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in ADtg mice were further achieved through increased 
cerebral recruitment of myelomonocytes overexpressing 
Aβ-degrading enzymes. This review summarizes the litera-
ture on cellular and molecular mechanisms of cerebral Aβ 
clearance with an emphasis on the role of peripheral mono-
cytes and macrophages in Aβ removal.
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Abbreviations
AD  Alzheimer’s disease
ADtg  AD transgenic models
Aβ  Amyloid-β protein
AICD  Amyloid intracellular domain
APP  Amyloid precursor protein
ACE  Angiotensin-converting enzyme
ApoE  Apolipoprotein E
ApoER2  ApoE receptor 2 A
AQP4  Aquaporin 4
ABC  ATP-binding cassette
AV  Autophagic vacuole
BACE1  β-secretase 1
BBB  Blood–brain barrier
CCR2  c-c chemokine receptor type 2
CNS  Central nervous system
CAA  Cerebral amyloid angiopathy
CSF  Cerebrospinal fluid
CMA  Chaperone-mediated autophagy
ECE-1  Endothelin-converting enzyme 1
FAD  Familial Alzheimer’s disease
GWAS  Genome-wide association study
GA  Glatiramer acetate
GFP  Green fluorescent protein

Abstract Deficiency in cerebral amyloid β-protein (Aβ) 
clearance is implicated in the pathogenesis of the common 
late-onset forms of Alzheimer’s disease (AD). Accumula-
tion of misfolded Aβ in the brain is believed to be a net 
result of imbalance between its production and removal. 
This in turn may trigger neuroinflammation, progressive 
synaptic loss, and ultimately cognitive decline. Clearance 
of cerebral Aβ is a complex process mediated by various 
systems and cell types, including vascular transport across 
the blood–brain barrier, glymphatic drainage, and engulf-
ment and degradation by resident microglia and infiltrating 
innate immune cells. Recent studies have highlighted a new, 
unexpected role for peripheral monocytes and macrophages 
in restricting cerebral Aβ fibrils, and possibly soluble oli-
gomers. In AD transgenic (ADtg) mice, monocyte ablation 
or inhibition of their migration into the brain exacerbated 
Aβ pathology, while blood enrichment with monocytes and 
their increased recruitment to plaque lesion sites greatly 
diminished Aβ burden. Profound neuroprotective effects 
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HLA  Human leukocyte antigen
pTau  Hyperphosphorylated tau
ITIM  Immunoreceptor tyrosine-based inhibition 

motif
IDE  Insulin-degrading enzyme
IL-1β  Interleukin-1β
IL-10  Interleukin-10
ISF  Interstitial fluid
Iba1  Ionized calcium binding adapter molecule 1
LOAD  Late-onset AD
LPS  Lipopolysaccharide
LRP-1  Low-density lipoprotein-related protein 1
LDLR  Low-density lipoprotein receptor
M-CSF  Macrophage colony-stimulating factor
SCARA1  Macrophage scavenger receptor 1
mTOR  Mammalian target of rapamycin
MMP-9  Matrix metalloproteinase-9
MCP-1  Monocyte chemotactic protein 1
MOG45D  Myelin oligodendrocyte glycoprotein-derived 

peptide
NEP  Neprilysin
NFTs  Neurofibrillary tangles
PBMC  Peripheral blood monocyte
PICALM  Phosphatidylinositol binding clathrin assem-

bly protein
PS1;PS2  Presenilin-1 and -2
ptau  Hyperphosphorylated tau protein
ROS  Reactive oxygen species
RAGE  Receptor for advanced glycation end products
RFP  Red fluorescent protein
CD33  Sialic acid-binding immunoglobulin-like 

lectin 3
SNP  Single nucleotide polymorphism
TLR  Toll-like receptor
TGF-β  Transforming growth factor β
TREM2  Triggering receptor on myeloid cells 2
TNFα  Tumor necrosis factor
UPS  Ubiquitin–proteasome system
VLDLR  Very low-density lipoprotein receptor

Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative 
disorder and the most common form of senile dementia, 
affecting over 5 million in the United States and 45 million 
worldwide [1, 2]. AD manifests as a progressive decline in 
cognitive function and behavior, invariably leading to death 
[3]. The epidemic of AD is especially damaging to the 
growing elderly population and the economy that supports 
them. This immense psychosocial and public health burden 
calls for a clearer understanding of disease pathophysiology 

to facilitate the development and implementation of more 
effective treatment strategies.

Over the past century, our understanding of the molec-
ular mechanisms underlying the development of AD has 
greatly expanded. Though still pathological hallmarks, 
extracellular plaques and intracellular neurofibrillary tan-
gles (NFTs) within the brain [4], comprised, respectively, 
of  amyloid-β protein (Aβ) and hyperphosphorylated tau 
(pTau), no longer describe all pathogenic forms of these 
proteins. Beyond intracellular threads and tangles, mis-
folded tau may form extracellular assemblies that propa-
gate through and disrupt synaptically dense regions [5, 6]. 
Meanwhile, extracellular and intracellular oligomers of 
Aβ were also found to be highly synaptotoxic and exist in 
a highly dynamic equilibrium between the small, soluble 
forms and the larger, insoluble intermediates and fibrils [7, 
8]. Recent exploration of this disease outside the brain, in 
another central nervous system tissue, has further revealed 
Aβ pathology in the retina of AD patients, including those 
at early stages [9–13]. Converging data from genetic, physi-
ologic, biochemical, and clinical studies demonstrate a 
strong association between Aβ accumulation and neuroin-
flammation, synaptic loss, impaired neuronal function, and 
ultimately, debilitating cognitive decline [3, 14]. Progres-
sive accumulation and aggregation of Aβ peptides in the 
brain are thought to be a net result of imbalance between 
their production and clearance [15]. Moreover, the dramatic 
increase in cerebral Aβ far precedes the clinical impair-
ment, beginning as early as 20 years prior to symptom 
manifestation [16]. Therefore, a common view is that any 
strategy that reduces Aβ levels in the brain, either by inhib-
iting its production/aggregation or by increasing its clear-
ance, will be advantageous in preventing the development 
of AD.

Aβ denotes a group of endogenous peptides, typically of 
36–43 amino acids. It derives from a larger transmembrane 
protein, the amyloid precursor protein (APP), in a complex 
proteolytic process, described extensively elsewhere [17]. 
The disease-associated (amyloidogenic) aggregation-prone 
Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42) alloforms are gener-
ated through a sequential cleavage of APP by a β-secretase 
(BACE1) and a γ-secretase transmembrane complex. 
Mutations within the gene encoding APP and its Aβ cod-
ing sequence were found to cause early-onset, autosomal-
dominant inherited forms of familial AD (FAD) [18]. Simi-
larly, patients with Down syndrome (trisomy 21) who carry 
three copies of the APP gene develop AD-like Aβ and tau 
neuropathology, leading to cognitive decline [19]. In addi-
tion, inheritance of mutations within the genes encoding 
for presenelin-1 and -2 (PS1 and PS2), two components of 
the γ-secretase complex, invariably lead to FAD [20–22] 
(Table  1). These rare mutations and haplotypes result in 
either overproduction or increased aggregation of Aβ, and 
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Table 1  Genes associated with Alzheimer’s disease

Gene Type FREQa Risk Locus Variants ↑ Aβ prod. ↓ Aβ clear. Effects on Aβb References

APP FADc Rare 21q21.3 Mutations Trisomy 
21

✓ – ↑ Aβ42/40 ratio; ↑ 
Aβ42 aggregation

[4, 18, 21, 26–28]

PSEN1 FADc Rare 14q24.3 Mutations ✓ – ↑ Aβ42/40 ratio [20, 21, 23, 26, 
28–31]

PSEN2 FADc Rare 1q42.13 Mutations ✓ – ↑ Aβ42/40 ratio [21–23, 26, 28, 31]

ABCA7 LOAD 16% 19p13.3 rs3764650
rs3752246
rs4147929

✓ ✓ Understudied; ↑ Aβ 
secretion; ↓ MΦ/
MG Aβ phago-
cytosis

[21, 32–39]

ADAM10 LOAD Rare 15q21.3 Q170H
R181G

✓ – ↑ Aβ production; 
↓ α-secretase 
activity

[40–43]

ACE LOAD 33–48% 17q23.3 Indel; rs4219
rs1800764
rs4343

– ✓ Controversial; ↓ Aβ 
degradation; ↑ Aβ 
levels

[43–50]

APOE4d LOAD 3%e 19q13.2 ε4  Allelef

ε2  Alleleg
– ✓ ↓ Chaperone-medi-

ated Aβ process-
ing, clearance

[51–56]

BIN1 LOAD 45% 2q14 rs744373
rs7561528

✓ ✓ ↑ Aβ production; 
May ↓ MΦ Aβ 
phagocytosis

[33, 34, 57–61]

CD2AP LOAD 3% 6p12 rs9296559
rs9349407

– ✓ ↑Aβ plaque burden; 
↓ Endosome/lyso-
some clearance

[33, 37, 57, 62, 63]

CD33 LOAD 30% 19q13.3 rs3865444g

rs3826656
– ✓ ↓ Mo/MG Aβ 

phagocytosis
[33, 34, 64–67]

CLU LOAD 38% 8p21-p12 rs9331896 – ✓ ↓ Chaperone-medi-
ated Aβ clearance

[32, 68–75]

CR1 LOAD 20% 1q32 rs3818361
rs6656401
rs6701713

– ✓ ↓ Immune-
mediated Aβ 
clearance; ↑ Aβ42 
levels

[33, 34, 76–79]

EPHA1 LOAD 34% 7q34 rs11771145g

rs11767557g
– ✓ Understudied; ↓ 

Immune-medi-
ated Aβ clearance

[32–34, 80–82]

PICALM LOAD 36% 11q14 rs3851179g

rs541458g
✓ ✓ ↓ Trafficking of Aβ 

across BBB; ↑ Aβ 
production

[83–89]

SIRT1 LOAD – 10q21.3 – ✓ ✓ ↑ MG-dependent 
Aβ toxicity; 
↓ α-secretase 
activity

[32, 90–95]

SORL1 LOAD 4% 11q23.2-q24.2 rs12285364
rs2070045 

rs2282649

✓ ✓ ↑ Aβ production; ↓ 
APP trafficking to 
endosomes

[94, 96–101]



2170 L. Zuroff et al.

1 3

importantly, in favored generation of the more pathogenic 
Aβ42 alloforms [4, 23]. These findings strongly tie Aβ to 
the etiology of AD. Further support for this notion came 
recently from the identification of a protective APP muta-
tion in non-demented Icelanders [24]. The A673T muta-
tion in APP (alternatively called A2T mutation in Aβ) was 
shown to reduce amyloidogenic Aβ production and aggre-
gation, providing protection against age-associated cogni-
tive decline [24, 25].

While FAD represents approximately 5% of all AD 
cases, the remaining majority of AD cases manifest later in 
life (typically over 65 years of age), and are termed spo-
radic or late-onset AD (LOAD). The etiology of LOAD 
is multifactorial: multiple genetic and environmental fac-
tors likely contribute to the development of disease. Strong 
support for the role of Aβ accumulation in both AD forms 
came from several clinical studies. While in FAD cases cer-
ebral Aβ increase was explained by Aβ42 overproduction 
[109], deficient Aβ42 clearance was shown in the brains of 
LOAD patients [110]. Despite differences in etiology, FAD 
and LOAD are neuropathologically indistinguishable and 
present with similar clinical phenotypes [4].

