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Abstract
Eph (erythropoietin-producing hepatoma) receptors and Ephrin ligands constitute the largest subfamily of receptor tyrosine 
kinase (RTK), which were first discovered in tumors. Heretofore, Eph protein has been shown to be involved in various tumor 
biological behaviors including proliferation and progression. The occurrence of specific types of tumor is closely related 
to the virus infection. Virus entry is a complex process characterized by a series of events. The entry into target cells is an 
essential step for virus to cause diseases, which requires the fusion of the viral envelope and host cellular membrane mediated 
by viral glycoproteins and cellular receptors. Integrin molecules are well known as entry receptors for most herpes viruses. 
However, in recent years, Eph receptors and their Ephrin ligands have been reported to be involved in virus infections. The 
main mechanism may be the interaction between Eph receptors and conserved viral surface glycoprotein, such as the gH/gL 
or gB protein of the herpesviridae. This review focuses on the relationship between Eph receptor family and virus infection 
that summarize the processes of viruses such as EBV, KSHV, HCV, RRV, etc., infecting target cells through Eph receptors 
and activating its downstream signaling pathways resulting in malignancies. Finally, we discussed the perspectives to block 
virus infection, prevention, and treatment of viral-related tumors via Eph receptor family.
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Introduction

Eph (erythropoietin-producing hepatoma) is a big family 
of receptor tyrosine kinases and plays key roles in physi-
ological and pathological processes in development and 
disease [1–3]. A total of 14 Eph receptors have been found 
in humans, which can be subdivided into two subfamilies 

including EphA and EphB (Fig. 1) based on amino acid 
sequence homology and relative binding affinities to gly-
cosylphosphatidylinositol (GPI) linked Ephrin-A or trans-
membrane Ephrin-B ligands [4, 5]. There are nine EphA 
receptors, which promiscuously bind five Ephrin-A ligands, 
and five EphB receptors, which promiscuously bind three 
Ephrin-B ligands [6]. Given Eph receptors and their ligands 
are often overexpressed in human malignancies and associ-
ated with poor prognosis, Eph receptors and Ephrins are 
considered as very promising drug targets [7, 8].

Virus infection is closely related to the occurrence and 
development of many diseases. In recent years, many studies 
have identified the relationship between virus infection and 
tumors. Well-known virus-related tumors include: (1) EBV-
positive lymphoma, nasopharyngeal carcinoma, and gastric 
cancer [9–11], (2) Kaposi’s sarcoma-associated herpesvirus 
(KSHV) in Kaposi’s sarcoma (KS) [12], primary effusion 
lymphoma (PEL) [13], and multicentric castleman’s disease 
(MCD) [14], (3) HBV and HCV in liver cancer, etc. [15].

Virus infection of the host involves a complex multi-step 
process. The first step is viral attachment and entry through 
interaction between viral glycoprotein and receptors on the 
surface of the host. For example, EBV-infecting epithelial 
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cells mainly rely on the interaction of gH/gL glycoproteins 
with host surface integrin receptors (αvβ5, αvβ6, αvβ8) 
[16–18]. KSHV interacts with integrin receptors (α3β1, 
αvβ3, α5β5, α9β1) on the surface of epithelial cells and 
fibroblasts through the encoded gB glycoprotein to facilitate 
its entry [19]. In addition, HCV entry into the target cells is 
mediated through binding of HCV envelope glycoproteins to 
glycosaminoglycans involving viral envelope glycoproteins 
as well as several cellular attachments and entry factors [20, 
21] including CD81 [22], scavenger receptor class B type I 
(SR BI) [23], claudin 1(CLDN1) [24], and occludin (OCLN) 
[25].

