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Abstract
Pyroptosis is a caspase-1 or caspase-4/5/11-dependent programmed cell death associated with inflammation, which is initi-
ated by inflammasomes or cytosolic LPS in innate immunity. Sepsis is a life-threatening organ dysfunction caused by an 
imbalance in the body’s response to infection. It is a complex interaction between the pathogen and the host’s immune system. 
Neutrophils play the role of a double-edged sword in sepsis, and a number of studies have previously shown that regulation of 
neutrophils is the most crucial part of sepsis treatment. Pyroptosis is one of the important forms for neutrophils to function, 
which is increasingly understood as a host active immune response. There is ample evidence that neutrophil pyroptosis may 
play an important role in sepsis. In recent years, a breakthrough in pyroptosis research has revealed the main mechanism of 
pyroptosis. However, the potential value of neutrophil pyroptosis in the treatment of sepsis did not draw enough attention. 
A literature review was performed on the main mechanism of pyroptosis in sepsis and the potential value of neutrophils 
pyroptosis in sepsis, which may be suitable targets for sepsis treatment in future.
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Introduction

Pyroptosis is a programmed cell death process associated 
with inflammation. It is characterized by apoptosis and 
necrosis in morphology [1, 2] (Table 1). Cells that undergo 
pyroptosis will form pyroptotic bodies similar in size to 
apoptotic bodies, with pyknosis and chromatin damage [3]. 
Large numbers of pores formed on the cell membrane causes 
it to lose integrity. Eventually, the membrane lysis arises, 
and the intracellular content is released to induce inflam-
mation. In apoptotic cells, eflux of potassium and chlorine 
resulting in cell contraction is often observed, while necrosis 
is a selective ion overload that causes water influx and then 
cells to swell and die [4]. When the cell undergoes pyrop-
tosis, the nonselective pores of the GSDMD formed on the 
cell membrane lose the natural ion gradient, which may be 
due to a slight swelling of the cell caused by the intracel-
lular nonionic penetrant driving water into the cytoplasm 
[3, 5], and there are reports revealing that this swelling can 

be blocked by extracellular osmoprotectant or glycine [6]. 
A recent report suggested that cell death and membrane 
lysis are uncoupled, inhibiting cell membrane lysis but not 
preventing cell death [7]. Compared to pyroptosis, necrosis 
is more like a process of cell explosion while pyroptosis 
undergoes cytoplasm flattening caused by plasma membrane 
leakage [3, 8].

Pyroptosis is first detected in macrophages and its related 
diseases [9], and then a large number of reports confirmed 
that pyroptosis may also occur to neutrophils [24, 25]. The 
research on neutrophil pyroptosis has attracted more and 
more attention in recent years, but the role of neutrophil 
pyroptosis in sepsis still did not cause enough attention. As 
we all know, sepsis is a life-threatening organ dysfunction 
caused by a dysregulated host response to infection [26]. 
It is an imbalance between the pro-inflammatory and anti-
inflammatory mediators. However, early sepsis mortality is 
caused by an acute, deleterious pro-inflammatory response. 
Neutrophils are the most abundant natural immune cells in 
a human body that play paradoxical roles in the progression 
of sepsis. In the early stage of sepsis, neutrophils first arrive 
at the site of infection [27], secrete important cytokines 
and chemokines, and obliterate pathogenic microorganisms 
by phagocytosis, degranulation, and release of ROS and 
Nets [28, 29]. And in severe sepsis, the release of various 

Cellular and Molecular Life Sciences

 *	 Bingwei Sun 
	 sunbinwe@hotmail.com

1	 Department of Burns and Plastic Surgery, Affiliated 
Hospital, Jiangsu University, 438 Jiefang Rd., 
Zhenjiang 212001, Jiangsu, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-019-03060-1&domain=pdf


2032	 L. Liu, B. Sun 

1 3

enzymes, inflammatory mediators in heart, lung, kidney 
and other vital organs by a large number of activated neu-
trophils, but with chemotactic dysfunctions, leads to tissue 
cell damage, and ultimately to the development of multi-
ple organs function failure [30]. Some evidences suggest 
that the pyroptosis of neutrophils is an important way for 
neutrophils to function during sepsis and that neutrophils 
continuously synthesize and secrete IL-1β and IL-18 dur-
ing pyroptosis. Eventually, neutrophils swell slightly and 
develop a membrane lysis, producing cytoplasmic DAMP 
(damage-associated molecular patterns) [10] and releas-
ing a large number of immunomodulatory cytokines such 
as IL-10, IL-13, chemokines such as IL-8, MIP-1α, and 
myeloperoxidase (MPO), cathepsin G and other granzymes 
[31]. After the neutrophil membrane lysis, intracellular 
pathogens form a pore-induced intracellar trap (PIT) though 
they have not been released directly extracellularly. Via the 
complement and the scavenger receptor to coordinate the 
innate immune response, PITs promote the recruitment of 
neutrophils to release ROS or secondary phagocytosis to 
kill pathogens [21, 22]. Under the combined effects of these 
cytokines and structures, neutrophil pyroptosis plays the 
role of inflammatory signal amplifiers in the recruitment of 
immune cells, There is evidence that neutrophil pyroptosis 
is beneficial to bacterial clearance during infection [21] and 
that neutrophils pyroptosis is even more essential for certain 
types of pathogen infections such as Salmonella infection 
[32]. However, because the neutrophils have been proved 

