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Abstract
Although heart failure is now accepted as being a major long-term complication of diabetes, many of the recent advances 
in our understanding of the pathobiology of diabetes complications have come about through the study of more traditional 
microvascular or macrovascular diseases. This has been the case, for example, in the evolving field of the epigenetics of 
diabetes complications and, in particular, the post-translational modification of histone proteins. However, histone modifica-
tions also occur in human heart failure and their perturbation also occurs in diabetic hearts. Here, we review the principal 
histone modifications and their enzymatic writers and erasers that have been studied to date; we discuss what is currently 
known about their roles in heart failure and in the diabetic heart; we draw on lessons learned from the studies of microvas-
cular and macrovascular complications; and we speculate that therapeutically manipulating histone modifications may alter 
the natural history of heart failure in diabetes.
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Abbreviations
HR  Hazard ratio
CI  Confidence interval
USD  United States dollars
CHARM  Candesartan in Heart failure: Assessment of 

Reduction in Mortality and Morbidity
EF  Ejection fraction
HFrEF  Heart failure with reduced ejection fraction
HFpEF  Heart failure with preserved ejection 

fraction
AGE  Advanced glycation end product
ECG  Electrocardiogram
LVH  Left ventricular hypertrophy
ACE  Angiotensin converting enzyme
ARB  Angiotensin receptor blocker
ARNI  Angiotensin receptor–neprilysin inhibitor
GLP-1  Glucagon-like peptide-1
DPP-4  Dipeptidyl peptidase-4

SAVOR  Saxagliptin Assessment of Vascular Out-
comes Recorded in Patients with Diabetes 
Mellitus

TIMI  Thrombolysis in Myocardial Infarction
EXAMINE  Examination of Cardiovascular Outcomes 

with Alogliptin versus Standard of Care
SGLT2  Sodium–glucose cotransporter 2
CANVAS  Canagliflozin Cardiovascular Assessment 

Study
HAT  Histone acetyltransferase
HDAC  Histone deacetylase
KAT  Lysine acetyltransferase
KMT  Lysine methyltransferase
KDM  Lysine demethylase
KDAC  Lysine deacetylase
MLL  Mixed lineage leukemia or myeloid/lym-

phoid leukemia
JMJD  Jumonji domain-containing
5mC  5-Methylcytosine
5hmC  5-Hydroxymethylcytosine
MECP2  Methyl CpG binding protein 2
TET  Ten–eleven translocation
Dnmt  DNA methyltransferase
IRF1  Interferon regulatory factor 1
FOXO3  Forkhead box O3 (FOXO3),
pRb  Retinoblastoma protein (pRB)
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STAT3  Signal transducer and activator of transcrip-
tion 3

PCAF  p300/CBP-associated factor
GNAT  Gcn5-related N-acetyltransferase
CBP  CREB-binding protein
MEF2  Myocyte enhancer factor 2
SAM  s-Adenosylmethionine
LSD  Lysine-specific demethylase
FAD  Flavin adenosine dinucleotide
CoREST  Restin corepressor
PTIP  Pax transcription activation domain-interact-

ing protein
TAC   Transverse aortic constriction
CaMKII  Calcium/calmodulin-dependent protein 

kinase II
SUMO  Small ubiquitin-l modifier
NF-κB  Nuclear factor kappa-light-chain-enhancer 

of activated B cells
DUSP5  Dual specificity phosphatase 5
TGF-β1  Transforming growth factor-β1
MRTF-A  Myocardin-related transcription factor-A
RAGE  Receptor for advanced glycation end 

products
ROS  Reactive oxygen species
MnSOD  Manganese superoxide dismutase
TxnIP  Thioredoxin-interacting protein
EZH  Enhancer of zeste homolog
COX-2  Cyclooxygenase-2
IL  Interleukin
MMP-9  Matrix metalloproteinase-9
ELP3  Elongator protein complex 3
MOZ  Monocytic leukemia zinc finger protein
MORF  Monocyte leukemia zinc finger protein-

related factor
HBO1  Histone acetyltransferase binding to ORC-1
CLOCK  Clock circadian regulator
SRC1  Steroid receptor coactivator-1
TIF2  Transcriptional mediators/intermediary fac-

tor 2
SIRT  Silent mating-type information regulation 2 

homolog
SMYD  SET and MYND domain-containing
SETMAR  SET domain and mariner transposase fusion 

protein
PRDM  PR domain
SUV39H  Suppressor of variegation 3–9 homolog
EHMT  Euchromatic histone-lysine 

N-methyltransferase
GLP  G9a-like protein
ESET  ERG-associated protein with SET domain
SETDB  SET domain bifurcated
SETD  SET domain-containing

NSD  Nuclear receptor-binding SET domain 
protein

DOT1L  DOT1-like histone-lysine methyltransferase
JHDM  Jumonji C domain-containing histone 

demethylase
FBXL  F-box and leucine-rich repeat protein
JARID  Jumonji/ARID domain-containing protein
RBP2  Retinoblastoma-binding protein 2
SMCX  Smcx homolog, X chromosome
SMCY  SMC homolog, Y chromosome
GASC1  Gene amplified in squamous cell carcinoma 

1
PHF  PHD finger protein
UTX  Ubiquitously transcribed X chromosome 

tetratricopeptide repeat protein
LVAD  Left ventricular assist device
MHC  Myosin heavy chain
FHL1  Four and a half LIM domains protein 1
miR-217  MicroRNA 217
ANP  Atrial natriuretic peptide
NOX  NADPH oxidase
IGF1R  Insulin-like growth factor-1 receptor

Introduction

Over the past decade, there has been a growing appreciation 
that the old dogma of diabetes complications being either 
microvascular or macrovascular, although convenient, was, 
in fact, wrong. Aside from the classical complications of 
nephropathy, retinopathy, and neuropathy, and of coronary 
artery disease, cerebrovascular disease, and peripheral vas-
cular disease, people with diabetes are also at increased risk 
of certain cancers [1], cognitive impairment [2], bone frac-
tures [3], and heart failure [4]. The recognition of these pre-
viously overlooked complications coupled with a maturing 
understanding of the pathogenesis of classical complications 
has led to a realization that the end-organ effects of diabetes 
often represent a continuum rather than discrete pathological 
entities. The increased prevalence of heart failure in diabetes 
exemplifies this continuum [4].

Paralleling our evolving understanding of the continuum 
of end-organ injury in diabetes, has been an evolving under-
standing of the pervasive roles that epigenetic processes may 
play in the development of diabetes complications [5, 6]. 
The relationship between epigenetic processes and diabetes 
complications has historically been investigated in the set-
ting of microvascular (reviewed in Refs. [7, 8]) or macrovas-
cular (reviewed in Ref. [9]) diseases, reflecting the historical 
dichotomous classification. In contrast, the contribution of 
epigenetic dysregulation to heart failure in diabetes has been 
comparatively overlooked. Epigenetic processes play pivotal 
roles in cardiac development and in the development of heart 
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failure in other settings [10], and it seems likely, therefore, 
that they play similarly pivotal roles in the development of 
heart failure in diabetes. The two best characterized epige-
netic processes are DNA methylation and the post-transla-
tional modification of histone proteins and the epigenetic 
processes that, to date, have revealed themselves to be most 
amenable to therapeutic intervention are histone protein 
modifications. Here, with the goal of facilitating research 
in this generally understudied area, we summarize the best 
characterized histone modifications and their enzymatic 
writers and erasers; we review the evidence that histone pro-
tein modifications contribute to the development of heart 
failure; and we draw on lessons learned from the studies of 
microvascular and macrovascular diseases to consider how 
changes in histone proteins may affect the development of 
heart failure in diabetes.