Growing evidence indicates that Aβ exerts its neurotoxic 
effects in both an alloform- and conformation-depend-
ent manner [7]. Small, soluble oligomeric forms of Aβ42 
were shown to be especially neurotoxic [111–113] and 
more strongly predict cognitive decline than Aβ plaque 
load [114, 115]. Specifically, Aβ oligomers were shown to 
impact long-term potentiation, synaptic signaling and plas-
ticity, dendritic morphology, and cognition in rodent mod-
els [113, 116–119]. Additionally, Aβ was shown to impair 
neuronal glucose transport [120] and accumulate within 

mitochondria [121], disrupting vital enzymatic activity and 
increasing free radical production [122]. Aβ fibrils can also 
induce inflammatory processes by binding to and activating 
microglia [123, 124] and peripheral monocytes [125–127]. 
This toxic microenvironment was further associated with 
impaired calcium regulation and energy metabolism 
throughout CNS tissues [128]. Beyond amyloid pathol-
ogy in brain parenchyma, AD patients frequently exhibit 
cerebral amyloid angiopathy (CAA) along with reduced 
cerebral blood flow that can further compromise cognitive 
capacity [129]. This phenomenon was also found in retina 
microvasculature [13, 130]. In murine models of AD, it 
was recently found that vascular amyloid deposits hardened 
blood vessel walls and reduced blood flow [131].

Although the existence of Aβ plaques and NFTs estab-
lishes the definitive diagnosis of AD, many researches 
have challenged the predominant belief that Aβ is central 
to the development of disease. For example, studies have 
demonstrated that NFT pathology correlates more strongly 
than amyloid plaque load with brain atrophy and cogni-
tive decline [132, 133]. In addition, clinical trials targeting 
cerebral Aβ plaque removal in symptomatic patients have 
largely failed to provide a clinical benefit and have conse-
quently raised concerns regarding the role of Aβ in the eti-
ology and treatment of AD [134]. Alternative theories of 
AD pathogenesis have also been postulated. For instance, 
different groups consider AD to be a combination of mul-
tiple disorders of diverse etiology [135], a by-product of 
normal aging [136, 137], or initiated by faulty immune 
activation [138]. Others have described AD as a metabolic 
disorder similar to diabetes, and even coined the term Type 
3 Diabetes to highlight their shared molecular and cellular 

ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7, ACE angiotensin-converting enzyme, APOE apolipoprotein E, APP amyloid 
precursor protein, BIN1 bridging integrator 1, CD2AP CD2-associated protein, CD33 sialic acid-binding immunoglobulin-like lectin 3, Clear. 
clearance, CLU clusterin (apolipoprotein J), CR1 complement component (3b/4b) receptor 1, EPHA1 EPH receptor A1, Exp. gene expression 
levels in AD, FAD early onset familial AD: inherited in an autosomal dominant fashion, Load late onset AD, Mo/MΦ monocytes/macrophages, 
MG microglia, PICALM phosphatidylinositol binding clathrin assembly protein, Prod. production, PSEN1 presenilin 1, PSEN2 presenilin 2, 
SIRT1 sirtuin 1, SNPs single nucleotide polymorphisms, SORL1 sortilin-related receptor 1, TREM2 triggering receptor expressed on myeloid 
cells 2
a Approximate frequency
b Postulated effects on Aβ and related immune response
c Rare variants identified in LOAD
d Strongest genetic risk factor for LOAD
e Carriers of one or two APOε4 alleles
f Dose-dependent effect of Apoε4 alleles
g Reduced risk for AD

Table 1  (continued)

Gene Type FREQa Risk Locus Variants ↑ Aβ prod. ↓ Aβ clear. Effects on Aβb References

TREM2 LOAD 6% 6p21.1 rs75932628 – ✓ Controversial; ↓ 
Mo phagocyto-
sis and immune 
response

[102–108]
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disturbances, such as insulin resistance, oxidative stress, 
and glycogen synthase kinase 3β activation [139]. These 
data are essential as the field continues to both expand and 
refine our understanding of AD pathogenesis and explore 
potential therapeutic avenues. However, this evidence does 
not preclude Aβ from playing a principal role in disease. 
Indeed, several studies have demonstrated that the pres-
ence of misfolded Aβ is sufficient to induce pTau and NFTs 
in vitro and in vivo [140–143]. Furthermore, overwhelm-
ing data from preclinical animal models have shown that 
targeting the production, aggregation, or immune-based 
removal of Aβ, and especially soluble Aβ42, preserved 
synapses and neuronal function as well as prevented cog-
nitive decline [10, 144–146]. Importantly, a recent promis-
ing phase Ib human clinical trial, using a monoclonal anti-
body (aducanumab) to target the removal of both soluble 
oligomeric and fibrillar Aβ, has reinvigorated the field of 
Aβ-centered AD therapeutics. After 1 year of monthly adu-
canumab infusions, patients with prodromal or mild AD 
displayed a reduced cerebral Aβ plaque load and, by pre-
liminary analyses, exhibited slowing of cognitive decline 
[147]. Taken together, it is no surprise that Aβ, in its vari-
ous forms, remains the focus of AD research and a target 
for AD prevention and therapy.

In this review, we summarize various cellular and 
molecular, physiologic mechanisms of Aβ removal from 
the brain. Specifically, we cover Aβ transport across the 
blood–brain barrier (BBB), glymphatic clearance, cellular 
uptake, and enzymatic degradation. Large-scale genetic 
studies have further cemented the connection between Aβ 
accumulation, clearance by innate immune cells, and dis-
ease risk, and will be the topic of the following section. 

Finally, we place a particular emphasis on the growing 
evidence supporting a key role for microglia, and moreo-
ver, monocyte-derived macrophages in the physiological 
clearance of cerebral Aβ (see Fig. 1), and we examine their 
potential as targets for disease-modifying therapies.

Genes related to Aβ homeostasis and Alzheimer’s 
disease

Historically, the study of AD-related genes pertained to 
the rare, inheritable and early onset forms of the disease 
(termed FAD) [4, 22]. These early genetic studies identified 
FAD as a monogenic disorder resulting from mutations in 
APP, PS1, or PS2 leading to the amyloidogenic processing 
of APP and overproduction of synaptotoxic Aβ42 (Table 1) 
[4, 23]. In contrast, the far more common, late-onset AD 
(LOAD) is a multifactorial disease, with complex and het-
erogeneous interactions between genetic and environmen-
tal factors underlying its development [149, 150]. Impor-
tantly, insufficient cerebral Aβ clearance is thought to drive 
LOAD pathogenesis [110]. The strongest known suscep-
tibility locus for LOAD encodes apolipoprotein E (ApoE) 
[51, 151]. Carriers of a single, and moreover, carriers of 
double APOE4 alleles have a significantly increased risk 
of developing AD [51, 151]. Apoε4 has been implicated 
in Aβ trafficking and neurovascular function, with possible 
additional effects on myeloid cell phenotype and ability to 
phagocytose Aβ (discussed further below) [52, 152–154]. 
Recent genome-wide association studies (GWAS), case-
control and family-based studies, whole exome sequencing 
studies, and meta-analyses of large LOAD patient datasets 

Fig. 1  Cerebral Aβ clearance by peripheral monocyte-derived mac-
rophages. a ADtg mice were immunized with dendritic cells (DCs) 
pulsed with an altered myelin-derived peptide (MOG45D). Brain-
resident microglia (MG,  Iba1+/CD45int-low), and moreover, blood-
borne infiltrating  Iba1+/CD45high macrophages (MΦ, red), are 
involved in the uptake of cerebral Aβ  (4G8+; bright white areas), as 
shown in the hippocampal region from an immunized ADtg mouse. 

Image adopted from Koronyo-Hamaoui et  al., J Neurochemistry 
[148]. b Phagocytosis of fibrillar Aβ42 (6E10) and co-localization 
within  CD163+CD36high bone marrow-derived macrophages in cul-
tures treated with glatiramer acetate (GA). c A GA-immunized ADtg 
mouse brain exhibiting increased expression of Aβ-degrading enzyme 
(MMP-9) by recruited blood-borne MΦ surrounding Aβ plaques. 
Microscopic images from Koronyo et al., Brain, [144]
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have further identified over 20 novel risk factors with vary-
ing effect sizes and frequencies in the population (Table 1) 
[32–34, 76, 83, 96, 155]. Remarkably, a vast majority of 
these risk genes are associated with Aβ processing or traf-
ficking as well as with a wide range of immunological 
responses, especially those related to myeloid cell-mediated 
Aβ clearance [156]. More specifically, LOAD risk genes 
have been demonstrated to impact inflammation (APOE, 
INDPP5D, CR1, TREM2, MS4A), complement activation 
(CLU, CR1), the HLA gene complex (HLA-DRB1, HLA-
DRB5), and myeloid cell-mediated Aβ proteolysis (ACE, 
CD2AP) and phagocytosis (APOE, BIN1, INPP5D, CR1, 
ABCA7, TREM2) [21, 156]. In particular, polymorphisms 
in the genes CD33 (sialic acid-binding immunoglobulin-
like lectin 3) and TREM2 (triggering receptor on myeloid 
cells 2) directly link impaired microglial and macrophage 
phagocytosis of Aβ to increased susceptibility to AD. The 
reported effect size of TREM2 variants on AD risk has 
varied in the literature [96, 155]: some investigations esti-
mate an odds ratio of 3–4 (similar to the risk of carrying 
a single Apoε4 allele), while others show only a small to 
moderate effect [96, 151, 155, 157]. Nonetheless, TREM2 
has remained in the spotlight for its effects on myelomono-
cytic cell phenotype and Aβ phagocytosis, which will be 
discussed in later sections. It has long been questioned 
whether AD-associated inflammation and myeloid cell dys-
function drive disease pathogenesis or instead represent a 
subsequent reaction to the associated neuropathology [123, 
158]. Yet, these recent large-scale genetic studies, compil-
ing data from thousands of AD subjects, illustrate unequiv-
ocally the principal role of immunological processes in 
development of AD, and for the first time, provide genetic 
evidence supporting the significance of the peripheral 
immune system.

Mechanisms of Aβ clearance

The key mechanisms of Aβ clearance were shown to 
involve either Aβ removal to the peripheral blood and 
lymphatic systems or degradation within the CNS tissues. 
Aβ reaches the peripheral circulation via chaperone-medi-
ated transport across the blood brain barrier (BBB) [159], 
perivascular drainage [160], or through the glymphatic 
system [161, 162]. In the parenchyma, myelomonocytic 
cells were shown to phagocytose fibrillar Aβ, and perhaps 
their soluble oligomeric forms as well. These professional 
phagocytes, together with astrocytes and neurons, are 
jointly responsible for degradation and removal of amy-
loidogenic Aβ alloforms [123, 163]. Though each system 
likely contributes to Aβ clearance to varying extents, their 
summed effects are essential for Aβ homeostasis. This 
implies that perturbations of any singular process may 

underlie or predispose to pathologic Aβ accumulation, and 
consequently development of AD.

Extracellular enzymatic degradation of Aβ

Secreted peptidases are critical for the catabolism of Aβ 
peptides. These enzymes were reported to have an affinity 
for specific domains within the Aβ amino acid sequence 
and an ability to cleave and convert these peptides to 
shorter, more benign forms [164–167]. Table  2 describes 
major Aβ-degrading enzymes, their substrates, their cel-
lular location and the cell types known to express and 
secrete them. The following paragraphs describe sev-
eral Aβ-degrading enzymes that have been central in AD 
research.