to be the main source of IL-1β in the infection [24, 25], 
excessive neutrophil pyroptosis is obviously harmful in the 
early hyperinflammatory state in sepsis. Numberous studies 
have confirmed that Caspase-1/11 knockout and IL-1β/IL-18 
knockout can improve the survival rate in CLP mice model 
and septic shock mice model [33–35].However, another sep-
tic shock model shows that knocking out IL-1beta and IL-18 
is useless [36]. These seemingly contradictory conclusions 
suggest that we should have different regulations on neu-
trophil pyroptosis in different stages of sepsis and different 
types of bacterial infection. Therefore, the study and sum-
marization of the main mechanism of pyroptosis in sepsis 
and the potential value of neutrophil pyroptosis in sepsis is 
of great significance for the treatment of sepsis.

Neutrophils in sepsis

In the early phase of sepsis, neutrophils are essential for 
pathogen control. Studies on neutrophils obtained that most 
neutrophils normally undergo apoptosis within 24 h. Inter-
estingly, due to the increased release of immature neutro-
phils and the delayed apoptosis of circulating neutrophils, a 
large number of circulating neutrophils of various degrees 
of maturation can be detected in sepsis patients. Investiga-
tion of sepsis patients and animal models of sepsis revealed 
disrupted neutrophil functions, including impaired neu-
trophil migration, impaired clearance of bacteria, reduced 

Table 1   Comparison of pyroptosis, apoptosis, necrosis and NETosis

Pyroptosis Apoptosis Necrosis NETosis References

Initiating Programmed Programmed Accidental Programmed [2, 8–12]
Signaling path-

way
Caspase-1/4/5/11 Caspase-3/6/7 Non-caspase Non-caspase [1, 11, 13, 14]

Effect on tissue Inflammatory Non-inflammatory Inflammatory Inflammatory [3, 8, 10]
Suicidal Vital
NETosis NETosis

Nucleus Intact Pyknosis karyorrhexis Pyknosis
Karyorrhexis
Karyolysis

Disintegration Intact [3, 9, 15–17]

Chromatin Chromatin con-
densation

Condensation → margination → cleav-
age

Condensation Decondensation Condensation [3, 9, 16, 18]

Cell dimensions Slightly swelling Shrinkage convolution Swelling Further studies needed [1, 3, 16]
Cell membrane Forms 

pores → lysis
Intact Disrupted Disrupted Intact [1, 3]

Early apoptosis Late apoptosis
TUNEL assay Positive Positive Positive Positive Negative Negative [6, 16] ;
Annexin V stain-

ing
Positive Positive Positive Positive Positive Negative

PI/7-AAD stain-
ing

Positive Negative Positive Positive Positive Negative [19, 20]

Secondary 
phagocyte

Neutrophil Macrophage Neutrophil
Macrophage

Further studies needed [8, 10, 21–23]
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production of reactive oxygen species (ROS) and disordered 
release of cytokines. [37] Recent studies have shown that 
some subsets of neutrophils in sepsis patients can secrete 
a large amount of IL-10, which is an immunosuppressive 
cytokine that can suppress the proliferation of T lymphocyte 
[38]. Other evidences show complex interactions between 
the neutrophils and complement system, which cause com-
plement-induced innate immune damage during sepsis. This 
review focuses on another important way in which neutro-
phils regulate immunity in sepsis: pyroptosis.