Integrin family is well known as an entry receptor for 
most herpes viruses. However, in recent years, some studies 
have reported that the Eph receptors family can also act as 
an entry receptor-mediating infection of pathogenic micro-
organisms. Given the tyrosinase properties of Eph receptors, 
there have been a large number of small-molecule inhibitors 
targeting Eph receptors, which provide a valuable opportu-
nity for the treatment and prevention of Eph receptor-associ-
ated virus infection. In this review, we focus on the relation-
ship between Eph receptor and virus infection and discuss 
the possibility of targeting Eph receptor signaling pathways 
as alternative antivirus therapeutic strategies.

Structure and function of Eph family

Structure of Eph and Ephrin families

The Eph receptor consists of three parts [6]: (1) extracellu-
lar domain, including a ligand-binding domain, a cysteine-
rich domain, and two fibronectin type III repeats, (2) trans-
membrane domain, (3) intracellular domain, consisting of a 
juxtamembrane region, a tyrosine kinase domain, a sterile 
alpha motif (SAM), and a C-terminal PSD95/discs large/
zona occludens 1 protein (PDZ)-binding motif. The Ephrin-
A ligands, unlike the Eph receptor, have no intracellular 

domain and are anchored on the membrane by the glycosyl 
lipoinositol (GPI) group. Ephrin-B ligands have a hydropho-
bic transmembrane region and a short intracellular region 
(Fig. 2).

Signaling modes of Ephs and Ephrins

Binding of Eph receptor to Ephrin proteins in adjacent cells 
produces cell-dependent bi-directional signaling that regu-
lates cell shape, movement, survival, and proliferation [3, 
7, 8]. The Eph forward signaling is dependent on binding 
to the ephrin proteins, which can undergo clustering, auto-
phosphorylation, and activation of kinase activity. Many 
studies have reported that Eph receptor’s forward signaling 
could activate Src, RHOA, RAC1, CDC42, STAT3 (signal 
transducer and activator of transcription 3), and PIK3/Akt 
in a variety of tumors which promote cancer-cell migration 
and invasion [26–31]. In addition, binding of Eph receptors 
to Ephrin proteins can also lead to endocytosis and prote-
olysis [8, 32–35]. The Ephrin reverse signaling is activated 
by interacting with the Eph receptor. Ephrin-As transduct 
signaling via glycosylphosphatidylinositol groups inter-
acting with transmembrane partners. However, signaling 
transduction of Ephrin-Bs is involved in tyrosine and serine 
phosphorylation by associating transmembrane structure 
of Ephrin-Bs with various effector proteins [8, 36]. Some 
studies have reported that Ephrin reverse signaling could 
promote EMT and invasion in a variety of tumor cells by 
activating Src, STAT3, MMP8 (matrix metalloproteinase 8), 
and RAC1 [30]. Given the involvement of Eph in multiple 
life processes and their roles in cancer progression, research-
ers have conducted intensive research on the function of the 
Eph family over the past few decades. Moreover, several 
studies have shown that Eph family is closely related to virus 
infection in recent years (Table 1).

Function of Ephs and Ephrins in malignancies

Many studies have verified Ephs and Ephrins, aber-
rantly expressed in tumors which can drastically affect 
malignancy including progression, metastatic spread, 
and patient survival [30, 37]. Ephs and Ephrins expres-
sion can increase or decrease during cancer progression 
caused due to transcriptional regulation by oncogenic sign-
aling pathways, promoter methylation, and microRNAs 
[38, 39]. EphA2, EphB2, and EphB4 are the Eph recep-
tors that most widely deregulated expression in tumors 
[40–42]. EphA2 is frequently overexpressed in melanoma, 
glioma, breast cancer, prostate cancer, lung cancer, cervi-
cal cancer, colon cancer, esophageal cancer, gastric cancer, 
ovarian cancer, bladder cancer, and renal-cell carcinomas 
[42, 43]. Many studies have shown that overexpression 
of EphA2 is closely related to the activation of some 
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Fig. 1  Members of Eph family. In the human genome, there are 
totally nine EphA and five EphB receptors. The EphA receptors 
promiscuously bind five glycosylphosphatidylinositol (GPI) linked 
Ephrin-A ligands, and the EphB receptors promiscuously bind three 
transmembrane Ephrin-B ligands
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tumor-associated signaling pathways, such as Wnt/β-
catenin pathway, Ras/MAPK pathway, and Akt/mTOR 
pathway [44–46]. Some mutations of Eph receptors are 
predicted to play a vital role in cancer progression. For 
example, EphB2 mutations have been identified in human 
gastric, colorectal, and prostate tumors, some of which 