Angiotensin‑converting enzyme (ACE)

ACE is a zinc-dependent peptidase with significant expres-
sion by endothelium throughout the body as well as by 
cortical neurons in the brain [205]. Most well known for 
transforming angiotensin-I to angiotensin-II and for its role 
in regulating hemodynamic stability and salt balance, ACE 
was also shown to degrade Aβ, and importantly, cleave 
Aβ42 into the less toxic Aβ40 alloform [164]. In post-mor-
tem analyses, cortical and perivascular ACE expression 
was upregulated in the brains of AD patients and correlated 
with parenchymal plaque load and extent of perivascular 
amyloid deposition, respectively [206, 207]. Furthermore, 
lower levels of ACE protein and its activity were associated 
with lower CSF Aβ, indicating more prominent amyloid 
pathology in the parenchyma [44]. It was thus hypothesized 
that increased ACE activity in CNS tissues is a protective 
response to increasing amyloid pathology. While this claim 
is partially supported by both genetic studies in humans and 
physiologic studies in ADtg mice, there are inconsistencies 
within the literature. Both case-control studies and several 
large meta-analyses have identified an insertion within 
intron 16 of the gene ACE1 that reduces plasma ACE levels 
and increases risk for AD [45–47]. However, these findings 
were not always replicated [208]. Interestingly, AD patients 
homozygous for the insertion polymorphism had a greater 
risk of cognitive deterioration and clinical progression than 
other ACE genotypes [48], suggesting ACE activity may 
critically modulate the pathophysiology underlying neu-
rodegeneration. Indeed, one long-term study of the ACE-
inhibitor (ACE-I) captopril in ADtg mice supports the role 
of ACE in Aβ clearance, as both Aβ plaque load and Aβ42 
levels were elevated after 11 months of treatment [209]. It 
is important to note, however, that studies of shorter dura-
tion did not report a measurable effect of other ACE-Is on 
Aβ pathology [205]. In ADtg mice, ACE overexpression by 
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microglia and monocytes/macrophages lead to a dramatic 
reduction in cerebral Aβ levels and cognitive decline [145, 
191], demonstrating great therapeutic potential discussed 
further below. Taken together, there is substantial, although 
inconsistent, evidence implicating ACE in the physiologi-
cal clearance of Aβ that merits further investigation.

Insulin‑degrading enzyme (IDE)

IDE is a zinc metalloprotease that is capable of degrad-
ing soluble Aβ40 and Aβ42 into non-toxic fragments [165, 
174]. Although primarily localized in the cytosol, a small 
fraction of IDE is secreted by glial cells [175, 176, 185] 
or expressed on the cell surface of neurons [177], where it 
serves as a critical enzyme for extracellular Aβ degradation 
[165, 210]. Investigations in human and AD rodent mod-
els have yielded varying evidence regarding IDE mRNA 
expression, protein levels, and activity in the AD brain, 
most likely because the behavior of IDE is highly depend-
ent on age [211–213], brain region [211–213], disease 
severity [212, 213], and APOE status [214]. In general, it 
seems IDE levels and activities are upregulated in response 
to Aβ exposure, with the exception of Apoε4/4 carriers, 
who exhibit reduced IDE expression.

Matrix metalloproteinase‑9 (MMP‑9)

MMP-9 is a secreted enzyme and member of the zinc 
metalloprotease (MMP) family. In general, MMPs are 
responsible for the degradation and maintenance of the 
extracellular matrix. MMP-9 has been shown to degrade 
compact plaques [186, 187] as well as soluble Aβ42 and 
Aβ40 [167]. In the CNS, MMP-9 is expressed by neurons 
[188], microglia [189], astrocytes [190], and infiltrating 
 Iba+/CD45hi monocytes (Fig.  1C) [144, 148]. MMP-9 
has also been shown to act as an α-secretase, favoring 
non-amyloidogenic processing of APP and the produc-
tion of sAPPα [215]. In addition to its efficient degra-
dation of Aβ, MMP-9 was shown to be involved in both 
TNFα-mediated pro-inflammatory and anti-inflammatory 
signaling in activated macrophages and microglia [216, 
217]. Elevated levels of MMP-9 have been correlated 
with BBB breakdown, demyelination, and cell death in 
other CNS disorders like multiple sclerosis [218] and spi-
nal cord injury [219]. These effects should be considered 
when modulating MMP-9 activity in vivo.

Table 2  Amyloid β-degrading enzymes in Alzheimer’s disease

ACE angiotensin-converting enzyme, APP amyloid precursor protein, Ctx cortex, ECE-1 endothelin-converting enzyme 1, Ext. extracellular, 
fAβ fibrillar Aβ, Hip hippocampus, IDE insulin-degrading enzyme, Int. intracellular, Mo/MΦ monocytes/macrophages, MG microglia, MMP-2 
matrix metalloproteinase 2, MMP-3 matrix metalloproteinase 3, MMP-9 matrix metalloproteinase 9, NEP neprilysin, oAβ oliogomeric Aβ, sAβ 
soluble Aβ, SynAβ synthetic Aβ

Enzyme Type Expression Active site Aβ substrate References

NEP Type II integral membrane 
zinc metalloprotease

Membrane-bound; neurons, 
Mo/MΦ, MG, astrocytes

Ext sAβ40,42 [166, 168–173]

IDE Zinc metalloprotease Cytosolic, cell surface, 
secreted; neurons, Mo/MΦ, 
MG, astrocytes

Ext and Int sAβ40,42 [165, 174–177]

MMP-2 Matrixin; zinc metalloprotease Membrane-bound, secreted; 
endothelial cells, Mo/MΦ, 
pyramidal neurons, astrocytes

Ext sAβ [178–182]

MMP-3 Matrixin; Zinc metalloprotease Secreted; endothelial cells, 
Mo/MΦ, MG, astrocytes

Ext sAβ [183, 184]

MMP-9 Matrixin; zinc metalloprotease Secreted; neurons, MG, astro-
cytes, Mo/MΦ

Ext sAβ; fAβ; Mature plaques [144, 167, 185–190]

ACE Zinc metalloprotease Membrane-bound, Secreted; 
Muscle and endothelial cells, 
lymphocytes and Mo/MΦ

Ext sAβ40,42; fAβ40,42 [145, 164, 191, 192]

ECE-1 Zinc metalloprotease Membrane-bound; endothelial 
cells, neurons, Mo/MΦ, MG, 
astrocytes

Ext SynAβ40; Aβ in Ctx and Hip [193–195]

Cathepsin B Cysteine protease Within lysosomes; various cell 
types

Int Controversial; APP; Aβ40,42 [196–201]

Cathepsin D Aspartic protease Within lysosomes; various cell 
types

Int sAβ40,42 [202–204]
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Neprilysin (NEP)

NEP is a type II integral membrane zinc metalloprotein 
with the bulk of its structure, including the active site, 
facing the extracellular space. NEP is expressed through-
out the brain, predominantly on pre- and post-synaptic 
neuronal membranes [168, 169], and by microglia [170] 
and astrocytes [171]. NEP is considered the most potent 
Aβ-degrading enzyme [220, 221], preferentially cleav-
ing oligomeric Aβ42 and Aβ40 [166, 172] but not fibrillar 
forms. NEP expression and activity has been shown to 
decline with age and disease in post-mortem human AD 
brain tissue [222], which may contribute to Aβ accumula-
tion. Modeling this reduction by dampening NEP expres-
sion [223, 224] or activity [225] in ADtg mice resulted in 
elevated Aβ pathology and cognitive deficits. Conversely, 
the beneficial effects of NEP overexpression speak to the 
therapeutic potential of targeting neprilysin activity, dis-
cussed further below [146, 172].

Enzymatic degradation by innate immune cells

NEP, IDE, ACE and MMP-9 are Aβ-degrading enzymes 
expressed by innate immune cells and represent a crucial 
pathway by which these cells may eradicate pathogenic Aβ 
(Table 2). Expression of NEP, IDE, and MMP-9 was shown 
to decline in microglia of aged APP/PS1 mice, which may 
contribute to their functional impairment in later stages of 
AD [170]. This altered microglial phenotype was contin-
gent on the presence of Aβ, as microglia from age-matched 
controls did not exhibit reduced enzyme expression. Micro-
glial expression of NEP and IDE were also shown to be 
highly inducible in vitro and correlated with enhanced 
clearance of soluble Aβ42 [226].

For proteolytic processing of Aβ by monocyte-derived 
macrophages, the expression of MMP-9 appears to be 
especially important.  APPSWE/PS1ΔE9 mice infused with 
 CD115+ monocytes or immunized with the altered mye-
lin-derived antigens, such as glatiramer acetate (GA) or 
myelin oligodendrocyte glycoprotein-derived peptide 
(MOG45D) displayed increased accumulation of MMP-
9-secreting macrophages surrounding Aβ plaques (Fig. 1c), 
along with a marked reduction in Aβ neuropathology and 
cognitive impairment [144, 148]. GA stimulation of bone 
marrow-derived macrophages in vitro also dramatically 
induced MMP-9 expression [144]. Additionally, peripheral 
macrophages cultured on top of plaque-bearing brain sec-
tions of PDAPP mice cleared Aβ, in part, by upregulated 
expression of MMP-9 [185]. Interestingly, macrophages 
expressed MMP-9 in an ApoE-dependent manner. Apoε4 
significantly dampened MMP-9 expression, suggesting an 
additional mechanism by which Apoε4 disrupts Aβ clear-
ance [185].

Furthermore, ACE has a demonstrated ability to modu-
late the behavior of innate immune cells in ADtg murine 
models [191, 227]. In other disease models, targeted over-
expression of ACE to myelomonocytic cells enhances their 
immune function, including their  ability to clear cellular 
debris and promote tissue repair. Targeted ACE overexpres-
sion to myelomonocytes (ACE10/10 model) introduced to 
 APPSWE/PS1ΔE9 transgenic mice resulted in increased infil-
tration of monocyte-derived macrophages that were tightly 
associated with Aβ plaques and displayed increased ability 
to phagocytose Aβ [145]. The net result was reduced solu-
ble and insoluble Aβ levels, attenuated neuroinflammation, 
and improved cognitive performance. In contrast, inhibition 
of ACE catalytic domains in ACE10/10-ADtg mice exac-
erbated cerebral Aβ pathology [145]. Overall, the benefi-
cial outcomes of ACE overexpression in myelomonocytes 
were most likely due to the summed effects of the enhanced 
immune response and proteolytic capacity endowed by 
ACE expression.

Intracellular degradation systems

Another important mechanism of Aβ catabolism is under-
taken within cells that either absorb or engulf Aβ forms. 
Three such critical pathways—autophagy, endosomal/lyso-
somal degradation, and the ubiquitin–proteasome system 
(UPS)—prevent intracellular protein aggregation, and are 
thus instrumental in protecting against the neurotoxicity of 
cytosolic Aβ accumulation. In AD brains, however, these 
systems are considerably compromised [228–231]. Deg-
radation targets for both the UPS and autophagy originate 
from the cytosol, although their identities differ between 
the two processes. Autophagy typically facilitates clearance 
of larger protein aggregates and damaged organelles, while 
the UPS degrades misfolded or damaged proteins. Further-
more, the UPS is more highly regulated than autophagy, 
requiring poly-ubiquitination of the target protein for its 
degradation. The lysosome, too, facilitates intracellular pro-
tein degradation, though the origin of these proteins may 
be either cytosolic or extracellular. Because the lysosome 
is a final common pathway for several systems, including 
autophagy, it is discussed separately below.