Pyroptosis is a programmed cell death process dependent 
on caspase-1 and -11, considered to be an immune response 
involved in the acute bacterial and viral infections, as well as 
the exposure of bacterial toxins and intracellular pathogens 
eradication [14] (Fig. 1). Caspases, a class of cysteine pro-
teases widely expressed in mammals, are mainly associated 
with programmed cell death and inflammatory responses, 
some of which play a key role in antiviral immunity. Among 
them, Caspase-1, Caspase-4, Caspase-5 and Caspase-11 
have proved to dominate the process of pyroptosis, and the 
role of Caspase-13 and Caspase-14 in pyroptosis is still con-
troversial. Caspase-4, Caspase-5 and Caspase-11 are homol-
ogous proteins, Caspase-4 and Caspase-5 are expressed in 
mice and Caspase-11 is expressed in human [14, 39]. When 
pathogens exist, natural immune cells, including neutrophils, 
macrophages, dendritic cells and other immune participat-
ing cells such as epithelial cells, endothelial cells and fibro-
blasts, detect microorganisms by identifying, via pattern 
recognition receptors (PRRs), highly conserved pathogen-
associated molecular patterns (PAMPs), including flagellin, 
peptidoglycan (PGN) and lipopolysaccharide (LPS). Other 
evidences reveal that PRRs are also responsible for identi-
fying endogenous molecules released from damaged cells, 
called danger-associated molecular patterns (DAMPs) [40]. 
The activation of innate immunity depends on the recogni-
tion of both PAMPs and DAMPs, which is beneficial to the 
immune system’s tolerance to commensal probiotics and 
non-pathogenic bacteria [41]. At the same time, there is a 
growing number of evidence that DAMPs is essentially cyto-
toxic and not only depends on the involvement of inflammas-
omes in this process [42]. The PRR family consists of three 
categories: TLRs, NLRs and RLRs. Some NLRs can form 
a complex with specific functions called inflammasome, 
including NLRP1, NLRP3, NLRC4 and AIM2 involved in 
signal recognition during pyroptosis. NLRP1, NLRP3 and 
NLRC4 mRNAs were expressed in both human and mouse 
neutrophils at similar or greater levels than other cell types 
whose function is well studied, such as marrow-derived 
macrophages (BMDMs) or bone marrow-derived dendritic 
cells (BMDCs) [32]. The NLR family is characterized by the 
presence of a central nucleotide-binding and oligomerization 
domain (NACHT), the repeat domain of caspase recruitment 
(LRRs) and N-terminal (CARD) or PYRIN domain (PYD) 

[43–45]. GSDMD (gasdermin D), a member of the gasder-
min protein family, is essential for pyroptosis in humans 
and mice. The structure of GSDMD has both the N terminal 
domain and the C terminal domain. Studies have shown that 
its N terminal domain plays a major role in inducing pyrop-
tosis. The first loop on GSDMD-C that inserts into the N-ter-
minal domain (GSDMD-N) helps stabilize the conformation 
of the full-length GSDMD [46], whereas the over expressed 
C end blocks GSDMD-N dependent pyroptosis [5, 47, 48].

Canonical inflammasome induced 
pyroptosis

In bacterial infection, pattern recognition receptors 
(NLRP1b, NLRP3, NLRC4) recognize microbial PAMPs, 
and then, via ASC (apoptosis-associated speck-like protein 
adaptor protein containing a CARD) indirectly connected 
with procaspase-1, form a Caspase-1-dependent inflammas-
ome. ASC docks onto the inflammasome hub via pyrin–pyrin 
interactions and then recruits Caspase-1 via CARD–CARD 
interactions. However, ASC can also interact with itself, 
recruiting additional ASC molecules via pyrin–pyrin and 
CARD–CARD interactions, where all of the ASC within a 
cell is recruited via the cascade effect to a single subcellular 
location, which has been called the ‘ASC focus’ or ‘ASC 
speck’. In the ASC focus, the pro-caspase-1 in the form of 
the dimer is cleaved into P10 and P20 subunits to form cata-
lytically active caspase-1, where pro-IL-1β is activated into 
mature IL-1β [15]. In addition, NLRP1 and NLRC4 can also 
directly connect and activate Caspase-1 without depending 
on ASC (Fig. 2). Different inflammasomes detect differ-
ent intracellular contamination and perturbation: (a) Gram 
negative bacteria such as S. typhimurium [32], S. flexneri 
[49] and P. aeruginosa [50] or L. pneumophila [51] and 
Brucella [52] can transport, respectively, through Type III 
secretion system or through Type IV secretion system, the 
flagellin into the neutrophil cytoplasm, which are to be rec-
ognized by NLRC4 inflammasome. (b) Exotoxins secreted 
by Gram-positive bacteria and some Gram-negative bacteria 
can enter the cytoplasm by ionophore, pore former [53], pro-
tease [54] and other mechanisms, which are to be recognized 
by NLRP1 or NLRP3 inflammasome. (c) Other PAMPs, 
DAMPs and cytosolic low K+ can be recognized by NLRP3 
inflammasome. These inflammasomes recruit pro-caspase 
-1 via ASC and activate Caspase-1 ultimately [11, 15, 55]. 
The activated Caspase-1 cleaves the connecting part between 
N-terminal and C-terminal of GSDMD rapidly, removes 
the inhibitory effect of C-terminal on the N-terminal and 
releases the GSDMD N-terminal to connect with the phos-
phoinositide of cell membrane and generate the oligomeri-
zation. Then the formation of pores disrupts the osmotic 
balance of the cell membrane, leading to cell swelling and 
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Fig. 1   In sepsis, there exist the neutrophil recognition of flagellin, 
exotoxins, other PAMPs and DAMPs by caspase-1 and the recogni-
tion of cytosolic LPS by caspase 4/5/11. In this process, NLRC4 is 
responsible for the detection of bacterial flagellin; NLRP1 is respon-
sible for the detection of deadly toxins, and NLRP3 is responsible for 
the detection of other PAMPs and DAMPs as well as the cytoplasmic 
low potassium induced by ATP-mediated P2X7 signaling. Activation 
of caspase-1 and production of mature IL-1, beta and IL-18 are car-
ried out in ASC focus. The pro-caspase-1 in the form of the dimer 
is cleaved into P10 and P20 subunits to form catalytically active cas-
pase-1, and LPS triggers Caspase-11 oligomerization and activates 
its proteolytic activity. Caspases of the two active states mentioned 
above cleave the GSDMD and generate the oligomerization to form 
pores on the cell membrane, eventually leading to membrane lysis 
and pyroptosis. Other reports suggest that Caspase-11 induces pyrop-
tosis via ATP-mediated P2X7 signaling, resulting in cytoplasmic low 
K+ activation of NLRP3 inflammasome and Caspase-1 induced IL-1 
beta and IL-18 maturation and release. There are probably five ways 