can impair kinase function [47–50]. Furthermore, EphB2 
has been shown to be upregulated in glioblastoma as a 
consequence of decreased miR-204, which led promote 
invasiveness [51, 52]. Another Eph receptor, EphB4, the 
interaction partners of Ephrin-B2, is a prominent marker 
of normal and tumor vasculature [53]. In addition, EphB4 

Fig. 2  Domain structure and 
signaling concepts of Ephs and 
Ephrins. a Eph receptors (Ephs) 
consist of a ligand-binding 
domain (LBD), cysteine-rich 
region (Cys), two fibronectin III 
repeat (FNIII), a transmembrane 
region (TM), a juxtamembrane 
region (JM), a tyrosine kinase 
domain (TK), a sterile alpha 
motif (SAM) a PSD-95/Dlg/
ZO-1. GPI and glycosylphos-
phatidylinositol binding motif 
(PDZ). b Ephrin-As are linked 
to the membrane via a glyco-
sylphosphatidylinositol (GPI) 
moiety, Ephrin-Bs are anchored 
by a transmembrane domain 
and contain a cytoplasmic tail. 
c Ephrin-A signaling promotes 
activation of FYN, and Erk. d 
EphA receptors directly activate 
Src and RHOA through focal 
adhesion kinase (FAK). EphA 
receptors activate JAK2 by 
STAT3 (signal transducer and 
activator of transcription 3). 
EphA2 activates Akt in pancre-
atic cancer cells. e Ephrin-Bs 
promote EMT and invasion by 
activating Src, STAT3, MMP8 
(matrix metalloproteinase 8), 
and RAC1. f EphBs activate 
RHOA, RAC1, and CDC42 
which promote cancer cell 
migration and invasion
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Table 1  Ephs involved in virus entry

a Not confirmed

Virus Entry receptors Binding virus glycoprotein Target cells Refs.

EBV EphA2 gH/gL and gB Human gastric adenocarcinoma cell (AGS), human 
embryonic kidney epithelial cells (HEK293)

[66, 67]

KSHV EphA2 gH/gL Human embryonic kidney epithelial cells (HEK293T) [81, 85]
HCV EphA2 E2 (HCV envelope glycoprotein)a Human hepatocarcinoma cell (Huh7.5.1) [93]
RRV EphA4, EphA5, 

EphA7, EphB2, 
EphB3

gH/gL B cells and endothelial cells [102, 104]
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can trigger RAS–MAPK-dependent proliferation of MCF7 
cancer cells which are considered to be prognostic for poor 
survival of patients with breast cancer [54, 55].

Role of Eph family in virus infection

EphA2 is an EBV entry receptor

EBV is a ubiquitous human gamma-herpes virus that is pre-
sent in over 90% of adults worldwide. EBV is closely related 
to nasopharyngeal carcinoma, 10% of gastric cancer, and 
various B-cell lymphomas. EBV is associated with B cells 
and epithelial malignancies, indicating that its main tropism 
is the infection of B cells and epithelial cells [56]. Human 
B cells are the primary target of EBV infection. The mecha-
nisms of EBV entering B cells have been well documented. 
EBV infects B cells requiring interaction between its glyco-
proteins gp350 or splicing mutant gp220 and the cell surface 
receptor CD21, and interaction of viral glycoproteins gp42 
with MHC II [57, 58]. It is generally believed that activated-
gp42 is able to transduce signals to gH/gL and gB to prevent 
it from interacting with other cellular receptors, including 
integrin receptors. Therefore, gp42 is considered to be indis-
pensable for EBV infecting B cells specifically [59–61].