Lysosomal degradation

The lysosome is the final destination for both autophagic 
vacuoles and the endosomes formed by receptor-mediated 
endocytosis. The latter process occurs in neurons and glia 
through a distinct set of molecular chaperones, discussed 
in greater detail in the following sections. Each lysosome 
contains a cocktail of hydrolytic enzymes capable of 
degrading Aβ; however, the hydrolytic machinery is often 
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overwhelmed in AD [228, 232–234]. As Aβ load exceeds 
the degradation capacity of the lysosome, aggregates may 
grow larger or leak into the cytosol [228, 232–234]. Aging 
[235] and the presence of Apoε4 [234, 236] particularly 
promote lysosomal instability. Intracellular Aβ negatively 
impacts multiple cellular and organelle functions, includ-
ing proteasome inhibition, mitochondrial abnormalities, 
tau hyperphosphorylation, and presumably, the seeding of 
amyloid plaques following cell death [121, 237, 238].

Myeloid cells in particular may suffer AD-associated 
deficits in endosomal-lysosomal trafficking and Aβ pro-
cessing. Microglia isolated from plaque-bearing sections 
of human AD tissue indicated that Aβ fibrils were located 
in the endoplasmic reticulum and deep invaginations of the 
cell membrane, instead of within endosomes or lysosomes 
[239]. Even non-diseased microglia cultured with fibrillar 
Aβ42 showed incomplete intracellular degradation, with 
non-degraded fibrils remaining in phagosomes for up to 20 
days [239, 240]. This impairment was not seen in periph-
eral macrophage cultures under the same conditions. In 
fact, after 3 days of incubation with fibrillar Aβ, less than 
30% of Aβ was retained in peritoneal macrophages, indi-
cating successful degradation, while 80% remained asso-
ciated with microglia [241]. One possible explanation for 
deficient microglial clearance is insufficient activity of lys-
osomal Aβ-degrading enzymes. In support of this notion, 
incubating microglia with mannose-6-phosphate tagged 
lysosomal enzymes rescued the clearance impairment. 
Mannose-6-phosphate typically targets hydrolytic enzymes 
to the lysosome from the Golgi apparatus, and this modifi-
cation has been used to deliver extracellular enzymes to the 
lysosome in experimental conditions [242].

While healthy peripheral macrophages appear better 
equipped to degrade fibrillar Aβ than resident microglia, 
monocytes in AD patients exhibit lysosomal dysfunction 
[125, 229]. Specifically, more undigested Aβ molecules 
exist within monocytes isolated from AD patients com-
pared to those from healthy age-matched controls, a defi-
cit partially attributable to reduced expression and activity 
of cathepsin D and other major lysosomal enzymes [229, 
243]. Upregulation of miR-128 was shown to target the 
transcripts of these enzymes and mediate their suppres-
sion. The discrepancy in lysosomal degradation capacity 
between microglia and infiltrating macrophages highlights 
their non-redundant roles in restricting Aβ pathology and 
as targets for future intervention.

Autophagy‑mediated degradation

Three types of autophagy exist: macroautophagy, micro-
autophagy, and chaperone-mediated autophagy (CMA). 
While both macroautophagy and CMA dysfunction are 
implicated in AD [244, 245], the former is considered to 

be the predominant process, and will be referred to sim-
ply as “autophagy” throughout [245]. The mechanism of 
autophagy-mediated clearance involves isolation of cyto-
plasmic contents by a double-membrane vesicle called an 
autophagosome or autophagic vacuole (AV). Subsequent 
lysosomal fusion facilitates degradation of the AV and 
its contents [246], which may include Aβ and APP [247, 
248]. In both AD patients and ADtg models, autophagy is 
markedly impaired, evidenced by the large accumulation 
of unprocessed, Aβ-rich AVs in dystrophic neurites [249, 
250]. Indeed, deficits in the autophagy-lysosomal pathway 
occur early in the disease process, perhaps even preceding 
Aβ accumulation [230, 251]. Reduced expression of key 
autophagic proteins (beclin-1 and autophagy proteins 5 and 
7) likely contribute to autophagic dysfunction, Aβ accumu-
lation, and neuronal cell death [248, 252–254]. Further-
more, perturbations in signaling through the mammalian 
target of rapamycin (mTOR) pathway, the key regulator of 
autophagic activity, may also contribute to its impairment 
in AD. Under nutrient-rich conditions, heightened mTOR 
signaling suppresses autophagy by phosphorylating pro-
teins necessary for AV formation and elongation [255]. 
Other pathologic conditions, such as cellular starvation, 
oxidative stress, organelle damage, and protein aggrega-
tion, inactivate mTOR and promote autophagy as a pro-
tective response [256, 257]. In the brains of AD patients, 
however, mTOR signaling was shown to be inappropriately 
active given the toxic environment [258]. Inhibition of the 
mTOR pathway has thus emerged as an attractive target for 
therapeutic intervention, with a demonstrated benefit on Aβ 
levels and cognition in murine models of AD [259].

Ubiquitin–proteasome system (UPS)

The UPS is a highly regulated degradation process for cyto-
solic short-lived and misfolded proteins. As such, it is an 
important protective mechanism against neurotoxic protein 
aggregates. Briefly, specific proteins are polyubiquina-
ted by a series of ligases (E1, E2, and E3) for recognition 
and degradation by the 26S proteasome complex. Whether 
UPS dysfunction is a cause or consequence of AD-related 
degeneration remains unknown. In favor of the former, both 
ubiquitin conjugation and proteasome activity decline with 
age and in AD tissue [231, 260, 261]. Areas with reduced 
proteasome function overlap with those greatly impacted 
by AD: the hippocampus, nearby limbic structures, and the 
inferior parietal lobe [231]. Diminished activity of the 26S 
complex promotes Aβ deposition and perhaps its produc-
tion as well through increased maturation and trafficking of 
APP [262, 263]. Taken together, this data could imply that 
declining proteasome function in aging and disease leaves 
the brain susceptible to Aβ aggregation. Nonetheless, mul-
tiple reports have demonstrated that Aβ accumulation, in 
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fact, inhibits proteasome activity, possibly by directly bind-
ing to the 20S catalytic subunit [238, 263]. Aβ accumula-
tion may then contribute to proteasome dysfunction rather 
than result from it, although these interactions need not be 
mutually exclusive.

Aβ clearance mediated by extracellular 
chaperones

Removal of Aβ into the peripheral circulation is thought to 
facilitate the majority of physiologic Aβ clearance [264]. 
Transport across the BBB requires a specialized transport 
system of molecular chaperones. Specifically, members of 
the LDL receptor (LDLR) family, such as the low-density 
lipoprotein-related protein 1 (LRP-1) and ATP-binding 
cassette (ABC) transporters, are primary receptors for Aβ 
efflux [264]. LRP-1-mediated transport requires the assis-
tance of additional adaptor proteins, and this system in total 
will be the focus of this section. Transporters that mediate 
Aβ influx into the brain parenchyma, such as the receptor 
for advanced glycation endproducts (RAGE), will not be 
discussed.

Lipoprotein‑related protein 1 (LRP‑1)

Located on the abluminal surface of brain endothelial 
cells, LRP-1 binds either ApoE-Aβ complexes or Aβ alone 
[53, 265], subsequently stimulating endocytosis of either 
species. Notably, once Aβ is contained within endothe-
lial cells, the luminal transport protein ABCB1 facilitates 
the removal of Aβ species into the vascular lumen [266]. 
Blocking LRP-1 expression in healthy, non-ADtg mice 
led to impaired Aβ clearance across the BBB, and conse-
quently, greater Aβ deposition and cognitive deficits [267]. 
This study may recapitulate some of the consequences 
of declining LRP-1 expression reported in ADtg mice, 
AD patients, and aging adults [159, 265, 268]. Addition-
ally, LRP-1 is expressed on neurons, astrocytes, and micro-
glia, facilitating cellular Aβ uptake and lysosomal degrada-
tion within these cells [269–271].

Phosphatidylinositol binding clathrin assembly protein 
(PICALM)

PICALM is expressed on endothelial cells, and to a lesser 
extent, on neurons [272]. PICALM primarily functions as 
an adapter protein for the transcytosis of the Aβ-LRP-1 
complex across the BBB. In addition to its role in Aβ clear-
ance, recent reports show that single nucleotide polymor-
phisms (SNPs) in the upstream coding region for PICALM 
are major risk factors for AD [83, 273]. This may indicate 
that appropriate PICALM function is protective. In support 

of this, PICALM levels in cortical microvessels of subjects 
with advanced AD were half the levels measured in age-
matched controls. Subjects with the lowest PICALM levels 
displayed the greatest Aβ burden and cognitive impairment 
[274].

Apolipoprotein E (ApoE)

Under physiologic conditions, ApoE is a carrier protein 
that maintains cholesterol and phospholipid homeostasis 
[275]. Major ApoE receptors include LDLR, LRP-1, the 
very low-density lipoprotein receptor (VLDLR), and ApoE 
receptor 2 (ApoER2) [276, 277]. However, the exact role of 
ApoE in AD pathogenesis remains elusive despite mount-
ing evidence from genetic, physiologic, and clinical studies 
that unequivocally supports the carrier protein’s importance 
[51, 52, 151, 278–281]. In vitro studies have helped to elu-
cidate the role of ApoE, demonstrating that it binds Aβ 
directly under certain conditions [282]. It is thought that the 
resulting ApoE-Aβ complexes bind to and are internalized 
by LRP-1 for delivery to the vasculature and removal from 
the brain [53, 68]. Supporting this amyloid-clearing role for 
ApoE, a recent study revealed that ApoE levels inversely 
correlated with cerebral Aβ load in non-demented healthy 
controls [283]. In contrast, however, ApoE was shown to 
compete with fibrillar or soluble Aβ for uptake and degra-
dation by microglia and astrocytes, respectively [54, 284]. 
Taken together, the literature suggests distinct mechanisms 
by which ApoE enhances and hinders Aβ clearance. The 
effect likely depends on the specific Aβ conformation, the 
ApoE isoform and its lipidation state, as well as the relative 
ApoE receptor expression on the target cell [278].

Three isoforms of ApoE exist in humans: Apoε2, Apoε3, 
and Apoε4 [279]. Evidence suggests that the APOE2 allele 
may be protective against AD [151]; conversely, carrying 
one, or to a greater extent, two APOE4 alleles significantly 
increases the risk of developing AD and reduces the age 
of onset [51, 151, 282]. Furthermore, the APOE4/4 geno-
type is associated with accelerated and more pronounced 
cerebral amyloid pathology and CSF abnormalities [285]. 
Several pathogenic mechanisms may explain this increased 
risk associated with Apoε4. First, the rate of vascular Aβ 
clearance is diminished in those expressing Apoε4 com-
pared to other isoforms [52, 53, 152], perhaps due to its 
reduced affinity for Aβ [286]. Additionally, Apoε4 can 
redirect the ApoE-Aβ complex to a different receptor, 
VLDLR, which has slower internalization kinetics than 
other LDLRs [53]. The net result is reduced internalization 
of Aβ by LRP-1, and ultimately reduced Aβ clearance [280, 
281, 287]. Apoε4 may also promote damage to the BBB by 
upregulation of pro-inflammatory signaling through cyclo-
philin A [153]. In non-demented murine models, Apoε4 
led to reduced cerebral blood flow and microvascular 
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length, while also increasing BBB permeability [153]. A 
compromised BBB can reduce vascular Aβ clearance and 
predispose to further injury through leakage of toxic blood 
proteins [153, 288]. These destructive outcomes were not 
observed in mice expressing Apoε2 or Apoε3 [153, 289].