of extracellular LPS entering cytoplasm: (a) through an unknown 
endocytosis. (b) Gram-negative bacteria in the intracellular vacu-
oles release LPS directly into the host cytoplasm by IFN-γ induced 
GTPase action. (c) Gram-negative bacteria secrete outer membrane 
vesicles (OMV) wrapped LPS that enters the cytoplasm via endocyto-
sis. (d) Extracellular LPS enters the cytoplasm via the carrier of CTB. 
(e) HMGB1 destabilizes phagolysosomes for the transfer of LPS to 
cytosolic caspase-11. In neutrophils and other cells, three possible 
different ways have been found for mature IL-1β and IL-18 to release 
extracellularly: (a) mature IL-1β and IL-18 release via extracellularly 
through the membrane pores. (b) Monocyte encapsulates the acti-
vated caspase-1 and cytokine substrates into lysosomes and releases 
the processed cytokines via the lysosome to the cell surface. (c) Den-
dritic cells, microglia and macrophages can release the cytokine-
containing vesicles after ATP stimulates Caspase-1. There are two 
different ways of release here: the release of cell surface fusions of 
multivesicular bodies and the release of microbubbles directly from 
the cell membrane
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membrane lysis, and releasing large amounts of cell contents 
causing inflammation [5, 47, 48]. Interestingly, activation of 
inflammasomes does not imply that the cells are destined to 
lyse and that certain toxins, such as melittin, can prevent cell 
lysis but induce NLRP3 inflammasome activation and IL-1β 
release [56]. In some cases, such as acute Salmonella infec-
tion, NLRC4 inflammasome sustained activation of neutro-
phils to release IL-1β without pyroptosis [32]. There are 
still controversies in previous reports on the pore diameters 
formed on the membrane of GSDMD, such as 15 nm inner 
and 32 nm outer [47], 12–14 nm [5], 13 nm [57], 20 nm 
[58] and 1.1–2.4 nm [6], respectively. Caspase-1 activated 
GSDMD can promote proIL-1β and proIL-18 maturation, 
and the continuous production of active IL-1β and IL-18 
[11, 15], which are to be released extracellularly through the 
membrane pores formed by GSDMD or other ways [59, 60]. 
In addition, studies have shown that activated GSDMD not 
only induces the host cell membrane to form pores, but also 
form pores on the surface of the bacteria infecting the host 
to kill the bacteria. The GSDMD N-terminal released after 
lysis can also kill bacteria directly outside the host, includ-
ing Escherichia coli, Staphylococcus aureus and Listeria 
monocytogenes [47].

Non‑canonical inflammasome induced 
pyroptosis

Lipopolysaccharide is a major component of the cell wall 
of gram-negative bacteria. It can not only induce inflam-
mation [61, 68] and autophagy [62], but can also induce 
cell pyroptosis [13, 63–65]. Under the stimulation of intra-
cellular LPS, Caspase-11 can specifically bind to the lipid 
A of LPS, which triggers Caspase-11 oligomerization, 