Heart failure in diabetes: scope 
of the problem

Diabetes mellitus currently affects over 451 million people 
across the globe [11] and a wealth of epidemiological evi-
dence indicates that these people are at an increased risk 
of developing heart failure. In the Framingham cohort, 
for example, the incidence of congestive heart failure was 
increased approximately 2.4-fold in men with diabetes and 
5.3-fold in women with diabetes [12]. Likewise, in a retro-
spective cohort study of over 17,000 individuals with Type 
2 diabetes or individuals without diabetes of similar age and 
sex, the incidence of congestive heart failure was more than 
doubled at 30.9 cases per 1000 person-years (compared to 
12.4 cases per 1000 person-years for people without dia-
betes) [13]. Even though the incidence of heart failure 
increases with age, the excess risk conferred by comorbid 
diabetes is much higher in people of younger age, with an 
increased relative risk of 11-fold in individuals under the 
age of 45 years in comparison to 1.8-fold in individuals aged 
75–84 years [13]. However, heart failure risk is not limited 
to individuals with Type 2 diabetes. People with Type 1 
diabetes are also at increased risk. For instance, in a recent 
prospective case–control study of 33,402 individuals with 
Type 1 diabetes and 166,228 matched controls, the hazard 
ratio (HR) for hospitalization for heart failure was 4.69 (95% 
confidence interval [CI] 3.64–6.04) [14]. For people with 
heart failure, the presence of comorbid diabetes increases 
all-cause mortality (HR 1.28 [95% CI 1.21, 1.35]) and risk 
of hospitalization (HR 1.35 [1.20, 1.50]) [15]. Moreover, not 
only does the presence of heart failure in diabetes portend a 
particularly poor prognosis, but it is also vastly expensive. In 
one model, congestive heart failure was the most expensive 
incident cost in a population of 10,000 adults with diabe-
tes, estimated at an annual expected cost of $7,320,287USD 

[16]. In short, for people with diabetes, heart failure is 
prevalent, it is expensive, and it carries an, especially, poor 
prognosis.

People with diabetes are at increased risk of both heart 
failure with reduced ejection fraction (HFrEF; ejection frac-
tion (EF) < 50%) and heart failure with preserved ejection 
fraction (HFpEF; EF ≥ 50%). In 2012, in USA, approxi-
mately 5.8 million individuals (2.4% of the population) had 
heart failure and, in the community, approximately 50% 
of heart failure cases are caused by HFpEF [17]. Approxi-
mately 40% of people with HFrEF and 45% of people with 
HFpEF have diabetes [18], but the outlook for people with 
diabetes and heart failure is poor regardless of the EF [19]. 
For instance, in the Candesartan in Heart failure: Assess-
ment of Reduction in Mortality and Morbidity (CHARM) 
programme, both all-cause death and hospitalization were 
increased in people with diabetes in comparison to people 
without diabetes (all-cause death per 1000 patient years, dia-
betes 116.3, no diabetes 72.9, p < 0.001; first hospital admis-
sions per 1000 patient years, diabetes 473.4, and no diabetes 
327.2, p < 0.001) [20]. In that study, rates of cardiovascular 
death were 119.1 per 1000 patient years for individuals with 
diabetes and HFrEF and 58.6 per 1000 patient years for indi-
viduals with diabetes and HFpEF [20]. However, diabetes 
was associated with a greater risk of cardiovascular death or 
hospitalization for heart failure in people with HFpEF than it 
was in people with a reduced EF (HFpEF and diabetes, HR 
2.0 [1.70–2.36]; HFrEF and diabetes, HR 1.60 [1.44–1.77]; 
interaction test, p = 0.0009) [20].

Causes of heart failure in diabetes

In 1972, investigators reported post-mortem findings of 
heart failure in four individuals with diabetes but without 
coronary artery disease [21]. This led to the coining of 
the term “diabetic cardiomyopathy” used to describe myo-
cardial dysfunction in a person with diabetes, but in the 
absence of hypertension or coronary artery disease [22]. 
However, the term itself remains imperfectly defined and 
the extent to which elevated blood glucose levels alone can 
cause myocardial dysfunction remains controversial. For 
example, one study that combined functional, biochemical, 
and morphological techniques failed to identify evidence 
of myocardial dysfunction in 185 persons with Type 1 dia-
betes, with a mean duration of diabetes of over 20 years 
but without coronary artery disease or hypertension [23]. 
Nonetheless, the increased prevalence of heart failure 
in diabetes is undisputed and just as the term “diabetic 
kidney disease” is now favored over “diabetic nephropa-
thy”, so “heart failure in diabetes” may be preferred over 
“diabetic cardiomyopathy”, attesting to the multifactorial 
nature of the condition and the common coexistence of 
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predisposing comorbidities. With respect to these predis-
posing comorbidities, the prevalences of both coronary 
artery disease [24] and hypertension [25] are increased in 
people with diabetes and diabetes exacerbates all forms 
of cardiovascular disease [26]. At a molecular level, 
hyperglycemia and accompanying formation of advanced 
glycation end products (AGEs), endothelial dysfunction, 
impaired calcium homeostasis, oxidative stress, inflam-
mation, abnormalities in glucose and fatty acid utilization, 
autonomic dysfunction, myocardial fibrosis, and small ves-
sel disease act in concert to impair myocardial function in 
diabetes (reviewed in Refs. [27–29]). This manifests as left 
ventricular hypertrophy (LVH) and adverse remodeling, 
ultimately impairing systolic and/or diastolic function [26] 
(Fig. 1). Indeed, electrocardiogram (ECG) or echocardio-
gram evidence of LVH signifies a high risk for the devel-
opment of heart failure [30] and in the Look AHEAD trial 
approximately 5% of overweight or obese individuals with 
Type 2 diabetes had ECG evidence of LVH [31].

Heart failure in diabetes and its relationship 
to current treatments

Heart failure treatments

Conventionally, the treatment of heart failure in people with 
diabetes has been the same as for people without diabetes. 
Therapy for heart failure includes the use of renin–angioten-
sin system blockers such as angiotensin converting enzyme 
(ACE) inhibitors, angiotensin receptor blockers (ARBs), or 
an angiotensin receptor–neprilysin inhibitor (ARNI), aldos-
terone receptor antagonists, β-blockers, diuretics, combina-
tion of hydralazine and isosorbide dinitrate, ivabradine, and 
digoxin if indicated and device therapy with an implant-
able cardioverter defibrillator or cardiac resynchronization 
therapy where appropriate [32, 33]. The evidence supporting 
the use of these agents derives from the studies of individu-
als with HFrEF, and unfortunately, similar evidence of their 
benefit in individuals with HFpEF is lacking [32, 34].

Fig. 1  Cellular processes 
affected by diabetes and its 
comorbidities that affect 
cardiac cell function and that 
can predispose to heart failure 
development
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Anti‑hyperglycemic agents and their relationship 
to heart failure in diabetes

The relationship between heart failure risk and agents used 
to lower blood glucose levels in people with Type 2 diabe-
tes has recently been reviewed [26]. Briefly, blood glucose-
lowering therapies may worsen heart failure, have neutral 
effects, or, in some cases, actually improve outcomes in 
patients. For instance, the thiazolidinediones, rosiglita-
zone, and pioglitazone have both been associated with an 
increased risk of admission to hospital with heart failure [35, 
36]. With respect to heart failure outcomes, incretin-based 
therapies [i.e., glucagon-like peptide-1 (GLP-1) receptor 
agonists or dipeptidyl peptidase-4 (DPP-4) inhibitors] may 
be largely neutral [37–41], although the DPP-4 inhibitor, 
saxagliptin, was associated with an unexpected increase in 
the risk of hospitalization for heart failure in the Saxagliptin 
Assessment of Vascular Outcomes Recorded in Patients with 
Diabetes Mellitus (SAVOR)—Thrombolysis in Myocardial 
Infarction (TIMI) 53 trial (HR 1.27, [95% CI 1.07–1.51]) 
[42]. Similarly, in the Examination of Cardiovascular Out-
comes with Alogliptin versus Standard of Care (EXAMINE) 
trial, the number of participants hospitalized for heart failure 
was numerically greater, albeit non-significantly, with the 
DPP-4 inhibitor alogliptin than with placebo (3.1 vs. 2.9%; 
HR 1.0 [95% CI 0.79–1.46]) [43]. Unfortunately, for older 
blood glucose-lowering agents (i.e., metformin, sulphonylu-
reas, and insulin), there are insufficient data to draw robust 
conclusions as to safety, benefit, or harm. This is because 
these agents were in clinical use for many years prior to 
the 2008 U.S. Food and Drug Administration Guidance for 
Industry that mandated the demonstration of the absence of 
cardiovascular harm for anti-hyperglycemic agents used in 
the treatment of Type 2 diabetes [44].