Apoε4 may hinder other important mechanisms of Aβ 
clearance, namely, intracellular catabolism by neurons and 
innate immune cells. Specifically, Apoε4 may interfere 
with these processes by inducing lysosomal leakage or by 
impeding myeloid cell-mediated clearance [185, 234, 236]. 
Though ApoE normally has an anti-inflammatory effect, 
this trait is markedly dampened by expression of Apoε4 
on innate immune cells [154]. Crossing APOE4-targeted 
replacement mice with the 5XFAD ADtg model greatly 
increased microgliosis and astrogliosis surrounding Aβ 
plaques [290]. Similarly, in  cell cultures of microglia and 
astrocytes isolated from these Apoε4-expressing mice, 
more pro-inflammatory cytokines were released from these 
cells in response to soluble oligomeric Aβ than from those 
expressing Apoε3 [154]. Furthermore, peripheral mac-
rophages expressing Apoε4 exhibited a diminished capac-
ity to phagocytose and clear Aβ when cultured on top of 
plaque-bearing brain sections of PDAPP mice [185]. It 
remains unclear whether Apoε4 influences AD predomi-
nantly through gain of toxic function, loss of protective 
function (i.e. vascular/immune cell dysfunction), or both. 
Further investigation is required to reveal the exact role of 
ApoE and its isoforms in AD, and the possible therapeutic 
potential of its manipulation.

Glymphatic clearance

The glymphatic system is a pathway of brain-wide waste 
clearance for small proteins and metabolites. In this path-
way, CSF enters the periarterial space and, driven by arte-
rial pulsations, enters the brain parenchyma to exchange 
with the interstitial fluid (ISF). Bulk flow of CSF/ISF, 
containing extracellular molecules such as Aβ, are then 
driven to perivenous spaces for recirculation in the CSF or 
clearance to peripheral lymphatics [161, 162]. Glymphatic 
activity is greatest during sleep, with Aβ clearance rates 
doubling those observed in periods of wakefulness [291]. 
The glymphatic system was named, in part, for acting as 
a surrogate to CNS lymphatic drainage, a system the brain 
traditionally lacked. However, a recent, seminal study has 
identified meningeal lymphatic vessels for the first time 
[292, 293]. This groundbreaking discovery calls for a re-
evaluation of current notions of the neuroimmune connec-
tion, and raises exciting potential explanations of the patho-
physiology of Aβ accumulation and defective clearance in 
some cases.

Water channels known as aquaporin 4 (AQP4) are the 
key elements in CSF-ISF exchange, and thus clearance 
through the glymphatic pathway. AQP4 is located on astro-
cytic end feet and encircles the vasculature. Mice lacking 
astrocytic AQP4 showed reduced CSF influx by ~70% and 
decreased interstitial Aβ clearance by ~55–65% [161, 162]. 
Advanced age also reduced glymphatic clearance rates in 
murine models, perhaps due to an age-dependent loss of 
AQP4 polarization [294]. Interstitial solutes may also be 
cleared directly into the CSF compartment through peri-
arterial pathways flowing opposite to the glymphatic sys-
tem. These two pathways may not be mutually exclusive; 
they might be two components of the same system, or their 
activities may vary in space and time throughout the CNS 
[264].

Myeloid cell‑mediated phagocytosis

A growing body of evidence supports the emerging concept 
that activated inflammatory cells, mainly brain-resident 
microglia and infiltrating blood-borne monocyte-derived 
macrophages, are critical for the physiological clearance of 
Aβ [148, 295–298]. Microglia are tightly associated with 
Aβ deposits and senile plaques, and early studies have 
documented their involvement in cellular Aβ uptake [299, 
300]. However, these investigations were lacking the capac-
ity to distinguish activated microglia from blood-borne 
macrophages due to their similar immunophenotype and 
function. Recruited macrophages were thus inappropriately 
characterized as part of the microglial pool, and confusion 
ensued over their unique behavior [296, 301].

Today’s newer methodologies delineate subtle differ-
ences in marker expression, allowing for a more accurate 
categorization and attribution of function to these cell pop-
ulations. For example, standard CD11b (MAC1), isolectin 
B4 (IB4), F4/80, or ionized calcium binding adapter mol-
ecule 1 (Iba1) markers in the brain are indistinguishably 
expressed by both infiltrating monocytes and resident 
microglia [302, 303]. Yet, the combination of one of these 
myelomonocytic markers with differential expression lev-
els of CD45 [304, 305], P2RY12 [306], or Ly6C [303] 
can help differentiate these cell types (Fig.  1a, c). Other 
approaches may involve fluorescent labeling of peripheral 
innate immune cells (i.e. green or red fluorescent protein-
labeled, GFP or RFP, respectively) or introducing genetic 
modifications, such as targeted NEP- or ACE overexpres-
sion in monocytic cells [145, 146, 191].

Other key developmental and functional differences 
between microglia and macrophages help distinguish these 
unique cell types. Microglia originate from hematopoietic 
stem cells of the yolk sac [307], while infiltrating mono-
cyte-derived macrophages originate from bone marrow 
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hematopoietic myelomonocytes [308]. In early post-natal 
life, microglia participate in synaptic pruning [309]. Later 
on, they are critical for maintaining CNS homeostasis, reg-
ulating immune surveillance, and responding to pathologic 
changes such as Aβ aggregation [310]. Less is known about 
CNS monocyte interactions under physiological conditions 
[311]. A comprehensive comparison of these two cell types 
is beyond the scope of this manuscript; however, detailed 
reviews on their unique embryology, development, and 
immune responses can be found elsewhere [303, 307, 308].

Heterogeneous populations of these immune cells exist 
in the brain, especially in the diseased state. Their dem-
onstrated clearance capacity varies given the experimental 
paradigm and the phase of disease studied. Table  3 pro-
vides a summary of research on monocytes/macrophages 
in human AD subjects, while Table  4 briefly describes 
similar data in rodent models. The discussion that follows 
describes the phagocytic process mediated by microglia 
and monocyte-derived macrophages and the conditions in 
which they differ. When evaluating this data, it is important 

to keep in mind the difficulties involved in assessing periph-
eral monocytes and microglia as distinct cell types. There-
fore, we cannot rule out the possibility that some investi-
gations illustrating a role for microglia may also include 
effects of infiltrating monocytes.

Microglia‑mediated phagocytosis

Microglia aid in the normal development, function, and 
repair of the CNS. In response to injury or other patho-
logical conditions, microglial processes and cell bodies 
migrate to lesion sites and initiate an immune response to 
contain and resolve particular insults [123, 124, 299]. Acti-
vated microglia are closely associated with senile plaques 
in both human and ADtg models. While microglia are 
capable of clearing Aβ in vitro [241, 300, 332–334], their 
in vivo clearance capacity has been questioned [335–337]. 
Successful Aβ internalization by microglia has been doc-
umented in some cases [338, 339], while others report 
incomplete processing [239, 240, 335–337]. In support of 

Table 3  Alzheimer’s disease-related impairments in human myeloid cells

CCR2 C-C chemokine receptor type 2, CD33 Sialic acid-binding immunoglobulin-like lectin 3, H4K12 histone H4 at lysine 12, HC healthy con-
trol, HLA-DR human Leukocyte Antigen–antigen D Related (MHC class II surface receptor), IDE insulin degrading enzyme, IFN-γ interferon-γ, 
IL-4 interleukin-4, IL-6 interleukin-6, IL-10 interleukin-10, IL-23 interleukin-23, MCI mild cognitive impairment, MCP-1 monocyte chemoat-
tractant protein-1, MG microglia, MGAT3 beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, MIP2 macrophage inflam-
matory protein 2, MMSE mini-mental state examination (Folstein test)—questionnaire used extensively in clinical and research settings to 
measure cognitive impairment, Mo/MΦ monocytes/macrophages, rt-PCR reverse transcription polymerase chain reaction, SSC side light-scatter 
characteristics (flow cytometry—measure of granularity and differentiation), TGF-β1 transforming growth factor-β1, TLRs toll-like receptors, 
TNF-α tumor necrosis factor-α

Study type Study design Altered protein/gene Mo phenotype and Aβ clearance References

HC Mo and MG Pulse-chase analysis of cytokine 
impact on Aβ degradation

↑IFN-γ, TNF-α
↑IL-4, IL-10, and TGF-β1

↓ Aβ degradation with pro-inflam-
matory cytokines; ↓ IDE

↑ Aβ degradation with anti-inflam-
matory and regulatory cytokines

[312]

AD Mo rt-PCR and flow cytometry analy-
sis of CD33 expression

↓ CD33 mRNA ↓  CD33+ Mo in AD Patients; Posi-
tive correlation between number 
of  CD33+ Mo and MMSE scores

[313]

Inflammatory profile; Mo analysis ↑ HLA-DR and CD16
↑ MCP-1 plasma levels
↓ CCR2 expression

↓ Cerebral recruitment of Mo; ↑ 
Granularity by SSC

[314]

Compared Mo from AD patients 
to HC

↑ Inflammatory profile expressing 
CCR2, IL-6, IL-23, TLRs

↓ MGAT3 and TLR
↓ Cathepsin B, D, S
↓ Activity of β-Galactosidase, 

α-Manosidase
β-Hexosaminidase

↑ Apoptosis; ↓ Aβ phagocytosis 
by Mo; Impaired phenotype

[125, 127, 
229, 243, 
315]

AD vs. MCI Mo Histone acetylation; cytokine 
release; susceptibility to cell 
damage

↑ Production of MIP2 and TNF-α
↓ Acetylation of H4K12 compared 

to MCI

↑ Mo cell damage susceptibility in 
AD vs. MCI

[316]

AD peripheral blood Microarray assessment of gene 
expression in blood; blood count

Multiple early changes in gene 
expression

>700 altered in blood from MCI, 
AD vs. HC

↑ Mo number in AD vs. HC; 
↑genes encoding cell adhesion 
molecules and other immune-
related genes

[317]
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the latter, depletion of microglia in three different ADtg 
mouse models had no effect on fibrillar or soluble Aβ accu-
mulation, indicating that microglia are not chiefly respon-
sible for Aβ clearance in these models [335, 336]. More-
over, aging and toxic conditions in the AD brain render 
microglia chronically activated. This further reduces their 
phagocytic capacity and causes a prolonged neuroinflam-
matory response, including production of reactive oxygen 
species (ROS), cytokines [e.g. IL-1β, IL-6, TNFα, and 
transforming growth factor β (TGF-β)] and chemokines 

[e.g. macrophage inflammatory proteins (MIPs), mono-
cyte chemotactic protein 1 (MCP-1), and C-C chemokine 
receptor types 3 and 5 (CCL3 and CCL5)]  [340–342]. 
Elevated levels of these mediators have potent neurotoxic 
effects [343, 344] and correlate with increased Aβ pathol-
ogy in certain brain regions of human AD patients and 
transgenic murine (APP/PS1) models [345]. Additionally, 
recent reports showed that microglia continue to participate 
in synaptic remodeling in aged mice [346], and can exac-
erbate synaptic dysfunction by modifying dendritic spine 

Table 4  Studies in rodent models of Alzheimer’s disease implicating a role for peripheral myeloid cells in cerebral Aβ clearance