activates its proteolytic activity and cleaves the GSDMD to 
form a large number of pores on the cell membrane, even-
tually leading to membrane lysis and pyroptosis [13, 63, 
64]. Several reports also reveal that the binding of intracel-
lular LPS to Caspase-11 triggers Caspase-11 oligomeriza-
tion, and the activated Caspase-11 can cleave Pannexin-1 
to make it open [65]. Since intracellular ATP concentration 
is one million times extracellular ATP concentration [66], 
the intracellular ATP released through the Pannexin-1 chan-
nel to the extracellular activation of P2X7 receptor leads 
to P2X7 channel opening, rapidly triggers cytoskeleton 
destruction and membrane PS flip, blebbing, microvesicle 
shedding and eventually leads to the destruction and lysis of 
the cell membrane [67]. P2X7 receptor activation mediates 
membrane blebbing in at least two different ways: calcium-
dependent mechanisms and calcium-independent RhoA 
and ROCK-1 mechanisms [68]. In the pannexin-1 channel 
to open the release of ATP, under the concentration gradient 
of K+ inside and outside, K+ is released in large quantities 
extracellularly, resulting in cytoplasmic low K+ activation 
of NLRP3 inflammasome and inducing pyroptosis via the 
ASC activation of Caspase-1 to release mature IL-1β and 
IL-18 [69–71]. Other reports reveal that not only can the 
Pannexin-1 channel release K+ to the extracellular matrix, 
the P2X7 receptor also has this ability, and the latter plays 
a major role in the process of intracellular low potassium 
activation of NLRP3 [71, 72]. Previous reports indicate that 
the expression and function of P2X7 receptors on human 
and mice neutrophils are contradictory [70, 73] or P2X7 is 
present in the cytoplasm rather than in the human neutrophil 
surface [74]. However, recent reports have demonstrated that 
P2X7 receptors are widely expressed on human and mice 
neutrophils and exhibit a certain racial differences [70, 71].

Fig. 2   (1) NLRC4 and mouse NLRP1b contain the CARD domain 
that binds directly to the CARD domain of Caspase-1 to trigger Cas-
pase-1. (2) The ASC contains the Pyrin signal domain and the CARD 

domain, NLRP3 that contains the Pyrin signal domain can be com-
bined with ASC’s Pyrin signal structure and the CARD domain of 
ASC can connect with the CARD domain of Caspase-1
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The source of cytosolic LPS in pyroptosis

In severe sepsis, a great deal of LPS is released into the 
blood circulation, activating a large number of neutrophils 
via TLR2 and TLR4 receptor. At the same time, LPS inhib-
its neutrophil chemotaxis through autocrine ATP signaling 
pathway [75], resulting in extensive damage to tissues and 
organs [30]. At present, the source of cytosolic LPS is still 
not entirely clear, and obviously the great deal of extracel-
lular LPS does not directly penetrate through the membrane 
into the cytoplasm during sepsis. It may be that the extra-
cellular LPS enters cytoplasm via a special transport way 
or through the channel generated during pyroptosis, or it 
may originate from the release of bacteria in the inner niche 
under specific conditions. Neutrophils are a key member 
of the immune system with a strong phagocytic capacity, 
so neutrophils in the sepsis can swallow the pathogen to 
form phagocytosis to kill the pathogen, where LPS cannot 
be released into the cytoplasm [76]. Many microbes have 
been found to survive in neutrophils, such as Salmonella 
[77], Neisseria gonorrhoeae [59, 78], S. aureus [79], Chla-
mydia pneumoniae [80], Burkholderia pseudomallei [60], 
Anaplasma phagocytophilum [81] and L. monocytogenes 
[82]. Another report suggests that the survival of Gram-
negative bacteria in the intracellular vacuoles can directly 
release LPS into the host cytoplasm, which requires IFN-γ 
to induce GTPase action to cause bacteria to escape from 
the vacuole or to break the vacuole [83]. Several reports 
suggest that ATP, which is abundant in inflammation sites, 
activates the P2X7-dependent Pannexin-1 half channel pore 
formation and may allow extracellular LPS to promote the 
LPS entry into the cytoplasm via either Pannexin-1 channels 
or Pannexin-1 mediated indirect effects [44, 84]. P2X7 is 
a selective cation channel in the presence of ATP stimula-
tion, and when the divalent cation level is low, the cationic 
channel can be converted into small pores and ions that can 
penetrate up to 900 Da [73]., Because the LPS molecular 
weight is about 5–15 kD, and Pannexin-1 channel can pen-
etrate about 1kD [85], it is obvious that LPS cannot directly 
penetrate through the Pannexin-1 or P2X7 channel. Accord-
ing to a previously reported LPS electroporation model, the 
extracellular LPS that gets free access to the cytoplasm via 
the membrane pore can cause the vast majority of cells to 
undergo pyroptosis [86]. As stated above, the extracellu-
lar LPS stimulation of neutrophils can also activate TLR4-
P38-Cx43 pathway to autocrine ATP extracellularly [75]. 
Therefore, the existence and efficiency of this mechanism 
where the LPS directly or indirectly enters the cytoplasm 
via the Pannexin-1 channel remains to be further studied 
and discussed.