Unlike B cells, EBV entry into epithelial cells is inde-
pendent of gp350/gp220 and gp42, while glycoproteins gH/
gL and gB are required for EBV infection of epithelial cells 
[62–65]. Studies from Chesnokova et al. have shown that 
the interaction of glycoprotein gH/gL with three epithelial 
integrin receptors (αvβ5, αvβ6, αvβ8) is associated with 
EBV entry into epithelial cells [16, 18]. Recently, Zhang 
et al. found that Ephrin receptor A2 (EphA2) was associated 
with EBV entry into epithelial cells through microarray and 
RNAi library screening. Knockdown of EphA2 by siRNA 
or CRISPR-Cas9 can significantly reduce EBV infection of 
epithelial cells, while overexpression of EphA2 can restore 
the EBV infection of epithelial cells [66]. Further stud-
ies found that the interaction of EphA2 and EBV-encoded 
proteins gH/gL and gB can promote the fusion and inter-
nalization of EBV, and the Ephrin ligand binding domain 
and fibronectin domain of EphA2 arerequired for EphA2-
mediated EBV infection. These results indicate that EphA2 
is critical for EBV entry into epithelial cells [66]. Chen et al. 
also found that EphA2, but not the extracellular region of 
EphA4, interacts with EBV-encoded gH/gL to promote EBV 
fusion and endocytosis [67]. Moreover, they show that the 
integrin receptors αvβ5, αvβ6, and αvβ8 have no effect on 
the entry of EBV into epithelial cells, which is distinct from 
the findings of Chesnokova et al. [67]. The discovery of 
EphA2 as a novel EBV-infected epithelial cell receptor is of 
great significance and may uncover new attractive targets, 

which could be used to develop new intervention strategies 
for blocking EBV infection.

Although EphA2 is required for EBV infection of epithe-
lial cells, EBV-encoded proteins also regulate the expression 
of Eph family. Huang et al. found that EphA4 expression was 
down-regulated in EBV-positive diffuse large B-cell lym-
phoma and correlated with patient prognosis. Mechanism 
studies found that down-regulation of EphA4 expression 
is mainly caused by the regulation of ERK-SP1 signaling 
pathway by EBV-encoded LMP1 protein. These findings 
suggest that EphA4 may be a potential therapeutic target 
for diffuse large B-cell lymphoma [68]. In addition, Zhao 
et al. reported that there were six hypermethylated genes 
in EBV-positive gastric cancer cells (AGS-EBV), including 
EphB6 [69]. In contrast, Xiang et al. found that the expres-
sion level of EphA2 was significantly higher in EBV-positive 
nasopharyngeal carcinoma cells than in EBV-negative naso-
pharyngeal carcinoma cells (CNE2-EBV vs. CNE2) using 
RNA-seq analysis. In NPC samples, the upregulation of 
EphA2 expression in EBV-positive NPC samples was further 
confirmed. Mechanistically, PI3K/Akt signaling pathway is 
significantly activated in both xenografts and clinical sam-
ples of NPC and EBVaGC [70]. Miao et al. reported that a 
reciprocal regulatory loop between EphA2 and Akt, which 
was characterized by unligated EphA2 was a substrate for 
Akt and negatively regulated by the ligand-activated EphA2 
in turn [71]. These findings suggest that EBV may regulate 
the expression of EphA2 through the AKT signaling path-
way. Furthermore, Kim et al. also reported EphA2 and EBV-
associated gastric tumor cells were involved in the formation 
of vasculogenic mimicry (VM) channels [72]. Interestingly, 
EphA2 expression was not detectable in B-cell lymphoma 
cell lines (Akata, Akata-EBV and Raji) susceptible to EBV 
infection. These findings suggest that EphA2 is essential for 
EBV infection of epithelial cells, but not required for B cell 
infection [66].