Aβ amyloid-beta protein, ACE angiotensin-converting enzyme, ADtg transgenic murine models of Alzheimer’s disease, APOE apolipoprotein E, 
APP amyloid-precursor protein, BM bone marrow, CCL2 C-C chemokine ligand 2, alternatively named monocyte chemotactic protein 1 (MCP-
1), CCR2 C-C chemokine receptor type 2, GA glatiramer acetate, GFP green fluorescent protein, M-CSF macrophage colony-stimulating factor, 
MΦ macrophages, MG microglia, Mo monocytes, MOG45D-DC dendritic cells loaded with altered myelin oligodendrocyte glycoprotein-derived 
peptide (MOG45D; a weak agonist and a non-encephalitogenic variant of  MOG(35–55) peptide), NEP neprilysin, SCARA1 class A1 scavenger 
receptor, TGF-β transforming growth factor-β, WT wild type
a Increased Mo infiltration per Aβ plaques
b APOE-dependent effect

Study Type Study design Mo  infiltrationa Aβ phago-
cytosis by 
Mo

Aβ levels Neuroin-
flamma-
tion

Cognition References

BM Transplantation GFP-labeled BM cells in ADtg ✓ ✓ ↓ – – [144, 146, 
295, 318, 
319]

Blood Enrichment of 
BM-derived Mo

Treated ADtg mice with M-CSF 
or infusion of  CD115+ GFP-
labeled Mo

✓ ✓ ↓ ↓ ↑ [144, 146, 
320, 
321]

Immune Modulation MOG45D-DC or GA immuniza-
tion of ADtg

✓ ✓ ↓ ↓ ↑ [144, 148, 
297]

Genetic Manipulation 
in Mo/MG

Infusion of GFP-labeled  CD11b+ 
WT- or NEP-overexpressing Mo 
from healthy murine BM donors 
in ADtg

✓ – ↓ – – [146]

Targeted ACE overexpression of 
 CD115+ Mo/MG in ADtg

✓ ✓ ↓ ↓ ↑ [145, 191, 
227]

Targeted blockade of TGF-β and 
Smad2/3 signaling in innate 
immune cells of ADtg

✓ ✓ ↓ ↓ – [322]

Upregulation of TREM2 in ADtg – ✓ ↓ ↓ ↑ [323]
TREM2 knockout in ADtg and 

stroke models
Χ  (CD45hiLy6C+) ✓ ↓ ↓ – [324, 325]

SCARA1 upregulation – ✓ ↓ – – [326]
Cultured WT macrophages on 

plaque-bearing sections of 
murine models

– ✓
(APOEb)

↓ – – [185]

CCL2 (MCP-1) and APP expres-
sion effects on Aβ clearance in 
primary BM-derived mac-
rophages

– ✓ ↓ – – [327]

Ablation Depletion of  CD11c+ BM-derived 
myeloid cell or perivascular MΦ 
in ADtg

Χ Χ ↑ – – [296, 297, 
328, 
329]

Inhibited Mo Infiltra-
tion

CCR2-deficient Mo in ADtg Χ Χ ↑ – ↓ [298, 330, 
331]
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density and inappropriately engulfing endangered neurons 
[310, 347]. The aberrant microglial-mediated engulfment 
of dysfunctional synapses in ADtg models was mediated 
by components of the complement cascade (i.e. C1q, C3, 
CR3). Considering the recent genetic data linking certain 
SNPs in CR1 to the development of AD (Table  1), this 
work provides further support for the role of the  immune 
system in AD.

Although this indicates a detrimental role for microglia 
in the AD brain, plaque-associated microglia have been 
shown to degrade scar tissue proteins with secreted pro-
teases, clear cellular debris, and recruit the adaptive arm of 
the immune system to stimulate or regulate effective local 
immune responses [148, 348]. A recent investigation using 
in vivo two photon imaging also demonstrated that early 
on, microglia form a protective barrier around develop-
ing plaques, preventing accumulation of Aβ42 protofibrils 
and associated local neuritic damage [349]. Remarkably, 
a recent study demonstrated that stimulating hippocampal 
interneurons at frequencies consistent with gamma oscil-
lations alters microglial phenotype and behavior in the 
5XFAD model [350]. A 1-hour delivery of 40 Hz stimula-
tion lowered global Aβ levels and modified microglial gene 
expression so that they more efficiently engulfed Aβ. Based 
on the available evidence, microglia cannot be labeled as 
either neuroprotective or neurotoxic. Instead, microglia co-
exist in a range of functional states: ramified-resting under 
physiological conditions, classically and alternatively acti-
vated in response to injury, or dystrophic and neurotoxic 
in aging and chronic inflammation. These phenotypes are 
highly sensitive to the changes in CNS composition that 
accompany senescence and the neurodegeneration seen in 
AD [351]. Current research posits that in early stages of 
disease, healthy microglia comprise the first line of defense 
in restricting Aβ pathology, effectively clearing fibrillar and 
soluble Aβ through phagocytosis and proteolytic process-
ing [123]. However, aged and diseased microglia in the AD 
brain have a markedly reduced capacity to do so [335, 337, 
339, 349]. Taken together, it is not surprising that microglia 
have become candidates for potential disease-modifying 
therapies.

Monocyte/macrophage‑mediated Aβ phagocytosis

Like microglia, monocyte-derived macrophages are pro-
fessional phagocytes that support normal tissue function. 
However, microglial senescence in AD suggests that mono-
cytes may have unique, complementary functions in the 
disease state, although this conclusion is highly controver-
sial [303, 352–355]. Supporting evidence from genetic and 
physiological studies of human peripheral blood monocytes 
(PBMCs) highlights the importance of healthy, functional 
monocytes in mitigating disease (see summary of studies 

in Table 3). PBMCs isolated from AD patients exhibit poor 
differentiation, impaired phagocytosis, and increased 
pro-inflammatory cytokine production in response to 
soluble Aβ [125, 127, 229, 243, 315, 356] (Table 3). Fur-
ther, rare variants of CD33 and TREM2, two genes nega-
tively impacting the phagocytic and Aβ clearance capac-
ity of monocytes, confer a greater risk of developing AD 
(Table 1) [33, 34, 64, 96, 155]. It remains to be elucidated 
whether the altered monocyte phenotype is a cause or con-
sequence of disease.

Receptor‑mediated Aβ phagocytosis: molecular 
machinery

Despite key differences highlighted previously, microglia 
and monocyte-derived macrophages do overlap in terms 
of phagocytic receptor expression and behavior [296, 301]. 
An extensive body of work describes under which condi-
tions and by which mechanisms these cells are capable of 
engulfing distinct Aβ species. For example, microglia have 
been shown to phagocytose fibrillar Aβ40 and Aβ42 under 
in vitro [239, 299, 300, 334, 357], in vivo [358, 359], and 
ex vivo experimental conditions [357, 360]. However, the 
mechanism underlying soluble Aβ uptake is less clear. 
Some argue that microglia phagocytose soluble Aβ42 as 
they do fibrillar forms [332, 361], while others suggest 
uptake occurs through fluid-phase macropinocytosis [333]. 
These two processes may not be mutually exclusive; more 
precise methods of isolating distinct soluble oligomeric 
forms may reveal assembly dependent interactions with 
microglia. Similarly, studies using PBMCs isolated from 
healthy patients have demonstrated the ability of mono-
cytes to effectively bind [356] and engulf soluble and fibril-
lar Aβ42 [125, 185, 315]. The following sections describe 
the major phagocytic receptors engaged in myeloid cell-
mediated physiologic clearance of Aβ. Whenever possi-
ble, the discussion delineates between uptake of soluble 
oligomeric Aβ42, fibrillar Aβ42, and other conformations or 
alloforms. This distinction is particularly relevant given the 
varying toxicities of different Aβ species.

Toll‑like receptors (TLRs)

TLRs are a family of pattern recognition receptors with dis-
tinct functions in the innate immune response. TLR2 and 
TLR4, in particular, were shown to be indirectly involved 
in Aβ phagocytosis through the formation of a recep-
tor complex with CD14 and the subsequent activation 
of microglia and monocytes. Inhibiting or deleting any 
component of the CD14-TLR receptor complex in human 
monocytes or murine microglia diminished the production 
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of pro-inflammatory cytokines and phagocytosis of fibrillar 
Aβ42 [362, 363].

Macrophage scavenger receptor 1 (SCARA1)

SCARA1 (alternatively named MSR-1, CD204, type-A1 
scavenger receptor, and SR-A) is one of the principal recep-
tors involved in Aβ uptake by immune cells. It is expressed 
on human and rodent macrophages [364], microglia [299, 
332], and human monocytes [365]. SCARA1 can bind both 
soluble and fibrillar Aβ42 in vitro [326, 332, 365] and facili-
tate its subsequent uptake. Lack of functional SCARA1 in 
murine microglia and monocytes reduced Aβ42 uptake by 
a range of 50%-65% in several experimental preparations 
[326, 366]. Glatiramer acetate (GA), an altered myelin-
derived antigen with demonstrated immunomodulatory 
benefits in ADtg mice [9, 144, 148, 348, 367], was shown 
to upregulate surface expression of SCARA1 on monocyte-
derived macrophages and to increase Aβ uptake by this cell 
population [144]. Immunization with the FDA approved 
drug, GA, is an intriguing therapeutic strategy and will be 
discussed further below.

The importance of SCARA1 function in Aβ clear-
ance has also been established in vivo. SCARA1-deficient 
 APPSWE/PS1ΔE9 transgenic mice exhibited increased 
mortality and a significant elevation in surface area frac-
tion stained for Aβ compared to control ADtg mice [326]. 
Increased microglial expression of SCARA1 around Aβ 
plaques has been demonstrated in multiple ADtg models 
[368, 369] as well as in human AD brains [370]. SCARA1 
expression on CNS phagocytes appears to have a neuropro-
tective role in restricting toxic forms of Aβ and mitigating 
disease progression.

CD36

CD36 is a type B scavenger receptor expressed on the cell 
surface of monocytes, macrophages, astrocytes, and neu-
rons [371]. CD36 has been shown to mediate phagocyto-
sis of fibrillar Aβ42 through interactions with two distinct 
receptor complexes acting as a functional unit [334, 368, 
371]. CD36-deficiency prevents microglial accumula-
tion in response to stereotaxic intracerebral injections of 
fibrillar Aβ [372], and antagonists of CD36 effectively 
block phagocytosis of fibrillar Aβ42 in microglia cell lines 
[334]. Like SCARA1, expression of CD36 is substantially 
increased in monocyte-derived macrophages in response to 
GA stimulation, which may contribute to their superior Aβ 
clearance ability compared to untreated macrophages [144] 
(Fig.  1b; Table 4). CD36 was also shown to bind soluble 
Aβ42 directly [361, 373], although it may play a redundant 

role in soluble Aβ42 clearance [326]. Specific knockdown 
or inhibition of CD36 demonstrated a sustained ability of 
microglia to phagocytose soluble Aβ42 with continued 
expression of other scavenger receptors [332, 361].

CD36 adequately demonstrates the dichotomous role of 
microglia in AD pathogenesis. While CD36 confers neu-
roprotection through induction of Aβ removal, it also acti-
vates the NLRP3 inflammasome in microglia and stimu-
lates pro-inflammatory cytokine release (i.e. interleukin 
IL-1β and ROS). Thus, microglia may contribute to the 
toxic environment that induces their own impairment [334, 
361, 373, 374]. Moreover, a recent study has demonstrated 
that the soluble Aβ42-induced inflammatory milieu directly 
inhibits microglial phagocytosis of Aβ42 fibrils and down-
regulates CD36 expression in vitro [374]. In sum, it seems 
the ability of CD36 to initiate Aβ uptake is differentially 
regulated by multiple toxic species that accumulate in AD 
brains.