The other two distinct extracellular LPS transport 
mechanisms require a specific vector. The first is cholera 

toxin B (CTB), which can be used as a carrier binding LPS 
and transported to cytoplasmic induction of non-canonical 
inflammasome pyroptosis [87–89], and this combination 
is required for LPS type. There are data showing that only 
LPS O111:B4 can be combined with CTB to induce non-
canonical inflammasome pyroptosis, but LPS O55: B5 and 
LPS O127: B8 have no such ability [87]. Another mecha-
nism reported in recent years is Gram-negative bacteria 
secrete outer membrane vesicles (OMV) wrapped LPS that 
enter the cytoplasm via endocytosis. OMVs are vesicles 
between 20 and 250 nm produced in a programmatic way; 
they are not by-products of bacterial cell wall damage or 
bacterial dissolution. Bacteria that poorly produce OMVs 
elicit low-level pyroptosis and IL-1 maturation [63]. 
OMVs can carry LPS, phospholipids, peptidoglycan, outer 
membrane proteins (OMPs), cell wall components, pro-
teins (periplasmic, cytoplasmic, and membrane-bound), 
ion metabolites and signaling molecules [90], and many 
bacterial OMVs also carry nucleic acids (DNA, RNA) 
[91]. Following the clathrin-mediated endocytic uptake, 
OMVs transmit LPS into the cytosol from early endo-
cytic compartments and eventually activate Caspase-11 
to trigger pyroptosis [63]. Early endosomal escape allows 
OMV-bound LPS to reach cytosol functionally intact and 
avoid complete degradation in the lysosomes. There is an 
evidence that OMVs can strongly stimulate neutrophils to 
secrete IL-1β.Therefore, the neutrophil pyroptosis caused 
by cytosolic LPS is very likely transport by OMVS too. A 
recent report confirms that HMGB1 destabilizes phago-
lysosomes for the transfer of LPS to cytosolic caspase-11 
[92]. The author’s ample evidence in the article seems to 
have brought us closer to solving the mystery.

Roles and release mechanisms of IL‑1β 
and IL‑18 in pyroptosis

The interleukin-1 (IL-1) cytokine family, an important regu-
lator of innate immunity and adaptive immunity, plays an 
important role in the host’s defense against infection and 
inflammatory injury. The family includes IL-1, IL-18 and 
IL-33 and the recently found IL-36 and IL-37, in which both 
IL-1β and IL-18 mediate the inflammatory response [93, 
94]. IL-1β and IL-18 have been shown to be the most impor-
tant cytokines during pyroptosis [69, 95]. IL-1β is usually 
produced by tissue macrophages, DC cells, blood mononu-
clear cells, neutrophils, B lymphocytes and NK cells, but 
generally not by fibroblasts and epithelial cells [94]. In the 
early stage of sepsis, the resident macrophages in the site 
of infection secrete IL-1β to recruit neutrophils. Then the 
partial neutrophils to the site of infection undergo pyroptosis 
and become the main source of IL-1 beta secretion, medi-
ated by the positive signal amplification circuit to recruit 
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more neutrophils to the infection sites [32]. In the meantime, 
one report showed that neutrophils were the main source of 
IL-1β secretion in bone marrow during infection [24] and 
another reported that neutrophils were the main source of 
IL-1β and IL-18 in BALF during infection [25].Therefore, 
we can assume that neutrophil pyroptosis in sepsis controls 
the level of IL-1β and IL-18. Another important cytokine, 
IL-18, can be detected in many cells including Kuppfer cells, 
monocytes, dendritic cells (DCs), macrophages, keratino-
cytes, chondrocytes, intestinal epithelial cells, Synovial 
fibroblasts and osteoblasts [96–98]. In a case of sepsis, LPS 
first stimulates the production of pro-IL-1β and Pro-IL-18 
by TLR or RLR. Then, NLR mediates inflammasome acti-
vation and facilitates post-translational processing, which 
is necessary for its secretion and biological activity [99]. 
IL-1β is one of the most potent proinflammatory cytokines 
known at present. It has an obviously protective effect in 
acute infection, including rapid recruitment of neutrophils 
to inflammatory sites, activation of endothelial adhesion 
molecules, induction of cytokines and chemokines, induced 
febrile reaction and stimulating specific immune responses 
such as Th17 response [99]. IL-1β has a protective effect 
in several bacterial, viral and fungal infection models, and 
the use of IL-1 receptor antagonist, IL-1R, to antagonize 
IL-1 increases the susceptibility to bacteria. The most spe-
cial function of IL-18 is to promote Th1 cells, NK cells and 
cytotoxic T lymphocytes to produce interferon-γ(IFN-γ) and 
promote CD8+ T cells and NK cell proliferation. In addi-
tion, IL-18 can also stimulate other inflammatory cells to 
secrete cytokines such as tumor necrosis factor α (TNF-α), 
IL-1β, IL-8 and GM-CSF [100].