In 2015, the results of the EMPA-REG OUTCOME trial 
surprised many in the diabetes clinical care and research 
communities by demonstrating a significant reduction in car-
diovascular events in people with Type 2 diabetes at high 
cardiovascular risk treated with the sodium–glucose cotrans-
porter 2 (SGLT2) inhibitor, empagliflozin [45]. In that study, 
treatment with empagliflozin was associated with a signifi-
cant reduction in the primary outcome of major adverse 
cardiovascular events (HR 0.86 [95.02% CI 0.74–0.99], 
p = 0.04 for superiority), a 38% relative risk reduction for 
death from cardiovascular causes, a 32% relative risk reduc-
tion for death from any cause, and a 35% risk reduction for 
hospitalization for heart failure (2.7 vs. 4.1%) [45]. In the 
Canagliflozin Cardiovascular Assessment Study (CANVAS) 
Program, hospitalization for heart failure was similarly 
reduced with the SGLT2 inhibitor canagliflozin (HR 0.67 
[95% CI 0.52–0.87]), although there was an increased risk 
of amputation (HR 1.97 [95% CI 1.41–2.75]) [46]. In both 
EMPA-REG OUTCOME [47] and CANVAS [46], over 85% 

of participants had no prior history of heart failure, and thus, 
the beneficial effects of SGLT2 inhibition may be viewed as 
being those of heart failure prevention rather than necessar-
ily heart failure treatment. Indeed, there is a relative pau-
city of data on the efficacy of SGLT2 inhibitors in patients 
with established heart failure, with or without diabetes, 
and there is a similar paucity of data as to whether SGLT2 
inhibitors are equally effective in patients with HFpEF and 
HFrEF [26]. Furthermore, even in the impressive EMPA-
REG OUTCOME study, treatment with empagliflozin, on 
top of standard-of-care, and thus arguably representing cur-
rent best practice, did not negate heart failure, only reducing 
it, hospitalization for heart failure still occurring at a rate 
of 9.4/1000 patient years [45]. As the global prevalence of 
diabetes increases over the coming years (expected to exceed 
693 million people by 2045 [11]), there is thus a pressing 
need to explore innovative new treatment opportunities. One 
such opportunity may be to exploit the post-translational 
modification of histone proteins and the effects that these 
changes can have on gene transcription and cellular (dys)
function.

Histone protein post‑translational 
modifications and the enzymes that control 
them

Histones are the basic protein building blocks of chro-
matin and, together with DNA, they make up the funda-
mental unit of chromatin, the nucleosome core particle. 
A nucleosome core particle consists of approximately 
146 bp of DNA wrapped nearly twice around a histone 
octamer which itself is made up of two copies each of 
the four core histone proteins H2A, H2B, H3, and H4 
(Fig. 2) [48]. Nucleosomes are joined together by stretches 
of linker DNA. H1 linker histones, whilst not being part 
of the nucleosome core particle, bind linker DNA at the 
entry and exit sites of the nucleosome and help to stabi-
lize the whole complex [49]. In comparison to the core 
histone proteins, the function of linker histones has been 
relatively less well characterized [50]. The packaging of 
DNA into nucleosomes and hence chromatin enables it to 
exist in a very condensed fashion, essentially providing 
a means whereby the approximate 2 m length of a DNA 
strand can fit inside a eukaryotic nucleus that is typically 
less than 10 µm in diameter. This packaging is impor-
tant for how changes in histone proteins can influence the 
expression of nearby genes. Histone proteins have long, 
protruding amino tails that are susceptible to a range of 
post-translational modifications and these modifications 
can facilitate gene activation or repression. Histone protein 
post-translational modifications include acetylation, meth-
ylation, phosphorylation, ubiquitination, SUMOylation, 
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ADP ribosylation, citrullination, and biotinylation [51]. 
By far and away, the best characterized of these modifica-
tions are histone-lysine acetylation and deacetylation and 
histone-lysine methylation and demethylation, and thus, 
these modifications are the focus of the current treatise.

The nomenclature of histone writers and erasers

The acetylation or deacetylation of lysine residues on 
histone proteins is regulated by two opposing groups of 
enzymes: histone acetyltransferases (HATs) and histone 
deacetylases (HDACs), and the methylation or demeth-
ylation of lysine residues on histone proteins is regulated 
by histone methyltransferases and lysine demethylases. 
The discovery of these enzymes resulted in nomencla-
ture systems that are somewhat non-coherent and also 
inconsistent between species, and in an effort to rectify 
this situation, in 2007, scientists proposed a new nomen-
clature [52]. Thus, HATs are also referred to as KATs, 
lysine methyltransferases as KMTs, and lysine demethy-
lases as KDMs, where K = lysine [52]. At the time of the 
new nomenclature, the authors did not propose renaming 
the HDAC family as they felt that this classification was 

coherent enough [52]. However, authors will occasionally 
refer to HDACs as KDACs (e.g., [53]), recognizing that 
histones are not the only substrates of many lysine residue-
modifying enzymes.

Mechanisms through which histone modifiers 
and histone modifications facilitate gene activation 
or repression

Histone modifications can influence gene transcription by 
several mechanisms that can be broadly classified into two 
categories: (1) by altering chromatin compaction (a direct 
effect); and (2) by influencing the recruitment of effector 
complexes (indirect effects) [51, 54, 55]. Histone modi-
fications can affect chromatin compaction by altering the 
electrostatic charge relationship between histone proteins 
and DNA. This can be the case for histone acetylation or 
phosphorylation. For instance, by neutralizing the charge 
on lysine residues, acetylation can weaken the association 
between positively charged histone proteins and negatively 
charged DNA, thus improving the accessibility of protein 
machinery to target sites of DNA. The indirect effects of 
histone protein modifications on effector recruitment and 
retention are, however, more pervasive in terms of their 

Fig. 2  Nucleosome core particle, histone proteins, and histone writ-
ers and erasers. The nucleosome is made up of approximately 146 bp 
of DNA coiled nearly twice around an octamer of histone proteins, 
made up of two copies each of histone H2A, histone 2B, histone H3, 
and histone H4. The protruding amino tails of histone proteins can 
undergo post-translational modifications that affect the expression of 
genes in close proximity. Illustrated are the major histone post-trans-
lational modifications that have been studied in the context of heart 

failure and diabetes (i.e., acetylation and deacetylation and methyla-
tion and demethylation), along with their enzymatic writers and eras-
ers, histone acetyltransferases (HATs or KATs, where K = lysine), 
histone deacetylases (HDACs), histone methyltransferases (HMTs or 
KMTs), and lysine demethylases (KDMs). Other post-translational 
modifications that can affect histones and consequently gene expres-
sion but that have been comparatively less well studied in heart fail-
ure and diabetes are shown in the boxed area
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influence on gene transcription. These indirect effects influ-
ence the actions of chromatin-modifying enzymes, transcrip-
tion factors, and other histone protein modifiers and modi-
fications. For example, histone modifications can facilitate 
the recruitment or regulate the efficiency of ATP-dependent 
chromatin remodeling enzymes (e.g., SWitch/Sucrose Non-
Fermentable (SWI/SNF) [56]) that enhance the accessibil-
ity of nucleosomal DNA, playing an important role in the 
regulation of transcription by RNA polymerase II [57]. The 
enzymes responsible for histone protein post-translational 
modification are often co-recruited to their target sites in 
protein complexes together with transcription factors [58], 
and histone modifications can influence the recruitment of 
transcription factors at epigenetically distinct transcriptional 
start sites, proximal promoter regions, and distal enhancers 
[59–61]. Alternatively, by blocking the access of remodeling 
complexes to chromatin, certain histone protein modifica-
tions limit gene transcription [54]. They can also influence 
the recruitment of other histone modifiers, and consequently, 
the formation of other histone modifications [62]. For exam-
ple, the HAT Gcn5 can acetylate lysine residue 14 on his-
tone H3 (H3K14) more effectively when serine residue 10 
on histone protein H3 (H3Ser10) is phosphorylated [63]. 
Finally, certain histone modifications are mutually exclusive. 
For example, H3K4 methylation generally marks actively 
transcribed genes and is associated with H3K9 hypomethyla-
tion. This arrangement may be mediated by the physical and 
functional association of the H3K4 methyltransferase mixed 
lineage leukemia or myeloid/lymphoid leukemia 2 (MLL2) 
and the H3K9 demethylase Jumonji domain-containing 2B 
(JMJD2B) [64].

