dependent effects of 
AM251 between human and mouse islets may be a conse-
quence of the left-shifted glucose concentration–response 
profile in human islets [45] or it may reflect species-depend-
ent differences in islet morphology [46] and cannabinoid 
receptor distribution [2] or arrangement of distinct cannabi-
noid receptor isoforms within islets [39]. The maintenance 
of the insulinotropic effects of SR141716A and AM251 in 
islets isolated from Gpr55−/− mice demonstrated that their 
capacity to stimulate insulin secretion is not dependent on 
GPR55 activation.
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Fig. 7   Effects of SR141716A and AM251 on mouse β-cell prolif-
eration. Representative confocal images of paraffin-embedded sec-
tions of islets from Gpr55+/+ and Gpr55−/− mice probed with anti-
bodies directed against insulin (red) and Ki67 (green), and DAPI 
staining (nuclei; blue) after maintenance of islets in culture for 48 h 
in the absence or presence of 10  µM SR141716A or AM251 (a). 
Scale bar = 50  μm. Post-acquisition analyses were performed with 
Fiji Image J software and are shown in b–d: b number of Ki67- and 

insulin-positive cells per islet; c mean islet area (μm2) and d number 
of β-cells (insulin-positive cells) per islet. Data were obtained from 
multiple acquisitions of 47–95 islets per condition, each with a mini-
mum of eight paraffin sections for analysis. N = 6 mice per genotype, 
three independent experiments. ***P < 0.001 and ****P < 0.0001 vs. 
vehicle Gpr55+/+ or Gpr55−/−. Data were analysed using Wilcoxon 
signed rank test (b) or one-way ANOVA, followed by Dunnett’s mul-
tiple comparison post test (c, d)
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The promiscuity in receptor signalling of cannabi-
noid ligands extends beyond CB1/GPR55, and additional 
GPCRs that are targeted by cannabinoids have been iden-
tified, although progress in classification and validation 
is dependent on identification of the endogenous ligands 
and development of selective receptor ligands [47]. As 
SR141716A- and AM251-stimulated insulin secretion 
was GPR55-independent we investigated the expression 
of putative islet cannabinoid receptors through which they 
could act, and determined whether there were alterations 
in expression in islets in which GPR55 had been deleted. 
We focused on mRNAs encoding GPR119, GPR92 (Lpar5), 
GPR18, CB1, OPRD1 and TRPV1 since they have previ-
ously been implicated as targets of cannabinoids [48–51]. 
In addition, we quantified Gpr3, Gpr6 and Gpr12 mRNAs 
because these orphan Gs-coupled Class A GPCRs have a 

close phylogenetic relationship with cannabinoid recep-
tors and the phytocannabinoid cannabidiol has recently 
been identified to act as an inverse agonist at these recep-
tors [52]. We found that in addition to CB1 (Cnr1) mouse 
islets also expressed mRNAs encoding Gs-coupled GPR119 
and GPR6, Gq-coupled GPR18 and GPR92 (Lpar5), and 
the non-selective cation channel TRPV1 while mRNA-
encoding Gi-coupled delta-opioid receptor (Opdr1) was 
absent, and Gpr3 and Gpr12 mRNAs were only expressed 
at trace levels. Cnr1, Lpar5 and Trpv1 were upregulated fol-
lowing GPR55 deletion, while mRNA encoding GPR119 
was significantly decreased in Gpr55−/− islets. To add to 
the complexity, GPR55 may be able to form heterodimers 
with CB1 receptors and impairment of this following dele-
tion of GPR55 and the consequent upregulation of Cnr1 in 
islets could have functional implications for SR141716A and 
AM251 signalling. However, our previous observations that 
CB1 agonists stimulate insulin secretion [21, 22] are incon-
sistent with the GPR55-independent effects of SR141716A 
and AM251 on insulin release being via upregulation of CB1 
receptors in islets from Gpr55−/− mice, since these ligands 
are CB1 antagonists.

Quantification of islet cAMP levels indicated that neither 
ligand affected basal or forskolin-stimulated cAMP produc-
tion in either Gpr55+/+ or Gpr55−/− islets, or human islets, 
suggesting that it was unlikely that they were having inverse 
agonist effects at CB1 receptors or signaling via Gs-coupled 
receptors such as GPR119 or GPR6. However, given that 
there is evidence of biased agonist activity by cannabinoids 
[53] and we have shown that both ligands significantly ele-
vated IP1 production in isolated mouse and human islets 
we cannot rule out SR141716A and/or AM251 signalling 
through a nominally Gs-coupled receptor via Gq-biased sig-
nalling. The elevation in IP1 implies GPR55-independent, 
Gq-coupled receptor signalling by SR141716A and AM251 
in islets and further studies using inhibitors of Gq and PLC 
are required to confirm this mechanism of action in islets. 
Possible Gq-coupled candidates are GPR18 or GPR92, both 
of which are phylogenetically closely related to GPR55 [50] 
and activated by some cannabinoids [50, 51]. It has been 
reported that GPR18 and GPR92 activation is associated 
with transient elevation of [Ca2+]i [50, 54], consistent with 
our IP1 data, although nothing is known about the func-
tional role of these receptors in islets. We did not detect 
GPR18 mRNA in human islets [55], so this receptor cannot 
be responsible for our observations of increased IP1 genera-
tion in human islets in response to SR141716A and AM251. 
GPR92 is a plausible candidate mediating the effects of 
SR141716A and AM251 in islets, and its upregulation fol-
lowing GPR55 deletion could be responsible for the elevated 
insulin secretory response to SR141716A that was observed 
in Gpr55−/− islets. Further study in this area is dependent on 
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the availability of GPR92-selective antagonists and studies 
in islets isolated from Lpar5−/− mice.