The mechanism of the secretion of IL-1β and IL-18 is 
also controversial in pyroptosis. In addition to the release of 
IL-1β and IL-18 via extracellularly through the membrane 
pores, there are two more possible release mechanisms that 
have been found in neutrophils and other cells: (a) monocyte 
encapsulates the activated caspase-1 and cytokine substrates 
into lysosomes and releases the processed cytokines via the 
lysosome to the cell surface [101]. Although this mechanism 
of secretion can avoid pyroptosis and continue to secrete 
cytokines, it has been considered as not dominant [102]. (b) 
Dendritic cells, microglia and macrophages can release the 
cytokine-containing vesicles after ATP stimulates Caspase-1 
[103, 104]. There are two different ways of release here: 
the release of cell surface fusions of multivesicular bodies 
and the release of microbubbles directly from the cell mem-
brane [104–106]. The specific mechanism for the release 
of IL-1β and IL-18 in the case of neutrophil pyroptosis is 
still controversial because of the short life of neutrophils 
and they cannot be proliferate, it is difficult to study the 
release of granules and cytokines. Direct release of IL-1β 
and IL-18 after cell membrane dissolution is present. How-
ever, the continuous maturation of IL-1β and mature IL-18 

release require the continuous activation of Caspase-1, so 
this way is obviously not the major one. A recent article that 
attracted wide attention showed that the macrophage IL-1β 
was released actively through the holes formed by GSDMD 
[107], but it has not been proved directly in neutrophils and 
require further study.

Pore‑induced intracellular traps triggered 
by pyroptosis

Caspase-4 and Caspase-4/5/11 trigger the pathway of 
pyroptosis, eventually causing cell membrane lysis, that 
is the release of intracellular contents and cytokine, which 
is an important natural immune response. Recent studies 
have shown that natural immune cells such as macrophages 
and neutrophils have shown other specific ways to function 
in pyroptosis: the formation of PITs, rather than the mere 
release of intracellular pathogens and contents to the extra-
cellular environment. These reports reveal that organelles 
and cytoskeleton do not have mere separation and diffusion 
after the membrane lysis, but remain in the corpse of the 
cells to form an intracellular trap-like structure to restrict 
surviving pathogens, which is a structure called pore-
induced intracellular traps(PITs) [21, 22]. Then, the patho-
gens trapped in PITs were subsequently killed by neutrophil 
ROS or by secondary phagocytosis of other neutrophils [10]. 
PITs are conceptually similar to Nets, both by preventing 
bacteria from spreading and promoting clearance. The dif-
ference between the two is that Nets are directed against 
extracellular bacteria, while PITs are targeted to intracellular 
niche. Nets and PITs are independent of each other. In Nets-
deficient mice (MPO −/− and Elane −/−) the formation of 
PITs was not affected [21]. Nets are essentially bactericidal 
because they contain antibacterial peptides and enzymes and 
produce ROS [108–112], while PITs damage, but do not 
kill bacteria. After the formation of PITs, the killing or sec-
ondary phagocytosis of neutrophils ROS apparently poses a 
question: how does neutrophil discover PITs?

Apoptosis or necrotic cells will release the “Find-me” 
signal, expose the “Eat-me” signals and lose “Don’t eat me” 
signals, which combine to promote the clearance of apoptotic 
and necrotic cells [23, 113]. When PIT is formed, “Find-me” 
signals, such as microbial surface C5a or chemokines and 
LPC released from pyroptosis cells, are first released. Then 
the various “Eat-me signals” such as PS and DNA are rap-
idly exposed, while several “Don’t eat me” signals such as 
CD47, CD31 are lost or modified. Then together with some 
extra elements of expression, they eventually reach a new 
balance between “Eat-me” signals and “Don’t eat me “sig-
nals, causing neutrophils to eventually reach the environs 
of PITs to undergo efferocytosis and destroy the pathogens 
entrapped inside by a secondary killing [114, 115]. After 
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the membrane lysis of phagocytic cells, PITs are bound to 
form, and PITs are small enough to retain organelles and 
bacteria [21].The clearance of pyroptotic neutrophils is actu-
ally equal to the clearance of PITs and it seems to induce a 
pro-inflammatory reaction.

Conclusions and perspectives

Pyroptosis has been shown to be an important natural 
immune response. Although a variety of classical and non-
classical inflammasome-induced pyroptosis have been 
described, there are still many controversies concerning the 
specific details of pyroptosis. With the research of pyroptosis 
deepening gradually, the possibility of pyroptosis applied 
to sepsis treatment is adequately amplified. Many studies 
have confirmed that Caspase-1/11 knockout and IL-1β/IL-18 
knockout can improve the survival rate in CLP and septic 
shock mice model (Table 2), but clinical trials failed [116]. 
It seems to confirm that the inhibition of IL-1 and IL18 are 
harmful. However, due to the pro-inflammatory and anti-
inflammatory responses in sepsis, the same treatment may 
lead to different outcomes for patients at different stages of 
sepsis. Furthermore, differences in sepsis-causing bacteria 
may also affect outcomes.