Histone protein modifications also function in tandem 
with the other major category of epigenetic processes, 
DNA methylation. Classically, methylation of DNA has 
been studied in the context of its occurrence at the 5-posi-
tion of cytosine residues (referred to as 5-methylcytosine, 
or 5mC) most commonly located within regions of DNA 
known as CpG islands [65, 66]. These are regions of DNA 
arbitrarily greater than 200 bp in length that contain phos-
phodiester-linked cytosine and guanine residues occurring at 
a frequency of more than 50%. Methylation of CpG islands 
at transcriptional start sites serves as a recognition point 
for reader proteins, such as methyl CpG binding protein 2 
(MECP2), which block gene transcription [67]. Accordingly, 
in this context, DNA methylation is generally considered to 
facilitate transcriptional repression. However, DNA meth-
ylation can also occur away from transcriptional start sites, 
including in gene bodies, and at these sites, DNA methyla-
tion may not be associated with gene repression but may 
alternatively be involved in gene activation (by the preclu-
sion of repressor binding sites) or in alternative splicing 
[68]. More recently, it has been recognized that gene tran-
scription may also be regulated by the oxidative formation 

of 5-hydroxymethylcytosine (5hmC, DNA hydroxymethyla-
tion), a process that is regulated by the ten–eleven transloca-
tion (TET) family of 5mC dioxygenases, which is commonly 
(although not exclusively) associated with transcriptional 
activation [69–73]. Histone protein modifications and DNA 
methylation are commonly interrelated, one epigenetic mark 
influencing the generation of the other and vice versa [74]. 
This bidirectional relationship can be mediated by direct 
interactions between histone modifications and DNA meth-
ylating enzymes or between sites of DNA methylation and 
histone-modifying enzymes. For example, the DNA meth-
yltransferase Dnmt3a possesses an interacting domain that 
links DNA methylation to unmethylated H3K4, whereas the 
H3K4 methyltransferase MLL1 contains a CpG-interacting 
domain that could link H3K4 methylation to unmethylated 
DNA [75].

Aside from their effects on histone proteins, many ostensi-
bly histone-modifying enzymes can also modify non-histone 
proteins, especially transcription factors. These modifica-
tions can influence gene expression by affecting transcrip-
tion factor stability and function. This is the case for both 
lysine (de)acetylating and lysine (de)methylating enzymes. 
For example, the enzyme SET7/9 methylates histone pro-
teins, transcription factors, and other epigenetic regulators. 
In its role as a histone methyltransferase, SET7/9 monometh-
ylates H3K4 [76]. However, several transcription factors 
have also been found to be substrates for SET7/9 (e.g., p53, 
E2F1, interferon regulatory factor 1 (IRF1), forkhead box 
O3 (FOXO3), p65, retinoblastoma protein (pRb), and signal 
transducer and activator of transcription 3 (STAT3), amongst 
others) [77, 78]. Furthermore, SET7/9 also methylates other 
enzymes that can exert their own epigenetic effects, includ-
ing Dnmt1 [79] and the HAT, p300/CBP-associated factor 
(PCAF) [80], affecting their enzymatic activities. Thus, 
when interpreting the effects of histone-modifying enzymes, 
one should remain cognizant that these effects may be both 
chromatin-dependent and chromatin-independent.

In summary, histone-modifying enzymes or histone modi-
fications rarely, if ever, function in isolation to regulate gene 
transcription. Rather, a conceptual framework is beginning 
to emerge whereby functional genomic regions are tagged 
by specific histone marks that support the transcriptional 
response to stimuli, histone modifications functioning syn-
ergistically with each other, with other epigenetic regulators 
and with canonical transcription factors.

Histone acetylation

Utilizing acetyl CoA as a cofactor, HATs catalyze the trans-
fer of acetyl groups to the ε-amino group of the lysine side 
chain of histone proteins, which neutralizes the histone pro-
tein’s positive charge and weakens the interaction between 
histones and DNA. This causes chromatin to adopt a more 
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open conformation that favors transcriptional activation. By 
removing acetyl groups from lysine residues, HDACs restore 
the positive charge of histone tails leading to chromatin con-
densation which should favor transcriptional repression [81]. 
In reality, however, the situation is more complex than this. 
For instance, histone acetylation may also serve as a recogni-
tion point for bromodomains [55, 82], which are modules of 
approximately 110 amino acids in length commonly present 
in many proteins that associate with chromatin [82].

HATs can be grouped into five subfamilies: the Gcn5-
related N-acetyltransferase (GNAT) superfamily, MYST 
[named after its first four members: MOZ, Ybf2 (Sas3), 
Sas2, and Tip60], p300/CBP (CREB-binding protein), 
transcription factors, and nuclear receptor cofactors 
(Table 1). There are at least 18 different HDAC enzymes, 
which are subdivided phylogenetically into four classes. 
Classes I, II, and IV are zinc-dependent histone deacety-
lases and comprise: Class I (HDACs 1, 2, 3 and 8), Class 
IIa (HDACs 4, 5, 7 and 9), Class IIb (HDACs 6 and 10), 
and Class IV (HDAC11). Class III HDACs, the sirtuins, are 
 NAD+-dependent and, in mammals, comprise at least seven 
members (SIRTs 1–7) (Table 2). Both HATs and HDACs 
are recruited to target promoter regions as parts of large 
protein complexes and both classes of enzymes exhibit poor 
specificity for the lysine residues that they acetylate or dea-
cetylate [83].

Numerous proteins, other than histones, can be lysine acet-
ylated or deacetylated by HATs and HDACs and, as already 
discussed, the terms HATs and HDACs are somewhat of mis-
nomers. For instance, one study seeking to gauge the extent 
of the lysine acetylome identified 1750 acetylated proteins in 
MV4-11 cells [84], whereas the HDAC, HDAC6 are local-
ized almost exclusively in the cytosol [85]. It is, perhaps, 
unsurprising then that many of the studies linking lysine 
acetylation to either cardiac development or the (patho)
physiological response to cardiac stress have demonstrated 
that the pivotal actions of HATs or HDACs are mediated 
by their acetylation or deacetylation of non-histone proteins. 
For instance, mutation of the Class II HDACs, HDAC5, and 
HDAC9 results in embryonic or perinatal lethality with vari-
able penetrance accompanied by ventricular septal defects 
and a thin-walled myocardium, possibly due to superactiva-
tion of the transcription factor, myocyte enhancer factor 2 
(MEF2), which is known to interact with Class II HDACs and 
control cardiomyocyte differentiation [86, 87]. However, the 
specific acetylation of histone proteins is also important to 
cardiac development and function. For example, the master 
cardiac transcription factor, GATA4, which is required for 
both cardiac development [88, 89] and in the adult heart [90], 
drives gene expression by stimulating histone H3 lysine 27 
acetylation (H3K27ac) [91].

Table 1  Histone 
acetyltransferase (HAT) 
subfamilies and enzymes in 
humans

Adapted from Refs. [52, 166, 167]
GNAT Gcn5-related N-acetyltransferases, KAT K-acetyltransferase, PCAF p300/CBP-associated factor, 
HAT1 histone acetyltransferase 1, ELP3 elongator protein complex 3, MOZ monocytic leukemia zinc finger 
protein, MORF monocyte leukemia zinc finger protein-related factor, HBO1 histone acetyltransferase bind-
ing to ORC-1, CBP CREB-binding protein, CLOCK clock circadian regulator, SRC1 steroid receptor coac-
tivator-1, TIF2 transcriptional mediators/intermediary factor 2

Subfamily Enzyme examples Alternative 
nomenclature

Histone residues acetylated

GNAT superfamily GCN5 KAT2 H3 (H4, H2B)
PCAF KAT2B H3, H4
HAT1 KAT1 H2AK5, H3, H4
ELP3 KAT9 H3

MYST Tip60 KAT5 H2A, H3, H4
MOZ KAT6A H3, H4
MORF KAT6B H2A, H3, H4
HBO1 KAT7 H3, H4
MYST1 KAT8 H4

p300/CBP p300 KAT3B H2A, H2B, H3, H4
CBP KAT3A H2A, H2B, H3, H4

Transcription factors TAFII250 H3, H4
TFIIIC90 KAT12 H2A, H3, H4
CLOCK KAT13D H3, H4