EphA2 is a KSHV entry receptor

Kaposi’s sarcoma-associated herpesvirus (KSHV) or 
human herpesvirus-8 (HHV-8) was first isolated from 
patients with AIDS-related Kaposi’s sarcoma (AIDS-KS) 
in 1994 by Chang et al. [73]. KSHV is a tumor-associ-
ated virus that is the causative agent of Kaposi’s sarcoma 
(KS), primary effusion lymphoma (PEL), and multicentric 
castleman’s disease (MCD) [73–75]. The KSHV genome 
is highly consistent with γ-1 Epstein-Barr virus (EBV), 
γ-2 herpesvirus saimiri (HVS), and rhesus r virus (RRV). 
Similar to all members of the herpesvirus family, KSHV 
has a double-stranded DNA genome (~ 160 kb) packaged 
in the capsid, and the capsid is surrounded by a lipid enve-
lope containing five conserved glycoproteins [76, 77]. 
The KSHV genome encodes more than 100 open reading 
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frames (ORFs), of which 4–75 are classified according to 
their homology to the HVS ORF [78]. KSHV has a wide 
range of cellular tropism, and it can infect various target 
cells in vitro and in vivo. KSHV entry and signal trans-
duction are complex events that vary greatly depending 
on the host cell [79]. Moreover, KSHV can form a variety 
of different internalization pathways into the host through 
different combinations of host cell surface receptors [79]. 
Studies have shown that multiple KSHV glycoproteins 
are involved in binding to host cell membranes and are 
involved in interacting with surface receptor of host cells, 
thereby inducing a cascade of signaling pathways to pro-
mote endocytosis. Subsequent steps include fusion of the 
viral envelope with the endosomal membrane, release of 
the viral capsid in the cytoplasm, and transport of KSHV 
DNA into the nucleus. These processes are essential for 
the virus infection, which relies on intricate intermolecular 
interactions.

Ephrins have been reported to regulate macropinocy-
tosis and clathrin-dependent endocytosis in a variety of 
cells [3, 80]. A recent study reported that the interaction 
of EphA2 and KSHV glycoprotein gH/gL could promote 
virus entry [81]. Pretreatment of target cells with soluble 
EphA2 ligand or incubation of KSHV virions with soluble 
EphA2 protein inhibited KSHV infection [81]. Knockdown 
of EphA2 significantly reduced the entry of KSHV, while 
overexpression of EphA2 increased the entry of KSHV 
[81]. Significantly, examined EphA2 expression in tissue 
sections from individuals with Kaposi’s sarcoma using 
quantitative RT-PCR and in situ histochemistry showed a 
strong correlation between EphA2 expression and KSHV 
infection both in cultured Kaposi’s sarcoma-derived cells 
and in Kaposi’s sarcoma tissues [47]. Previous studies 
have shown that KSHV-induced ERK and NF-κB sign-
aling pathways are essential for the initiation of viral or 
host gene expression [82–84]. Interestingly, the MAPK 
pathway can control the expression of the EphA2 receptor 
[45]. These results explain, at least in part, the reason why 
the expression of EphA2 is strongly correlated with KSHV 
infection. Moreover, binding of gH/gL to EphA2 would 
induce phosphorylation of EphA2 and promote the inter-
nalization of KSHV. These findings indicate that EphA2 is 
a specific entry receptor for KSHV infection [81].

Chakraborty et al. also reported that EphA2 bind to 
FAK, Src, and other signaling molecules in a lipid-raft to 
form a signal complex, which could promote KSHV entry 
into macropinosomes [85]. Another group reported that 
EphA2 played a crucial role in the coordination and ampli-
fication of KSHV-induced signaling in fibroblasts and the 
virus is endocytosed by the clathrin-mediated endocytic 
pathway [86]. Interestingly, a recent study found that 
androgen receptors could also promote KSHV-infected 
host cells by interacting with EphA2, which revealed why 

KSHV had a higher infection ratio in male than female 
[87].