TREM2

The triggering receptor expressed on myeloid cells 2 pro-
tein is a single-pass type 1 transmembrane protein that is 
part of the immunoglobulin superfamily. Ligands of this 
receptor include anionic carbohydrates, phospholipids, and 
apolipoproteins such as ApoE [375–377]. TREM2, along 
with the protein DAP12, forms a signaling complex that is 
responsible for the activation of immune responses in mye-
loid cells including microglia, macrophages, and mono-
cytes [378]. In AD, however, the predominant TREM2-
expressing cell type has been contested [324, 376].

GWASs have recently implicated the R47H variant of 
TREM2 as an AD risk factor in multiple populations [96, 
155]. In a post-mortem analysis of AD and control brains 
with and without the R47H variant, the mutation was asso-
ciated with greater levels of pro-inflammatory markers and 
increased amyloid load in all brain areas examined [102]. 
Other TREM2 risk alleles have also been identified, includ-
ing R62H and D87N [96, 155]. Remarkably, these muta-
tions and others occur exclusively in the ligand-binding 
domain of the protein and diminish affinity of the mutant 
TREM2 to its ligands [377]. It was further demonstrated 
that myeloid cells can clear Aβ directly through TREM2-
mediated uptake of lipoprotein-Aβ complexes, modeling 
the ApoE-Aβ interactions observed in vivo [377]. Moreo-
ver, monocytes isolated from AD patients with the R62H 
variant were unable to clear lipoprotein-Aβ complexes as 
efficiently as healthy controls. These findings imply that 
microglia and monocytes require a functional TREM2 pro-
tein to appropriately phagocytose Aβ.

Studies utilizing ADtg mouse models, however, point 
to a much more complex role for TREM2 than previously 
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thought [323, 324, 376]. In one study, TREM2 knockout 
in APP/PS1 mice greatly ameliorated disease progression 
[324], while two other investigations successfully demon-
strated TREM2-expressing immune cells containing AD 
pathology [323, 376]. The evidence appears contradictory; 
however, TREM2-modulated neuroinflammation and Aβ 
clearance may be highly context-dependent, influenced by 
the immune cell type and the inflammatory milieu in which 
it is expressed. In light of this, a recent study has shown 
that TREM2-deficient microglia and monocyte-derived 
macrophages phagocytose less fibrillar Aβ42 compared to 
wildtype cells, an impairment partially rescued by thera-
peutic anti-Aβ antibodies. Antibody-coated Aβ greatly 
enhanced phagocytosis by both TREM2 knockouts and 
wildtype cells, although clearance by mutant cells lagged 
behind controls under all conditions [325]. This finding 
has important implications for the efficacy of Aβ-targeted 
immunotherapies in patients with TREM2 mutations, 
yet further research is needed to fully elucidate these 
relationships.

CD33

CD33 is a member of the sialic acid-binding immunoglob-
ulin-like lectins (SIGLECS) family, expressed on myeloid 
cells [65, 379]. In general, it is thought to dampen the 
immune response perhaps by inhibitory signaling through 
immunoreceptor tyrosine-based inhibition motifs (ITIM) 
[380]. In the brains of AD patients, CD33-positive micro-
glia are enriched relative to age-matched controls and cor-
relate with greater Aβ42 levels and plaque burden [65]. 
The diminished capacity of CD33-expressing microglia 
to phagocytose Aβ42 is thought to explain this relation-
ship. In support of this, possession of the newly discov-
ered  rs3865444C risk allele [33, 34] results in a sevenfold 
increase in CD33 expression on monocytes with a signifi-
cant reduction in ability to phagocytose Aβ42. Monocytes 
isolated from young individuals with the  rs3865444C 
risk allele also displayed an Aβ42 phagocytic deficit [64]. 
Enriched monocytic CD33 expression actually mediated 
the relationship between this risk allele and higher amyloid 
plaque burden in AD brains [64]. Conversely, the protective 
 rs3865444A allele dampens CD33 expression and increases 
the proportion of CD33 molecules that lack a SIGLEC-
specific region responsible for phagocytosis inhibition 
[379]. These findings provide proof of impaired monocyte-
mediated interactions with Aβ and enhanced disease risk. 
AD-related immune deficits are thus not solely driven by 
senescence or the disease process itself. Rather, monocyte 
phagocytic impairment may far precede Aβ deposition, as 
seen in these cases, and arguably predisposes to greater 
amyloid accumulation and lifetime risk.

Role of monocytes in AD: evidence 
and controversy

Despite the surging data favoring a critical role of mono-
cytes in AD pathophysiology, it is important to acknowl-
edge the contradictory evidence in the field surrounding 
monocyte-mediated Aβ clearance in chronic neurodegen-
erative diseases. Major questions remain. (1) Under what 
conditions do monocytes infiltrate the CNS? (2) Do mono-
cytes and macrophages behave differently from microglia 
once in the CNS parenchyma, especially in their ability 
to resist misfolded Aβ forms? (3) Is the neuroprotection 
exhibited by monocytes a predominantly peripheral blood 
or a local effect? And (4) Is the effect cell-mediated, molec-
ular or plasma-mediated, or both? The following sections 
address these controversies given the available literature 
and identify methodological discrepancies that may have 
generated some confusion.

Cerebral infiltration of monocytes in murine models 
of Alzheimer’s disease

Monocyte infiltration in AD was first documented by semi-
nal studies transplanting GFP-labeled bone marrow cells 
into irradiated ADtg mice [295–297, 318]. Monocytes 
were shown to preferentially home to Aβ plaques and par-
ticipate in their clearance [295–297, 318]. The applicability 
of these studies to normal physiology was later questioned 
due to the use of whole body irradiation (including brain) 
and bone marrow transplantation; the former in particular 
may artificially enhance monocyte infiltration into the brain 
parenchyma [355, 381]. Specifically, irradiation is known 
to induce transient BBB leakage, permitting greater pas-
sage of cells and blood contents. In addition, whole marrow 
transplantation increases the number of progenitor cells in 
the circulation.

To further elucidate the effects of irradiation, the GFP-
transplantation paradigm was repeated, this time shielding 
the heads of recipient mice to conserve BBB integrity. This 
procedure reduced monocyte infiltration into the CNS, and 
called into question the conditions necessary for monocyte 
recruitment [330]. However, several investigations have 
successfully demonstrated spontaneous monocyte infiltra-
tion in the absence of irradiation, genetic manipulation, 
or chemotherapy (Table 4) [144, 146]. These experiments 
enriched the peripheral circulation with either  CD11b+ or 
 CD115+ monocytes from the bone marrow of young adult 
wildtype mice, rather than whole blood marrow, eliminat-
ing the additional confounder of increased progenitor cell 
numbers seen in earlier studies. Importantly, blood enrich-
ment with GFP monocytes in age-matched wildtype (non-
ADtg) animals did not cause recruitment of monocytes to 
the CNS [144, 146], implicating that a diseased-brain is a 
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precondition for their cerebral recruitment. Taken together, 
brain irradiation is neither necessary nor sufficient for 
monocyte recruitment. Rather, several other conditions are 
consistently required, at least in ADtg models—namely, 
the presence of amyloid pathology, especially soluble oli-
gomeric or fibrillar Aβ42 forms [382, 383], and binding of 
the monocytic surface receptor CCR2 to its ligand, MCP-1 
[126, 298, 384, 385].

The mechanism by which cerebral amyloid accumula-
tion induces monocyte infiltration is multifactorial. Vas-
cular Aβ deposition can directly damage the vessel wall 
[386] and allow greater passage of monocytes into the 
parenchyma. Indeed, the presence of a leaky BBB was con-
firmed in 40–60% of AD patients [387, 388]. Furthermore, 
the Aβ-induced immune response alters the expression 
and production of inflammatory cytokines, chemokines, 
and their receptors [123, 311, 340–342]. The expression 
of MCP-1, a critical signaling factor for monocyte recruit-
ment, is upregulated near Aβ plaques, on microglia, and on 
microvessels in the brains of AD patients and ADtg mice 
[127, 384, 385]. It is therefore postulated that the AD brain, 
and specifically chronically activated and overwhelmed 
microglia, solicit additional assistance from peripheral 
monocytes through MCP-1 signaling [126, 144, 148, 191, 
297, 311, 389]. Other signaling cascades remain poorly 
understood.

Depletion or enrichment of myeloid cells: impact 
on cerebral Aβ burden

Modulation of monocyte recruitment to the CNS clearly 
demonstrates the significant contribution of monocyte-
derived macrophages to Aβ clearance. Blocking CCR2 
signaling [298, 330, 331] or selectively ablating these cells 
in the blood [296, 297, 328] greatly accelerates Aβ accu-
mulation in ADtg models. Conversely, inducing mono-
cyte recruitment by lipopolysaccharide (LPS) stimulation, 
immunization, or monocyte engraftment significantly 
reduces parenchymal and vascular amyloid pathology in 
transgenic mice [144–146, 148]. These investigations cou-
pled with compelling in vitro data [144, 241] led to the 
conclusion that monocyte-derived macrophages, compared 
to their resident counterparts, possess a superior ability to 
clear fibrillar Aβ in AD (Fig.  1), resolving inflammation 
in spite of the toxic environment [240, 241, 296, 297, 300, 
390].

Other studies utilizing microglial ablation techniques 
challenge this assumption. Crossing ADtg mice with the 
CD11b-HSVTK model, in which the thymidine kinase of 
the herpes simplex virus is expressed under the CD11b 
promoter, allows for elimination of local, proliferating mye-
loid cells upon intracerebroventricular administration of 
ganciclovir. Peripheral GFP-labeled macrophages can then 

repopulate the CNS, introduced by either transplantation 
[354] or parabiosis with an actin-enhanced GFP partner 
[353]. In both cases, repopulation did not augment plaque 
burden, insoluble Aβ, or soluble forms. Importantly, mac-
rophages were diffusely spread across the parenchyma, in 
stark contrast to the plaque-associated microglia of con-
trol mice and the demonstrated plaque-homing abilities of 
monocytes in other models [353, 354]. Given the inabil-
ity of re-populating monocytes to clear Aβ, these studies 
concluded that monocytes do not play a significant role in 
restricting amyloid pathology. However, it is possible that 
microglial depletion critically alters the delicate milieu 
required to induce monocyte phagocytic and anti-inflam-
matory properties. Indeed, the interplay between micro-
glia, astrocytes, monocytes, and molecular mediators such 
as scar tissue proteins [i.e. chondroitin sulfate proteogly-
cans (CSPGs)], has been shown to attract these cells to the 
lesion sites and induce phenotypic shifts needed for protec-
tion in various disease states [144, 145, 148, 191, 297, 348, 
367, 391]. Specifically, senescent, plaque-associated micro-
glia are known to release MCP-1 required for monocyte 
recruitment [126, 298, 384, 385, 389, 392]. In addition, 
the impact of ganciclovir-induced neurotoxicity is poorly 
understood. From these repopulation studies, it is apparent 
that elimination of microglia impacts monocyte phenotype 
and function, and as such, these findings may not be repre-
sentative of monocyte behavior in the natural progression 
of disease.