Nuclear receptor cofactors SRC1 KAT13A H3, H4
ACTR KAT13B H3, H4
TIF2 KAT13C H3, H4
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Histone methylation

Lysine residues can be acetylated or methylated, but they 
cannot be both. In contrast to histone acetylation, histone 
methylating (and demethylating) enzymes can be remarkably 
specific. Histone protein methylation is catalyzed by histone 
methyltransferase enzymes and can occur on either lysine 
or arginine residues. Over 30 human proteins have histone 
methyltransferase activity. Amongst the histone methyltrans-
ferase family, the PRMT enzymes catalyze the methylation 
of arginine residues, whereas the SET family of proteins 
catalyze the methylation of lysine residues [92]. Lysine resi-
dues may be mono- (me1), di- (me2), or tri- (me3) meth-
ylated, whereas arginine residues may be either mono- or 
di- methylated [93]. Histone-lysine methyltransferases 

(KMTs) catalyze the transfer of a methyl group from s-aden-
osylmethionine (SAM) to ε-amino groups on lysine resi-
dues of histone tails [94], and RMTs catalyze the transfer 
of methyl groups from SAM to ω-guanidino nitrogen atoms 
on arginine residues in eukaryotes [94]. Table 3 summarizes 
common histone-lysine methylation marks, their effects on 
gene transcription, and the methyltransferases responsible 
for their generation.

Until the relatively recent discovery of specific lysine 
demethylating enzymes, it was considered that histone 
methylation was stable and irreversible. However, it is now 
known that this is not the case. There are two main classes 
of histone-lysine demethylating enzymes (Table 4). Lysine-
specific demethylases (LSDs) utilize flavin adenosine dinu-
cleotide (FAD) as a cofactor. The best studied LSD, LSD1, 
functions with protein complexes such as the CoREST (res-
tin corepressor) complex to reverse H3K4 and H3K9 meth-
ylation [95–97]. The JmjC domain-containing proteins are 
the most recently discovered and the largest class of histone 
demethylases. They catalyze histone-lysine demethylation 
by utilizing Fe(II) and α-ketoglutarate as cofactors [98]. 
Arginine demethylating enzymes have also been described 
[99], although, in comparison, the effects on gene transcrip-
tion are more prevalent for histone-lysine demethylation.

As an illustration of the specificity of histone-lysine 
methylation, the H3K4 and H3K36 marks are associ-
ated with transcriptional activation, whereas the H3K9 
and H3K27 marks are associated with transcriptional 
repression [100]. H3K4 monomethylation (H3K4me1) 

Table 2  Classes of histone deacetylase enzymes in humans

Adapted from Ref. [168]
HDAC histone deacetylase, SIRT silent mating-type information regu-
lation 2 homolog

Class Enzymes

Class I HDAC1, HDAC2, HDAC3, HDAC8
Class IIa HDAC4, HDAC5, HDAC7, HDAC9
Class IIb HDAC6, HDAC10
Class III SIRT1, SIRT2, SIRT3, SIRT4, 

SIRT5, SIRT6, SIRT7
Class IV HDAC11

Table 3  Histone-lysine methylation marks, their enzymatic writers, and their effects on gene transcription

Adapted from Refs. [6, 52, 169]
MLL mixed lineage leukemia or myeloid/lymphoid leukemia, KMT K-methyltransferase, SMYD SET and MYND domain-containing, SETMAR 
SET domain and mariner transposase fusion protein, PRDM PR domain, SUV39H suppressor of variegation 3–9 homolog, EHMT euchromatic 
histone-lysine N-methyltransferase, GLP G9a-like protein, ESET ERG-associated protein with SET domain, SETDB SET domain bifurcated, 
EZH enhancer of zeste homolog, SETD SET domain-containing, NSD nuclear receptor-binding SET domain protein, DOT1L DOT1-like his-
tone-lysine methyltransferase

Histone-lysine 
methylation 
mark

Function Enzymatic writers (histone methyltransferases)

H3K4 Transcriptional activation MLL1/KMT2A, MLL2/KMT2B, MLL3/KMT2C, MLL4/KMT2D, MLL5/KMT2E, SET1A/
KMT2F

SET1B/KMT2G, ASH1/KMT2H, SET7/9/KMT7
SMYD1/KMT3D, SMYD2/KMT3C, SMYD3, SETMAR, PRDM9/KMT8B

H3K9 Heterochromatin forma-
tion/transcriptional 
repression

SUV39H1/KMT1A, SUV39H2/KMT1B, EHMT2/G9a/KMT1C, EHMT1/GLP/KMT1D, ESET/
SETDB1/KMT1E,

H3K27 Transcriptional repression EZH1/KMT6B, EZH2/KMT6A
H3K36 Transcriptional activation SETD2/KMT3A, NSD1/KMT3B, SYMD2/KMT3C, SETMAR, NSD2/KMT3G, NSD3/KMT3F, 

SETD3
H3K79 Transcriptional activation DOT1L/KMT4
H4K20 Transcriptional repres-

sion/DNA damage 
response

SET8/KMT5A, SUV4-20H1/KMT5B, SUV4-20H2/KMC5C
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is commonly found at enhancer elements, whereas H3K4 
trimethylation (H3K4me3) is enriched at active promot-
ers [101]. H3K4me3 sites differ markedly between fail-
ing hearts and normal hearts both in Dahl salt-sensitive 
rats and in humans with congestive heart failure [102]. 
The histone methyltransferase protein complex respon-
sible for H3K4 trimethylation associates with a ubiqui-
tously expressed nuclear factor, termed pax transcription 
activation domain-interacting protein (PTIP) [103]. The 
murine model of hypertrophic heart failure induced by 
transverse aortic constriction (TAC) surgery is commonly 
employed to examine the effects of epigenetic changes on 
cardiac dysfunction, and mice lacking PTIP have dimin-
ished global H3K4me3 levels and exhibit a maladaptive 
response to TAC [104]. This maladaptive response is 
characterized by cardiac dilatation, decreased left ven-
tricular function, cardiac fibrosis, and increased cell death 
[104]. The JmjC domain-containing histone demethylase 

JMJD2A catalyzes the demethylation of di- and tri- meth-
ylated H3K9 (H3K9me2/3) and di- and tri- methylated 
H3K36 (H3K36me2/3). Mice with cardiac-specific inac-
tivation of JMJD2A have been reported to have an attenu-
ated hypertrophic response to pressure overload induced 
by TAC, whereas JMJD2A overexpressing mice have an 
exaggerated response [105].

Histone phosphorylation, ubiquitination, 
SUMOylation, ADP ribosylation, and glycosylation

Histone proteins may be phosphorylated on hydroxyl groups 
of serine, threonine, and tyrosine residues. Kinases cata-
lyze the addition of phosphate groups from ATP and phos-
phatases catalyze their removal. Because phosphate groups 
confer a negative charge, phosphorylation, in general, is 
associated with open chromatin and thus facilitates gene 
transcription [106]. The kinase, calcium/calmodulin-depend-
ent protein kinase II δ (CaMKIIδ) plays a key role in patho-
logical cardiac hypertrophy [107]. It has been suggested 
that nuclear CaMKIIδ facilitates chromatin remodeling by 
phosphorylating H3Ser10, promoting the transcription of 
genes responsible for the hypertrophic response [108, 109].

Histone modifications can also involve the addition or 
removal of large bulky groups, specifically ubiquitination 
and SUMOylation. Ubiquitination entails the addition of 
the large polypeptide, ubiquitin by the sequential action of 
E1-activating, E2-conjugating, and E3-ligating enzymes, 
and the sites and degree of ubiquitination depend upon the 
enzyme complexes involved [110]. The addition of small 
ubiquitin-l modifier (SUMO) proteins also involves E1, E2, 
and E3 enzymes, and functions to prevent acetylation or 
ubiquitination at the same sites [111]. ADP ribosylation and 
glycosylation may also occur on amino acid residues on his-
tone tails, although the extent to which these modifications 
may affect gene expression is relatively unexplored [112, 
113]. There is also a comparative paucity of information 
pertaining to these other post-translational histone modifica-
tions and their relationship to heart failure.