EphA2 is a co‑factor for hepatitis C virus entry

HCV was originally isolated from serum in 1989, and its 
genome is a single-stranded RNA of approximately 9 kb 
[88]. HCV is the leading cause of cirrhosis and hepatocel-
lular carcinoma. Although newly developed antiviral drugs 
targeting HCV proteins have been shown to increase viro-
logical response, there are still some toxicity and resistance 
[89]. HCV entry is a multi-step process, which is mainly 
mediated by viral envelope glycoproteins, adhesion proteins, 
and entry factors of cell surface [90]. The attachment of 
the virus to the target cells is mediated by the binding of 
the HCV envelope glycoprotein to the glycosaminoglycan 
[91]. The involvement of CD81 is essential for HCV in the 
process of clathrin-dependent endocytosis [92]. Joachim 
Lupberger et al. screened EphA2 and epidermal growth 
factor receptor (EGFR) as co-receptor factors to facilitate 
HCV entry using RNAi kinase libraries [93]. Small mol-
ecule inhibitors targeting tyrosine kinase can significantly 
attenuate HCV infection (55). Mechanistic studies indicate 
that EphA2 and EGFR mediate HCV entry by modulating 
the interaction of the CD81-claudin-1 (CLDN1) co-recep-
tor with viral glycoproteins [93]. EphA2 has been reported 
highly expressed in human liver. Cui et al. found that EphA2 
expression was prominent in highly invasive hepatoma cells, 
and its overexpression was significantly correlated with 
decreased differentiation and poor survival for HCC patients 
[94]. In addition, Lee et al. identified that high expression of 
EphA2 was related to lymph node metastasis in 32 human 
hepatocellular carcinoma patients, all of these patients were 
infected with HCV or HBV [95]. However, direct evidence 
of whether the malignant phenotype of liver cancer through 
control the expression of EphA2 caused by HCV was not 
reported. These results demonstrate that EphA2 can act as 
new co-receptors for HCV entry and indicate that tyrosine 
kinase inhibitors have significant antiviral effects. Therefore, 
inhibition of EphA2 may be a new strategy for preventing 
and counteracting HCV infection.

EphAs and EphBs are rhesus monkey rhadinovirus 
(RRV) entry receptors

Rhesus monkey is a primate species that is genetically 
and physiologically similar to humans. Scientists have 
decoded the genome of the rhesus monkey and compared 
it with humans. Nucleotide sequences that aligned between 
the humans and rhesus monkey averaged at 93.54% iden-
tity [96]. The γ-2 herpesvirus is a unique subfamily of the 
lymphotropic herpesviruses. Rhesus monkey rhadinovirus 
(RRV) is a natural infectious agent with a high frequency of 
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infection in both feeding and wild rhesus monkey popula-
tions [97]. RRV is a rhesus monkey ortholog of the human 
Kaposi’s sarcoma-associated herpesvirus (KSHV, human 
herpesvirus-8, HHV-8) [98, 99]. RRV has been reported 
to be associated with B-cell malignancies and is similar to 
B-cell malignancies caused by KSHV [100–103]. Hahn et al. 
reported the gH/gL glycoprotein complex of rhesus monkey 
rhadinovirus could bind to the virus and mediate its entry 
into target cells via cellular Ephrin receptor tyrosine kinase 
proteins [104]. Unlike KSHV, which enters into host cells 
through EphA2 receptor mainly, RRV can utilize more type 
A and B Eph receptors as entry receptors (10 of 14 Eph 
receptors can interact with gH/gL glycoprotein complexes) 
[104]. Furthermore, RRV entry into B cells and endothe-
lial cells is almost entirely dependent on the Eph receptor 
pathway, whereas RRV entry into fibroblasts and epithelial 
cells is via the Eph receptor-independent pathway [100]. 
Therefore, it suggests that KSHV may also infect host cells 
through Eph receptor-independent pathways in some cases.