Our qPCR analysis also indicated that Trpv1 mRNA was 
upregulated 15.3 ± 4.3-fold in islets from Gpr55−/− mice 
and it is possible that TRPV1 activation by SR141716A and 
AM251 was responsible, at least in part, for the stimulatory 
effects that we observed in islets following GPR55 deletion. 
Activation of this cation channel by capsaicin is coupled to 
TRPV1-dependent stimulation of calcium in INS-1E β-cells 
[56] and insulin secretion in mice [57, 58]. However, while 
capsaicin also stimulates insulin secretion in minced pan-
creas samples [57] and RIN insulinoma cells [58] it was 
without effect on non-selective cationic currents in primary 
rat β-cells [59] and failed to increase calcium in primary rat 
and human β-cells [56]. There is no information to date on 
the effects of SR141716A and AM251 via TRPV1 in islets, 
but as Trpv1−/− mice are available for research future stud-
ies should be directed to determine whether stimulation by 
these ligands is reduced or abolished in islets isolated from 
these mice.

We have previously reported that LH-21 protected mouse 
and human islets from apoptosis in vitro through a GPR55-
dependent mechanism [4] and had anti-inflammatory and 
cytoprotective effects on islets when administered in vivo 

[60], while exposure to CB1 and CB2 agonists did not affect 
mouse or human islet apoptosis [61, 62]. Conversely, the 
endocannabinoid system has been implicated in mediat-
ing increased islet apoptosis [63, 64]. In the current study 
we showed that SR141716A and AM251 have direct anti-
apoptotic effects in isolated mouse and human islets and 
the use of islets from Gpr55−/− mice indicated that, as for 
stimulation of insulin secretion, and IP1 generation, this was 
through a GPR55-independent cascade. Upregulation of CB1 
receptors in islets from Gpr55−/− mice could contribute to 
the anti-apoptotic effects of the cannabinoid ligands in these 
islets since JD5037, a CB1 receptor inverse agonist, reduced 
TUNEL-positive cells in islets [65].

Both ligands also stimulated human β-cell prolif-
eration, but SR141716A abolished and AM251 reduced 
the low level of mouse β-cell proliferation. The reasons 
underlying these differences in effects of SR141716A and 
AM251 on β-cell proliferation in human and mouse islets 
are not known, but it is possible that they were related to 
the islet sources: islets were isolated from lean, male WT 
and Gpr55−/− mice, whereas the human islets were from 
obese, female donors (BMI of 28.9 ± 0.96), where β-cell 
expansion capacity is enhanced [66]. Our availability of 
islets from normal weight donors was not sufficient for us 
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Fig. 8   Effects of SR141716A and AM251 on human β-cell prolifera-
tion. Representative confocal images of paraffin-embedded sections 
of human islets probed with antibodies directed against insulin (red) 
and Ki67 (green), and DAPI staining (nuclei; blue) after maintenance 
of 250 islets in culture for 48 h in the absence or presence of 10 µM 
SR141716A or AM251 (a). Scale bar = 50 μm. Post-acquisition anal-
yses were performed with Fiji Image J software and are shown in b–

d: b number of Ki67- and insulin-positive cells per islet; c mean islet 
area (μm2) and d number of β-cells (insulin-positive cells) per islet. 
Data were obtained from multiple acquisitions of 169–210 islets per 
condition, each with a minimum of eight paraffin sections for analysis 
from three human donors. ***P < 0.001 and ****P < 0.0001 vs. vehi-
cle. Data were analysed using one-way ANOVA, followed by Dun-
nett’s multiple comparison post test
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to directly compare β-cell proliferation in lean populations 
of mouse and human islets, to determine whether the stim-
ulatory effects of SR141716A and AM251 were indeed 
secondary to the islets having been obtained from obese 
donors. Alternatively, the differences may reflect species-
dependent variations since anti-proliferative effects of 
SR141716A and AM251 have previously been reported 
in mouse preadipocytes [67] and mouse olfactory epithe-
lium [68], consistent with our observations. We observed 
enhanced human β-cell proliferation in islets from three 
different donors, and it is possible that activation of 
GPR92 in human islets mediates this stimulatory effect 
on proliferation, as it does in human keratinocytes [69, 
70]. SR141716A and AM251 also significantly increased 
human islet area and the number of β-cells per islet: it is 
unlikely that human islet β-cell proliferation fully accounts 
for the increases in these parameters given the very small 
increase in proliferation in response to SR141716A and 
AM251 (< 1 Ki67+ β-cell per islet). Therefore, since we 
observed that the ligands decreased stimulated human 
islet apoptosis the most likely explanation for increased 
human islet area and β-cell number following rimona-
bant and AM251 treatment is that these ligands protected 
against β-cell apoptosis induced by maintenance of 250 
islets in culture without medium change for 48 h, consist-
ent with the protective effects of GPR55 agonists and CB1 

antagonists against human and mouse islet apoptosis that 
have been previously reported [4, 65].

In summary, our work provides the first evidence that 
SR141716A and AM251 are not GPR55 agonists in islets, 
as their effects are maintained in islets from Gpr55−/− mice. 
Our observations of stimulation of insulin secretion and 
human β-cell proliferation, and protection against apopto-
sis in vitro, support SR141716A and AM251 having direct 
beneficial effects on islet function. However, their ability to 
induce insulin release from human islets at sub-stimulatory 
glucose concentrations contra-indicates against their use for 
treating type 2 diabetes as this could lead to hypoglycaemia 
in vivo. Additionally, our qPCR data showing that deletion 
of Gpr55 promotes upregulation of Cnr1, Lpar5 and Trpv1, 
and downregulation of Gpr119 suggest a potential cross-
regulation between GPR55 and other cannabinoid receptors 
in islets that warrants further research.
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