Epigenomic organization 
and the generation of developmental stage‑ 
and disease‑specific epigenetic signatures

Recently, efforts have been made to develop comprehen-
sive epigenomic roadmaps in experimental and human heart 
disease. These approaches have combined chromatin immu-
noprecipitation (ChIP)-sequencing for multiple different 
histone marks together with transcriptional analysis deter-
mined after RNA-sequencing with or without ascertainment 
of DNA methylation and hydroxymethylation patterns by 

Table 4  Histone-lysine demethylases and substrates

Adapted from Refs. [52, 169–171]
LSD lysine-specific histone demethylase, KDM K-demethylase, 
JHDM jumonji C domain-containing histone demethylase, FBXL 
F-box and leucine-rich repeat protein, JARID jumonji/ARID domain-
containing protein, RBP2 retinoblastoma-binding protein 2, SMCX 
Smcx homolog, X chromosome, SMCY SMC homolog, Y chromo-
some, JMJD jumonji domain-containing, GASC1 gene amplified in 
squamous cell carcinoma 1, PHF PHD finger protein, UTX ubiqui-
tously transcribed X chromosome tetratricopeptide repeat protein

Enzyme Alternative name Substrate demethylated

LSD1 KDM1A H3K4me1/2, H3K9me1/2
LSD2 KDM1B H3K4me1/2
NO66 H3K4me1/2/3, H3K36me2/3
JHDM1B/FBXL10 KDM2B H3K4me3, H3K36me1/2
JARID1A/RBP2 KDM5A H3K4me2/3
JARID1B/PLU-1 KDM5B H3K4me1/2/3
JARID1C/SMCX KDM5C H3K4me2/3
JARID1D/SMCY KDM5D H3K4me2/3
JHDM2A KDM3A H3K9me1/2
JHDM2B KDM3B H3K9me1/2/3
JHDM2C KDM3C H3K9me1/2
JMJD2A/JMJD3A KDM4A H3K9me3/2, H3K36me2/3
JMJD2B KDM4B H3K9me2/3, H3K36me2/3
JMJD2C/GASC1 KDM4C H3K9me2/3, H3K36me2/3
JMJD2D KDM4D H3K9me2/3
PHF2 KDM7C H3K9me1/2, H3K27me1/2
PHF8 KDM7B H3K9me1/2, H4K20me1
JHDM1D KDM7A H3K9me1/2, H3K27me1/2
UTX KDM6A H3K27me2/3
JMJD3 KDM6B H3K27me2/3
JHDM1A/FBXL11 KDM2A H3K36me1/2
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whole-genome bisulfite sequencing and 5hmC-sequencing 
[114, 115]. In 2013, Papait and co-workers studied cardio-
myocytes isolated from mice subjected to TAC, combining 
data from ChIP-sequencing for seven different histone marks 
(H3K9ac, H3K27ac, H3K4me3, H3K79me2, H3K9me2, 
H3K9me3, and H3K27me3) and RNA-sequencing data. 
Taking this approach, they identified a particular epigenetic 
signature that regulated the promoter activity of 325 of 1109 
genes in experimental hypertrophic heart failure that was 
characterized by the mutual exclusion of histone modifica-
tions that mark areas of transcriptional activation (H3K9ac, 
H3K27ac, H3K4me3, and H3K79me2) and repression 
(H3K9me2, H3K9me3, and H3K27me3) [114]. They also 
identified more than 9000 possible active enhancers asso-
ciated with experimental cardiac hypertrophy [114]. More 
recently, Gilsbach and colleagues set out to examine the epi-
genomic signature of human cardiomyocytes during devel-
opment, postnatal maturation, and in chronic heart failure. 
The investigators purified cardiomyocyte nuclei from human 
cardiomyocytes and subjected the samples to whole-genome 
bisulfite sequencing, 5hmC-sequencing, ChIP-sequencing 
for seven histone marks (H3K27ac, H3K9ac, H3K36me3, 
H3K4me1, H3K4me3, H3K9me3, and H3K27me3), 
and RNA-sequencing for nuclear gene expression. They 
reported that prenatal development and postnatal matura-
tion are characterized by active CpG methylation and histone 
marks at cis-regulatory and genic regions, but that, in heart 
failure, there are changes in active histone marks without 
major changes in CpG methylation. These active histone 
marks were H3K27ac, H3K4me3, H3K4me1, H3K9ac, and 
H3K36me3 [115]. The findings highlight the close interre-
lationship between DNA methylation patterns and histone 
modifications, and underscore the paradigm that, once they 
are established, DNA methylation patterns are highly stable, 
whereas histone modifications are more labile [74]. The der-
ivation of epigenomic blueprints such as these may aid the 
development of future treatments, for instance, by facilitat-
ing the generation of cardiomyocytes from embryonic stem 
cells or induced pluripotent stem cells or by facilitating the 
epigenomic reprogramming of cells into cardiomyocytes 
in vivo [115].

Histone protein modifications and heart 
failure in diabetes

In Table 5, we have summarized some of the most salient 
studies of the roles of histone proteins in heart failure. Of 
these 22 studies, 6 have focused on the roles of histone pro-
tein post-translational modifications in diabetes and they 
are elaborated upon here. One of the first reports describ-
ing alterations in histone protein modifications in the dia-
betic heart examined global histone changes in the hearts of 

uninephrectomized Type 2 diabetic db/db mice and reported 
an overall change in the cardiac histone signature in diabetes 
(i.e. increased levels of H3K23ac, H3K9ac, H3Ser10 phos-
phorylation, and H3K4me2 and reduced levels of H3K9me2) 
[116]. In the context of our current understanding of the 
complexity of epigenomic organization, the significance of 
overall global changes in these histone marks is uncertain. 
Concurrently, experiments in the H9c2 rat cardiomyocyte 
cell line have suggested that high glucose levels can them-
selves induce specific alterations in histone marks at the sites 
of genes encoding proteins important for cardiomyocyte 
survival and inflammation. For instance, high glucose has 
been proposed as being responsible for an HDAC1-depend-
ent diminution in histone H4 acetylation at the insulin-like 
growth factor-1 receptor (IGF-1R) promoter that resulted in 
a decrease in IGF-1R expression accompanied by enhanced 
programmed cell death [117]. The same investigators fol-
lowed this work up by demonstrating that transient exposure 
of H9c2 cells to high glucose caused decreased levels of the 
repressive H3K9me3 mark (and the H3K9 trimethylating 
enzyme SUV39H1) at the promoter region of the proinflam-
matory cytokine interleukin-6 (IL-6), resulting in persistent 
IL-6 upregulation [118].

In vivo, treatment of fructose-fed diabetic rats with res-
veratrol deacetylated both the p65 subunit of nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
and H3K9, and attenuated cardiac hypertrophy and oxi-
dative stress through downregulation of NADPH oxidase 
[119]. Separately, activity of the Class I HDAC, HDAC3 
was found to be significantly increased in the hearts of Type 
1 diabetic OVE26 mice, whereas selective HDAC3 inhibi-
tion improved diabetes-induced cardiac dysfunction [120]. 
In that study, HDAC3 inhibition led to the acetylation of 
histone H3 at the promoter region of the gene encoding the 
nuclear ERK1/2 phosphatase, dual specificity phosphatase 
5 (DUSP5), preventing diabetes-associated DUSP5 down-
regulation, which the authors speculated was responsible 
for ERK1/2-driven cardiac dysfunction in diabetes [120]. 
A number of other studies have reported an improvement 
in the cardiac phenotype of diabetic rodents treated with 
pharmacological agents that influence the activity of HAT 
[121, 122] or HDAC enzymes [123–126]. However, because 
of the breadth of their enzymatic substrates, it is difficult to 
determine which, if any, of their effects are mediated through 
the post-translational modification of histone proteins.