Eph family as an entry receptor for other viruses

Although the Eph family has been widely involved in virus 
infections such as EBV, KSHV, and HCV, the role of Eph 
receptors and Ephrins in other virus infections remain to 
be discovered. For example, Karlas et al. found that EphB6 
played an important role in H1N1 influenza virus entry and 
replication using siRNA library screening in A549 lung 
cancer cell [105]. Xu et al. reported that the expression pat-
terns of Ephrin-B2 and Ephrin-B3 might be the reason of 
acute lymphatic necrosis caused by henipavirus infection 
[106]. Moreover, Ephrin-B2 and Ephrin-B3 promote the 
entry mechanism of henipavirus mainly by interacting with 
the viral G protein to activate the viral F protein, thereby 
inducing fusion of the viral capsid and the host cell mem-
brane [107]. In the study by Dewannieux et al. the mouse 
IAPE (Intracisternal A-type Particles elements with an 
Envelope) family was able to utilize five Ephrin-A family 
members, such as Ephrin-A4 as entry receptor to infect host 
cell. Interestingly, Ephrin-B family with higher homology to 
Ephrin-A family do not mediate IAPE entry [108]. In recent 
years, Eph family has also been reported as entry receptor 
for other pathogenic microorganisms. Swidergall et al. found 
that EphA2 could act as a pattern recognition receptor to 
promote fungal infection of host cells by interacting with 
fungal surface glycoproteins [109].

Role of Eph family in antiviral therapies

The Eph family has been increasingly recognized as an 
attractive therapeutic target for many diseases, ranging from 
anticancer therapeutics to modulators of synaptic plasticity, 

bone homeostasis, and remodeling and stem cell biology 
[110–112]. Some therapeutic approaches have been devel-
oped to modulate Eph–Ephrin function, including small-
molecule kinase inhibitors, Ephrin-mimetic peptides, short 
hairpin RNAs, and monoclonal antibodies [113–116]. 
The involvement of Eph family in virus infection provides 
new strategies for antiviral therapies. Zhang et al. reported 
that soluble EphA2 protein, antibodies against EphA2, 
soluble EphA2 ligand Ephrin-A1, or the EphA2 inhibitor 
2,5-dimethylpyrrolyl benzoic acid could efficiently block 
EBV epithelial cell infection [66]. Xu et  al. found that 
Ephrin-B2’s extracellular domain (ECD) and an antibody 
to the henipavirus, glycoprotein that bind Ephrin-Bs had 
antiviral activity [106]. In addition, EphA2/Ephrin-A ECDs 
and EphA2-targeting antibodies have also been successfully 
used to inhibit KSHV and HCV of cultured cells [81, 85, 
93]. These studies demonstrated that suitable targeting of 
Eph–Ephrin function holds considerable promise for anti-
viral therapies.

Conclusions

Virus infection is closely related to the occurrence and devel-
opment of many diseases, posing a great threat to human life 
and health. Antiviral therapies are currently limited by drug 
resistance, toxicity, and high cost. Therefore, new antivi-
ral prevention and treatment strategies are imminent. The 
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mechanism by which viral entry involves a range of events, 
including interactions with target cell surface receptors, 
endocytosis, and nuclear release (Fig. 3). Host cell surface 
receptors are key molecules for viral recognition and are 
involved in linking viruses to host cells. Therefore, there is 
a significant potential for the preparation of antiviral drugs 
for specific target cell receptors.

Current research has found that Eph family is involved 
in the entry of multiple viruses, and because of the involve-
ment of Eph–Ephrin in many biological processes, there 
are already a large number of approved targeted inhibitors 
against the Eph family. These provide a rich opportunity for 
intervention and treatment for virus infection.
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