It is undeniable though that certain conditions do in fact 
enhance the migratory and Aβ clearing capacity of infiltrat-
ing monocytes over their resident counterparts. In particu-
lar, ADtg mice immunized with the myelin-derived peptides 
MOG45D or GA exhibited reduced Aβ levels and neuro-
inflammation, attributable to the increased recruitment of 
anti-inflammatory monocytes that directly engulfed Aβ 
[144, 148]. Other immunomodulatory approaches involv-
ing targeted overexpression of Aβ-degrading enzymes to 
[145, 146, 191] or genetic manipulation of [322] peripheral 
monocytes have demonstrated similar monocyte-mediated 
abrogation of Aβ deposition [Table 4]. These interventions 
may form the basis of promising, disease-modifying thera-
pies that will be discussed further below.

Peripheral effects of monocytes on Aβ clearance

Recognition of the heterogeneity of different monocyte 
subtypes has emerged from recent studies that identi-
fied new functional biomarkers for myelomonocytic cells. 
An immunohistochemical and activity-based distinction 
has been proposed between murine monocyte subsets: an 
inflammatory  (Ly6ChiCX3CR1intCCR2+) type pertaining 
to CNS recruitment and parenchymal Aβ clearance, and a 
patrolling  (Ly6CloCx3CR1highCCR2−) type that remains 
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associated with the vasculature [303, 308]. The discussion 
thus far has exclusively focused on the local effects of the 
inflammatory subset and their ability to reduce cerebral Aβ 
load in the parenchyma through cellular uptake and enzy-
matic degradation. However, mounting evidence suggests 
an additional role for patrolling monocytes and perivascu-
lar macrophages in the regulation of cerebral amyloid angi-
opathy (CAA), a disease process in which amyloid plaques 
accumulate within the walls of small cerebral blood vessels 
[129, 160]. CAA is seen in over 80% of AD patients and 
is frequently associated with microhemorrhages and cogni-
tive deficits. Real-time in vivo imaging of APP/PS1 mice 
has elegantly demonstrated that patrolling monocytes are in 
fact attracted to and crawl along Aβ-positive veins, where 
they engulf Aβ and subsequently recirculate into the blood-
stream [329]. To further confirm their role in perivascular 
Aβ clearance, depletion of patrolling monocytes substan-
tially increased Aβ levels in the vasculature [328] as well 
as in the cortex and hippocampus [329]. A proposed equi-
librium of Aβ clearance exists between the different CNS-
associated compartments, including the brain parenchyma, 
perivascular spaces, CSF, and peripheral blood [328, 393, 
394]. Thus, the recirculation of Aβ-containing monocytes 
to the periphery may effectively pull other Aβ species out 
of the parenchyma—a process termed the peripheral sink 
effect.

In addition to monocytes and macrophages in the 
perivascular space, recent data suggest that the activity 
of these cells in the peripheral blood may be pivotal for the 
regulation of neuroinflammation associated with AD and 
for inducing neuronal regeneration [144, 148, 163, 348, 
367, 395–397]. Murine parabiosis studies, in which the 
vasculatures of two mice are joined, have effectively illus-
trated the impact of peripheral immune cells and, moreo-
ver, blood-soluble immune mediators on brain health. 
Joining the vasculatures of wildtype and ADtg mice, 
either before or after the onset of Aβ deposition, reduced 
Aβ plaque burden in the cortex and hippocampus of the 
ADtg parabiont, while also attenuating neuroinflammation, 
hyperphosphorylated tau, and neuronal apoptosis [397]. 
This was achieved in the absence of monocyte infiltration 
or CNS manipulation of known Aβ clearance pathways. It 
is therefore inferred that effective Aβ removal in murine 
models can be achieved by several mechanisms: either 
by blood enrichment of wildtype peripheral monocytes to 
boost infiltration and clearance of Aβ from brain paren-
chyma or by  replacement and repair of the  blood-soluble 
milieu to induce beneficial phenotypic changes in brain 
parenchymal cells that promote Aβ clearance. In support of 
the latter, earlier studies of parabiosis between young and 
old wildtype mice demonstrated increased synaptic plastic-
ity, neurogenesis, and cognitive capacity in the older para-
bionts when sharing blood with young mice [395, 396]. 

This effect was attributed to the specific milieu in the blood 
of the younger mice rather than infiltration of peripheral 
immune cells [395]. Indeed, monocytes release small, solu-
ble mediators, such as cytokines and chemokines, which 
can traverse the BBB and enter the brain parenchyma. 
Monocytes were also shown to promote anti-inflammatory 
behavior of surrounding microglia and astrocytes in several 
other  disease models [144, 145, 148, 191, 297, 348, 367, 
391]. Further investigation is greatly needed to understand 
the signaling that takes place in these models.

Therapeutic effects of peripheral monocytes 
and macrophages

Given the believed function of monocytes  in AD etiol-
ogy and the  ease of access to the peripheral blood, mod-
ulation of monocyte phenotype and behavior represents a 
promising therapeutic target. Though not yet translated 
into clinical practice, recent investigations in murine mod-
els highlight the potential benefit of enhancing monocyte 
recruitment to the AD brain.

Stimulation with two distinct exogenous compounds has 
been successful in promoting Aβ clearance. Dietary cur-
cumin, a major component of the spice turmeric, directly 
interacts with oligomeric and fibrillar Aβ42 [398] and may 
enhance Aβ phagocytosis by human PBMCs [315, 399]. 
Additionally, injections of the macrophage colony-stimulat-
ing factor (M-CSF) into  APPSWE/PS1 mice prior to signs 
of cognitive impairment had a number of positive effects. 
These included increased circulating levels of  CD45+/
CD11b+/CD115+ monocytes and phagocytic activity of Aβ 
by Iba-1+ immune cells in brain parenchyma [320], leading 
to decreased size and density of Aβ plaques, and prevention 
of learning and memory deficits [321].

As mentioned above, peripheral immunization with 
DCs loaded with MOG45D (MOG45D-DC) or with GA 
also had profound effects on the function of innate immune 
cells, which consequently  reduced various pathological 
features of AD. In ADtg mice, MOG45D-DC immuniza-
tion increased CNS recruitment of anti-inflammatory mac-
rophages, demonstrated by reduced TNF-α and increased 
IL-10 and TGF-β expression, that efficiently phagocytosed 
Aβ [148]. As a result, these mice showed restricted vascu-
lar and parenchymal Aβ deposits and reduced soluble Aβ42 
levels, as well as increased expression of the Aβ-degrading 
enzyme MMP-9. GA immunization of ADtg mice yielded 
the same beneficial immunomodulatory and plaque-clear-
ing effects [144, 297, 348], while also promoting neuro-
genesis and preservation of synapses and cognitive func-
tion [144]. In agreement with these findings, several other 
studies have shown that suppression of regulatory T-cells, 
either via peripheral blockade of the programmed cell 
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death protein-1 (PD-1) [400] or of TGF-β signaling in 
monocyte-derived macrophages [322], enhanced monocyte 
recruitment to the brain in ADtg mice, and resulted in Aβ 
removal and improved cognitive performance [322, 400].

Other methods of immune modulation include adop-
tive transfer of healthy monocytes and bone marrow trans-
plantation. Infusion of wildtype  CD115+ monocytes to the 
peripheral blood of ADtg mice stimulated their spontane-
ous migration to amyloid lesions in the absence of irradia-
tion, genetic manipulation, or chemotherapy. Treated mice 
exhibited reduced cerebral Aβ protein levels and astroglio-
sis, preserved pre-synaptic integrity, and ameliorated cog-
nitive deficits [144]. Likewise, bone marrow transplants 
from wildtype donors increased monocyte recruitment 
to the CNS at sites of amyloid accumulation, while also 
reducing plaque burden [295, 297, 318].

Because peripheral monocytes were shown to cross the 
BBB and home to sites of Aβ accumulation, they can func-
tion as a delivery system of therapeutic agents. Targeted 
overexpression of either NEP or ACE has proven beneficial 
in abrogating AD progression in murine models. Injecting 
9-month-old ADtg mice with NEP-expressing monocytes 
completely prevented further Aβ deposition when com-
pared to untreated ADtg mice or those infused with mono-
cytes containing inactive NEP [146]. Similarly, targeted 
overexpression of ACE to monocytic cells in the bigenic 
APP/PS1 mouse model of AD markedly reduced both solu-
ble and insoluble levels of Aβ42, limited plaques and astro-
gliosis, and preserved cognitive function [145, 191].

Conclusion

Aβ clearance is a complex, multifactorial process, requir-
ing the collaboration of various systems and cell types. Aβ 
can be removed to the peripheral circulatory or lymphatic 
systems by transport across the BBB or by absorption from 
the CSF and ISF. While innate immune cells are known to 
phagocytose and degrade fibrillar Aβ, these cells were only 
recently shown to engulf and clear soluble Aβ species as 
well. It is still unclear whether Aβ accumulation is a cause 
or consequence of disease. However, mounting evidence 
has shown that increased cerebral Aβ burden is the earli-
est pathognomonic event in AD. Moreover, soluble, oligo-
meric Aβ was shown to directly incite nerve and synaptic 
damage, leading to impaired neuronal function. In the late-
onset, common cases of AD, Aβ buildup is attributed to 
defective clearance, rather than to its overproduction. The 
observed deficiency could result from impairments in any 
one of the removal processes or, more likely, a combination 
of minor clearance deficits and compounding risk factors 
that varies from patient to patient. Modulation of clearance 

mechanisms may be an important early strategy for curtail-
ing Aβ accumulation and disease progression.

As our knowledge of AD continues to expand, so does 
a body of evidence that supports a key role for innate 
immune cells, especially monocyte-derived macrophages, 
in Aβ removal, local immune regulation, and repair. Bone 
marrow-derived monocytes can cross the BBB and clear 
Aβ through cellular uptake and enzymatic degradation, 
perhaps even more efficiently than resident microglia. 
The clearance process is, again, complex. Phagocytosis 
requires the coordination of many surface receptors (e.g. 
TLRs, integrins, scavenger receptors) for recognition and 
uptake, followed by intracellular trafficking, ultimately 
to lysosomes, for degradation. Monocytes, macrophages, 
and microglia also mediate extracellular Aβ degradation 
through surface expression or release of various proteases, 
such as ACE, IDE, NEP, and MMP-9. These functions were 
reported to be markedly impaired in peripheral monocytes 
isolated from AD patients. It is possible that the observed 
deficiency is a consequence of immune senescence and 
AD-related degeneration, or perhaps their dysfunction is 
a direct contributor to disease development. In support of 
the latter, possession of a rare variant of the AD-associated 
CD33 gene impacts the phagocytic capacity of monocytes 
isolated from young adult patients, indicating that this par-
ticular functional deficit is present throughout life. Other 
GWAS data have linked multiple immune-related risk fac-
tors to AD. Known relationships between the major risk 
gene TREM2 and monocyte/microglia phagocytic function 
offer a compelling demonstration of the immune system’s 
impact in AD.

Aggregates of misfolded Aβ are known to trigger a pro-
longed neuroinflammatory response that is tightly asso-
ciated with synaptic dysfunction and cognitive decline. 
Enhancing cerebral recruitment of monocytes through 
either peripheral infusion or immunization with altered 
myelin-derived antigens was shown to temper these degen-
erative changes in murine models. Specifically, monocytes 
were able to efficiently clear Aβ and resolve the resulting 
astrogliosis and neuroinflammation, thereby preserving 
synaptic integrity and cognitive function. Immunomodula-
tion approachs that enhance cerebral recruitment of neuro-
protective monocytes hold great promise as disease-mod-
ifying therapeutic interventions and represent a valuable 
target for further application and translation.
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