With respect to histone modification changes that occur 
in people with diabetes, cardiac mesenchymal cells obtained 
from individuals with Type 2 diabetes have been character-
ized as having diminished H3Ser10 phosphorylation levels 
accompanied by decreased differentiation potential, reduced 
proliferation, and premature senescence [127]. This obser-
vation is significant, because it serves to highlight the dual 
functionality of H3Ser10 phosphorylation. On one hand, 
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H3Ser10 phosphorylation associates with open chromatin 
and facilitates gene transcription during interphase. On the 
other hand, it marks highly condensed chromatin during 
mitosis, peaking during metaphase [128, 129], and it may, 
therefore, be used as a marker of cellular proliferation. Aside 
from these changes in histone phosphorylation, cardiac mes-
enchymal cells from individuals with Type 2 diabetes also 
exhibited a specific histone signature characterized by a 
predominance of histone marks associated with transcrip-
tional repression (H3K9me3, H3K27me3, and H3K20me3) 
together with a decrease in histone marks typically associ-
ated with active chromatin (H3K9ac and H4K16ac) [127]. 
Moreover, treatment with a GNAT proactivator was able to 
restore H3K9ac and H4K16ac levels, and improve the pro-
liferation and differentiation of cardiac mesenchymal cells 
derived from individuals with Type 2 diabetes [127].

The role of histone protein modifications 
in pathogenetic processes important 
to the development of heart failure 
in diabetes but studied in non‑cardiac cells

Although numerous studies have pointed to the importance 
of histone protein modifications in the development of heart 
failure, relatively few have examined their effects in heart 
failure in diabetes. This may be, at least in part, due to the 
limitations imposed by current models of cardiac dysfunc-
tion in diabetes. In particular, it is noteworthy that much of 
the current evidence indicating that histone protein post-
translational modifications can affect cardiac function is 
derived from studies that have employed the TAC model of 
hypertrophic heart failure (Table 5). LVH is also a common 
predeterminant of heart failure in people with diabetes [130]. 
However, it is typically absent in rodent models of diabetes. 
For instance, the most widely studied model of diabetes and 
cardiac dysfunction is the streptozotocin-induced diabetes 
model, yet these animals do not develop cardiac hypertro-
phy [131] and the most commonly studied model of Type 2 
diabetes is the db/db mouse [131], yet db/db mice appear to 
be relatively protected from cardiac dysfunction induced by 
TAC surgery [130]. Thus, the limitations of current experi-
mental models may impede elucidation of the role of histone 
modifications in heart failure in diabetes. In this context, is 
it instead possible to derive clues as to their potential roles 
by examining the effects of histone post-translational modi-
fications in other diabetes complications that are caused by 
similar pathogenetic processes?

Fibrosis

Fibrosis is a common end process in heart failure, including 
in the diabetic setting [132]. Whereas little is known about Ta
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the influence of histone protein modifications on cardiac 
fibrosis in diabetes, their effects on fibrosis of the diabetic 
kidney have been explored (reviewed in Ref. [133]). Here, 
we highlight two examples in which specific histone modifi-
cations have been found to promote fibrotic gene expression 
in renal cells. In a seminal report published in 2010, Sun and 
co-workers probed for changes in histone methylation marks 
at the promoter regions of genes encoding extracellular 
matrix proteins in rat glomerular mesangial cells exposed to 
the profibrotic growth factor, transforming growth factor-β1 
(TGF-β1) [126]. The investigators found increased lev-
els of chromatin marks associated with active genes (i.e., 
H3K4me1-3, accompanied by increased expression and 
recruitment of the H3K4 methyltransferase SET7/9) and 
decreased levels of marks associated with gene repression 
(i.e., H3K9me2 and H3K9me3), whereas treatment of high 
glucose exposed cells with a neutralizing TGF-β1 antibody 
prevented these histone changes [126]. Separately, myo-
cardin-related transcription factor-A (MRTF-A) is a serum 
response factor cofactor that promotes cardiac myofibroblast 
activation and fibrosis [134]. In diabetic mice, deletion of 
MRTF-A attenuated renal tubulointerstitial fibrosis and was 
accompanied by the loss of histone modifications indica-
tive of transcriptional activation (i.e., H3K18ac, H3K27ac, 
and H3K4me3) [135]. These effects, in renal epithelial cells 
exposed to high glucose, were attributed to the recruitment 
by MRTF-A of both the histone acetyltransferase, p300, and 
a component of the H3K4 methyltransferase complex, WD 
repeat-containing protein 5 to the promoter regions of target 
fibrotic genes [135].

Advanced glycation end products

Advanced glycation end products are formed when nonen-
zymatic reactions take place between reducing sugars and 
free amino groups of proteins, lipids, or nucleic acids [136]. 
Because they are stable and long lasting, AGEs have been 
implicated in the development and progression of many of 
the long-term complications of diabetes [137], including 
heart failure [132]. AGEs may directly modify histone pro-
teins, and this may directly affect chromatin structure and 
gene expression [138, 139]. The effects of AGEs may also 
themselves be influenced by histone protein modifications. 
For instance, in monocytes, the induction of inflammatory 
genes by ligands of the receptor for advanced glycation end 
products (RAGE) was attenuated by knockdown of SET7/9 
[140].

Oxidative stress

Studies have demonstrated a bidirectional association 
between histone modifications and oxidative stress in 
diabetes, whereby, on one hand, reactive oxygen species 

(ROS) may influence the formation of new histone modi-
fications under high glucose conditions, and, on the other 
hand, histone modifications may influence the develop-
ment of oxidative stress. As an illustration of how ROS 
may influence histone modifications, El-Osta and co-work-
ers demonstrated the effects of transient exposure of aortic 
endothelial cells to high glucose on histone changes at the 
promoter region of the gene encoding the p65 subunit of 
the proinflammatory nuclear factor, NF-κB [141]. They 
found that high glucose caused persistent p65 upregula-
tion that was mediated by SET7-induced histone H3K4 
monomethylation [141]. This persistent upregulation of 
p65 was prevented by overexpression of either uncoupling 
protein-1 or manganese superoxide dismutase (MnSOD), 
which both prevent high glucose-induced superoxide accu-
mulation, or by overexpression of glyoxalase 1, which 
metabolizes methylglyoxal a precursor of AGEs [141]. In 
contrast, in rat retinal endothelial cells, regulation of the 
gene encoding MnSOD is itself associated with specific 
chromatin modifications under diabetic conditions (i.e., 
H4K20me3 and H3K9ac) [142]. Our own work on his-
tone modifications and oxidative stress in diabetes has 
focused on the regulation of enzymatic antioxidant repair 
mechanisms. Thioredoxin-interacting protein (TxnIP) is 
a glucose-regulated inhibitor of the endogenous antioxi-
dant enzyme, thioredoxin. TxnIP is upregulated in both the 
diabetic kidney [143] and the diabetic heart [144], and it 
predisposes to diabetes-associated oxidative damage [143, 
144]. In mouse glomerular podocytes, depletion of the 
histone H3K27 trimethylating enzyme enhancer of zeste 
homolog 2 (EZH2) was accompanied by de-repression of 
TxnIP and augmented oxidative injury [145]. Interestingly, 
however, in these studies, we did not find the repressive 
H3K27me3 mark at the mouse TxnIP promoter; rather, 
EZH2 depletion caused loss of H3K27me3 at the promoter 
region of the gene encoding the transcription factor Pax6 
associated with de-repression of Pax6 which subsequently 
bound to the TxnIP promoter controlling expression of its 
gene product [145].

Endothelial dysfunction

TxnIP may itself also influence endothelial dysfunction in 
diabetes by inducing histone modifications. In rat retinal 
endothelial cells, for example, RAGE activation upregu-
lated cyclooxygenase-2 (COX-2) in a TxnIP-dependent 
manner and TxnIP overexpression caused an increase in 
the H3K9ac mark (associated with transcriptional activa-
tion) and a decrease in the H3K9me3 mark (associated 
with transcriptional repression) at the proximal COX-2 
promoter [146].  p66Shc is an adaptor protein that con-
tributes to mitochondrial ROS generation by accepting 
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electrons from cytochrome c. In endothelial cells, the class 
III HDAC, SIRT1 binds to the  p66Shc promoter region, 
causing a decrease in histone H3 acetylation, repress-
ing  p66Shc and protecting against hyperglycemia-induced 
endothelial dysfunction [147]. In individuals with Type 2 
diabetes, intensive glycemic control did not improve bra-
chial artery flow-mediated dilatation and, associated with 
this persistent abnormality in endothelial function, there 
was persistent downregulation of SIRT1 and of histone 
H3 acetylation at the  p66Shc promoter (along with DNA 
hypomethylation) [148].