On the basis of preclinical studies, some clinical trials 
have been carried out. Most of these clinical trials focused 
on IL-1β, the downstream of pyroptosis. However, attempts 
to improve sepsis survival by blocking IL-1β, although 

effective against animal models [36], failed in some pre-
vious human trials [121, 122]. Encouragingly, a recent III 
phase clinical trial supports the possibility that anakinra 
(recombinant interleukin-1 receptor antagonist) treatment 
provides a survival benefit in septic patients with features of 
Macrophage Activation Syndrome [123]. A prospective trial 
has been initiated to validate these findings (NCT03332225; 
clinicaltrials.gov). Another precise clinical study shows that 
recombinant IL-1 receptor antagonists are beneficial to sep-
tic patients with high plasma interleukin-1 receptor antago-
nist (IL-1RA) [124].Since IL-1β induces gene expression of 
both itself and IL-1RA, significantly increased IL-1RA may 
inhibit IL-1β, stopping the cycle of IL-1β-IL-1RA amplifi-
cation. Therefore, both subgroups of sepsis patients above 
actually occur to the context of cytokine storm, in which 
IL-1β plays a major role. In addition, there is another report 
that yielded similar results, but the sample size of sepsis 
patients is too small, and the results are still debatable [125]. 
At present, there are still few studies on the upstream mol-
ecules of pyroptosis in sepsis. A published study reveals an 
association of NLRP3 and Caspase-1 mRNA levels with 
severity of sepsis caused by cytomegalovirus (CMV) [126]. 
Another study suggested that caspase-1 is a potential marker 
for predicting the development of sepsis after severe trauma 
[127]. These preclinical and clinical studies have revealed 
that the regulation of neutrophil pyroptosis may benefit in 
the treatment of sepsis. Given the important role of neutro-
phil pyroptosis in sepsis, the regulation of neutrophil pyrop-
tosis may have more potential value.

Table 2   Effects of pyroptosis-related molecule-deficient mice in sepsis

IL-1β, interleukin-1 beta; IL-18, interleukin-18; KO, knockout; E. coli, Escherichia coli; LPS: lipopolysaccharide; CLP, cecal ligation and punc-
ture

Knockout strains Murine models Regulation of neutrophil functions Outcomes References

Caspase-1 Septic shock (E. coli) IL-1β secretion ↓ Survival rate ↑ [36]
Caspase-11 Endotoxic shock (LPS) No information available Survival rate ↑ [117]
Caspase-1/11 double KO Polymicrobial sepsis (Low-lethality cae-

cal slurry)
Phagocytosis ↑
Transmigration ↑

Survival rate ↑ [118]

Endotoxic shock (LPS) No information available Survival rate ↑ [35]
IL-1β Septic shock (E. coli) No information available No significant difference [36]

Endotoxic shock (LPS) No information available Survival rate ↑ [35]
IL-18 Endotoxic shock (LPS) No information available Survival rate ↑ [10]
IL-1β/IL-18 double KO Septic shock (E. coli) No information available No significant difference [36]

Endotoxic shock (LPS) No information available Survival rate ↑ [35]
Polymicrobial sepsis (CLP) No information available Survival rate ↑ [35]

NLRP3 Polymicrobial sepsis (CLP) No information available Survival rate ↑ [119]
Polymicrobial sepsis (Low-lethality cae-

cal slurry)
No information available Survival rate ↑ [118]

ASC Polymicrobial sepsis (Low-lethality cae-
cal slurry)

No information available Survival rate ↑ [118]

Endotoxic shock (LPS) IL-1β secretion ↓ No information available [32]
Endotoxic shock (LPS) No information available Survival rate ↑ [120]
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Neutrophils are the most abundant immune cells in 
sepsis and also the main source of IL-1β and IL-18. Con-
sidering the short life of neutrophils and the characteris-
tics of its inability to proliferate, targeting the neutrophil 
pyroptosis specifically, which is the upstream of IL-1 and 
IL-18 may be better to avoid the chain reaction caused by 
Caspase-1/11 and IL-1β/IL-18 blocking. There is evidence 
that in the Pao1 mice lung infection model, the pyropto-
sis level of neutrophils in bronchoalveolar lavage fluid is 
less than 2% in 24 h [25], but contributes most of IL-1β 
production. At the same time, due to the low level of neu-
trophils pyroptosis, the tissue damage caused by released 
cytosolic contents is far from the abnormal infiltration 
of neutrophils in tissues and organs. All these suggest us 
that the great potential for the regulation of neutrophil 
pyroptosis in sepsis. For some types of infections such 
as Salmonella infection, specific regulation of neutrophil 
pyroptosis may bring more benefits. On the other hand, 
because neutrophils are relatively short-lived and cannot 
proliferate, the regulation of neutrophil pyroptosis seems 
to be easier to avoid the unpredictable risks of sepsis treat-
ment. Therefore, the study of neutrophil pyroptosis will 
be a highly valuable and promising treatment for sepsis.
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