Inflammation

A number of examples already cited above have explored 
the contributions of histone protein modifications to the 
long-term complications of diabetes in the context of 
inflammation. Elsewhere, in glomerular podocytes, the 
class III HDAC, SIRT6 limits inflammation and deacety-
lates H3K9 at the promoter regions of the Notch ligands, 
Notch1 and Notch4 [149]; the proinflammatory phenotype 
of macrophages in Type 2 diabetes has been attributed to a 

Jmjd3-mediated loss of the repressive H3K27me3 mark at 
the promoter region of the gene encoding IL-12 [150]; and 
vascular smooth muscle cells (VSMCs) from db/db mice 
exhibited loss of the repressive H3K9me3 histone mark at 
the promoter regions of key proinflammatory genes, as did 
human VSMCs exposed to high glucose [151].

Glucose metabolism, fatty acid utilization, and small 
vessel disease

The roles that epigenetic processes play in glucose metabo-
lism and fatty acid utilization have recently been reviewed 
elsewhere [152–154]. With respect to small vessel disease, 
histone protein changes have been observed at the gene 
encoding matrix metalloproteinase-9 (MMP-9), which aug-
ments retinal capillary cell programmed cell death. More 
particularly, Zhong and co-workers found decreased levels 
of the repressive H3K9me2 mark and increased levels of 
the activating H3K9ac mark at the MMP-9 promoter in high 
glucose exposed retinal endothelial cells [155]. This effect 
was attributed by the authors to diabetes-induced increases 
in the expression and activity of LSD1 which demethylates 

Fig. 3  Schematic illustration of the roles that histone protein post-
translational modifications may play in the development of heart 
failure in diabetes. Diabetes and its comorbidities cause changes in 
repressive and activating histone marks that alter chromatin assem-
bly. This in turn affects the cellular transcriptome and proteome 
promoting cellular injury processes in diabetes. These processes 
can themselves affect histone protein modifications. The result is a 

change in cardiac phenotype leading to left ventricular hypertrophy 
and dysfunction and thus heart failure in diabetes. PTM post-trans-
lational modification, H3R2me methylation of arginine 2 on histone 
H3, H3Ser10p phosphorylation of serine residue 10 on histone H3, 
H3Ser28p phosphorylation of serine residue 28 on histone H3, AGE 
advanced glycation end product
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H3K9me2, freeing up H3K9 for acetylation and, in turn, 
facilitating the recruitment of p65, upregulating MMP-9, and 
predisposing to mitochondrial damage and cell death [155].

In summary, a body of literature evidence exists attesting 
to the roles that histone protein post-translational modifica-
tions play in the development of heart failure and a compa-
rable body of literature exists attesting to their contributions 
to end-organ injury in diabetes. Evidence is likewise begin-
ning to emerge linking histone modifications specifically to 
the development of heart failure in diabetes. The putative 
mechanisms through which this may occur are summarized 
in Fig. 3. It is noteworthy, however, that one of the defin-
ing characteristics of histone modifications is that they are 
lineage-specific [156]. Thus, caution should be taken in 
extrapolating findings from other model systems and the 
determination of the extent to which histone modifications 
do contribute to the development of heart failure in diabetes 
requires further direct experimentation.

Future directions: therapeutically targeting 
histone‑modifying enzymes in the clinic

Whereas the understanding of the fundamental mechanisms 
of disease is creditable in its own right, the evolving diabe-
tes pandemic and the grim prognosis of those individuals 
who develop heart failure in diabetes demand our earnest 
efforts to seek out new treatment opportunities. Thus, what 
evidence exists that histone protein modifications can be 
amenable to therapeutic manipulation in patients? A num-
ber of therapies that target histone-modifying enzymes have 

received regulatory authority approval or are undergoing 
clinical trial evaluation (Table 6). In most cases, these agents 
are currently undergoing evaluation, or have been approved, 
for the treatment of various malignancies, particularly hema-
tological malignancies.

If the therapeutic manipulation of histone protein modi-
fications is going to find a place in the treatment of heart 
failure in diabetes advances need to be made at both the 
fundamental and pharmacological levels. As has already 
been highlighted, evidence exists that histone protein post-
translational modifications are awry in heart failure and 
in other long-term complications of diabetes. However, 
much needs to be done to better understand their relative 
contributions to the development of heart failure in diabe-
tes. This will require animal models that better recapitulate 
the human disease state and a recognition that humans and 
rodents will likely differ in their disease-specific epigenomes 
[157]. At the pharmacological level, the therapies that are 
most advanced in their clinical development are inhibitors 
of HDAC enzymes and inhibitors of the H3K27 trimethyl-
ating enzyme, EZH2 (Table 6). As already emphasized, at 
least in the former case, given the breadth of their poten-
tial substrates, the biologic effects of HDAC inhibitors in 
the clinic cannot be assumed to be mediated solely by the 
acetylation of histone proteins. Furthermore, these agents 
may have adverse effect profiles that, whilst tolerable in the 
cancer setting, are unacceptable for the treatment of chronic 
disease. For instance, the most common adverse effects of 
the HDAC inhibitor vorinostat (occurring with an incidence 
≥ 20%) are diarrhea, nausea, anorexia, fatigue, thrombocy-
topenia, and dysgeusia [158]. Finally, most of the currently 

Table 6  Approved therapies and therapies under clinical trial evaluation whose mechanism of action involves the inhibition of histone-modify-
ing enzymes

Therapy Class Latest stage of development Indication or National Clinical Trial identifier number

Vorinostat HDAC inhibitor FDA approved Cutaneous T cell lymphoma
Romidepsin HDAC inhibitor FDA approved Cutaneous T-cell lymphoma and other peripheral 

T-cell lymphomas
Belinostat HDAC inhibitor FDA approved Peripheral T-cell lymphoma
Panobinostat HDAC inhibitor FDA approved Multiple myeloma
Chidamide HDAC inhibitor Approved in China Relapsed or refractory T-cell lymphoma
Entinostat HDAC inhibitor Phase 3 NCT02115282
Tazemetostat EZH2 inhibitor Phase 2 NCT018975751, NCT02875548, NCT02601950
Givinostat HDAC inhibitor Phase 2 NCT01761968
Mocetinostat HDAC inhibitor Phase 2 NCT0205660, NCT02954991
Tinostamustine First-in-class alkylating HDAC 

inhibitor
Phase 1/2 NCT03345485

INCB059872 LSD1 inhibitor Phase 1/2 NCT02712905
DS-3201b EZH1/EZH2 dual inhibitor Phase 1 NCT02732275
CXD101 HDAC inhibitor Phase 1 NCT01977638
MPT0E028 HDAC inhibitor Phase 1 NCT02350868
CPI-1205 EZH2 inhibitor Phase 1 NCT02395601
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utilized HDAC inhibitors lack HDAC specificity. Vorinostat, 
for instance, inhibits Class I HDACs (HDAC1, HDAC2, and 
HDAC3) and Class II HDACs (HDAC6) at low nanomo-
lar concentrations (< 86 nM) [159]. Whereas other HDAC 
inhibitors may inhibit solely Class I HDACs (e.g., moceti-
nostat and entinostat) [160, 161], the development of iso-
form-specific agents is still in its relative infancy [162–165]. 
Whether it will be possible to develop agents with sufficient 
tolerability and with sufficient specificity that they can be 
used for the treatment of complex chronic diseases, such as 
heart failure, remains to be seen.

Summary

It is 15 years, since Dr. David Bell described heart failure 
as “the frequent, forgotten, and often fatal complication of 
diabetes” [4]. Although the results of recent outcome tri-
als assure that heart failure may, perhaps, no longer be the 
forgotten complication of diabetes, it remains frequent and 
often fatal. Histone protein modifications have emerged as 
pivotal players in both the development of diabetes-associ-
ated injury to other organ systems and in heart failure that is 
not caused by diabetes, especially hypertrophic heart failure 
which is a common occurrence in patients with diabetes. 
Histone protein post-translational modifications are amena-
ble to therapeutic manipulation and there is a rapidly prolif-
erating armamentarium of small molecule pharmaceuticals 
that alter these processes and that are under investigation in 
other disease settings. It remains to be seen whether altered 
histone protein modifications may be amenable enough or 
whether any of the existing or future tools will be specific 
enough or tolerable enough to improve outcomes for the 
millions of individuals currently affected by heart failure 
in diabetes.
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