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Abstract Most natural protein sequences have resulted

from millions or even billions of years of evolution. How

they differ from random sequences is not fully understood.

Previous computational and experimental studies of ran-

dom proteins generated from noncoding regions yielded

inclusive results due to species-dependent codon biases and

GC contents. Here, we approach this problem by investi-

gating 10,000 sequences randomized at the amino acid

level. Using well-established predictors for protein intrinsic

disorder, we found that natural sequences have more long

disordered regions than random sequences, even when

random and natural sequences have the same overall

composition of amino acid residues. We also showed that

random sequences are as structured as natural sequences

according to contents and length distributions of predicted

secondary structure, although the structures from random

sequences may be in a molten globular-like state, accord-

ing to molecular dynamics simulations. The bias of natural

sequences toward more intrinsic disorder suggests that

natural sequences are created and evolved to avoid protein

aggregation and increase functional diversity.
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Background

Proteins are linear polymeric chains made of a combination of

20 different types of amino acid residues. The total number of

proteins explored by nature since the origin of life is esti-

mated between 1021 and 1043 [1]. This number is infinitesimal

compared to the number of possible protein sequences

because the sizes of proteins can range from 2 to as long as

35,000 amino acid residues [2] and even for a small protein of

100 amino acid residues, the number of possible proteins with

distinct sequences is 20100 or 10130. The tiny sequence space

explored by the nature raises an interesting question: if and

how random-sequence proteins differ from natural proteins

constrained by their functional and structural requirements?

Investigating random sequences is also important because

some proteins can arise suddenly from non-coding regions [3,

4]. Frame-shifting translation that produces random sequences

after the insertion/deletion point was also proposed for the

creation of novel proteins [5].

Artificial proteins with random sequences have been

studied experimentally. Random co-polymerization of

mixed amino-acid N-carboxyanhydrides was shown to

produce compact structures similar to proteins [6, 7].

Random sequences of three residue types (Q, R, and L) of

70–90 amino acid residues were expressed in E. coli and

shown to have secondary structures and cooperative

unfolding [8]. Further studies indicate that random

120-amino-acid sequences of 20 residue types are aggre-

gation-prone, and 12 residue-type sequences have better

solubility [9]. Some soluble proteins are found to be
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compact with some secondary structures. Chiarabelli et al.

[10] showed that 20 % of 79 random 50-residue proteins

are likely folded as they were protected from serine pro-

tease thrombin. Two of the selected proteins can reversibly

fold and unfold. LaBean et al. [11] studied about 30

71-residue random-sequence proteins and found some with

high secondary-structure contents with cooperative

unfolding. These latest experimental studies suggested

frequent appearance of native-like properties in random-

sequence proteins. However, the sequences in these studies

were obtained according to prescribed frequencies of DNA

bases. They may not reflect natural usages of amino acid

residues. In addition, codon usage bias in an expression

system such as E. coli may provide additional biases

toward proteins actually expressed. Furthermore, three-di-

mensional structures of these random-sequence proteins

were not determined by either NMR or X-ray crystallog-

raphy. In fact, other studies suggested the rare occurrence

of stably folded or functional proteins. For example, only

several functional proteins [12] resulted from initial

4 9 1012 random sequences followed by many iterations of

in vitro selections and directed evolution [13]. No folded

structures were yielded from in vitro random recombina-

tion of secondary structure elements (blocks) [14, 15].

Random-sequence proteins were also studied computa-

tionally, and two different views emerged. Some supported

the view that natural sequences differ only slightly from

random sequences [16]. For example, Weiss et al. [17]

showed that random protein sequences have similar infor-

mation content as non-redundant natural protein sequences.

Crooks et al. [18] found that protein sequence-structure cor-

relations based on mutual information in sequences of natural

proteins can also be generated from random-sequence pro-

teins. Lavelle and Pearson [19] investigated four- and five-

amino-acid segments and found no significant biases between

natural and random sequences. Angyan et al. [20] compared

natural sequences to random protein sequences generated

from random DNA sequences at various GC contents. They

found that at 40–60 % GC contents, intrinsic disorder and

aggregation propensity of translated random proteins are

similar to those of natural proteins. By contrast, Pande et al.

[21] showed that natural sequences have ‘‘pronounced devi-

ations from pure randomness, directed toward minimization

of the energy of the three-dimensional structure’’. Others

supported significant difference between random and natural

sequences by developing highly accurate two-state classifiers

[22–24]. These computational studies, however, were limited

mostly to comparing random-sequence proteins to either fully

disordered proteins or fully structured proteins.

This paper presents a comparative study of structure and

intrinsic disorder of natural and random-sequence proteins.

We compared several structural properties of natural and

random protein sequences: predicted intrinsic disorder by

IUpred [25] and SPINE-D [26], predicted secondary struc-

tures by SPIDER 2 [27], and predicted tertiary structures by

SPARKS-X [28]. A few selected model structures were

simulated by molecular dynamics simulations. The compar-

ison revealed that natural and random sequences have

essentially the same structural properties except that the for-

mer have more long disordered regions, likely evolved to

avoid detrimental aggregation.

Results

We constructed three databases of 10,000 protein sequen-

ces of 60 amino acid residues at 30 sequence identity cut-

off (see Materials and methods). There are natural wild-

type sequences (Pnat), random sequences generated

according to natural occurrences of amino acid types

(Prnd) and random sequences generated according to a

fixed occurrence at 5 % for every amino acid type (Preq).

Figure 1 shows the number of protein sequences in

number of disordered residues predicted by IUpred and

SPINE-D for sequences in Pnat, Prnd, and Preq, respec-

tively. Overall speaking, IUpred predicts more proteins

with less number of disordered residues than SPINE-D,

regardless of sequence datasets. This observation is
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Fig. 1 The number of protein sequences (in log2) with a given

number of disordered residues predicted by IUpred (in blue) and

SPINE-D (in red) for three separate sequence datasets (natural

sequences, Pnat in circles; random sequences with natural amino-acid

frequencies, Prnd in squares; and random sequences with a fixed 5 %

frequency for all residues, Preq in triangles). Natural sequences are

more disordered than random sequences as predicted by either

IUPRED or SPINE-D. Here all points with 0 occurrence are not

shown
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consistent with the fact that IUpred has a lower sensitivity

than SPINE-D [26]. Nevertheless, IUpred and SPINE-D

yield qualitatively similar trends for three sequence data-

bases. That is, natural protein sequences contain less

proteins having smaller number of disordered residues

(5–26 for SPINE-D) but more proteins having higher

number of disordered residues (27–60 for SPINE-D) than

random sequences with or without fixing amino-acid

compositions at 5 %. The distribution given by random

sequences with natural occurrence of amino acid residues

(Prnd) is closer to the distribution given by natural

sequences (Pnat) rather than to that of random sequences

with a fixed composition (Preq). It is of interest to note that

natural sequences have more fully disordered proteins (60

residues long) and more fully structured proteins than

random sequences although Pnat has only slight more

nearly full-structured proteins (number of disordered resi-

dues B5). Based on SPINE-D, there are 59 natural

sequences, 55 random sequences of natural compositions,

and 24 random sequences of fixed compositions with C55

residues in structured regions. The same trend (more fully

structured and more fully disordered proteins for natural

sequences) is also observed by IUPRED.

To confirm that natural sequences have more nearly fully

structured and fully disordered proteins, we re-examine the

results based on largest continuous disordered or structured

regions in Fig. 2. Here we randomly divided 10,000

sequences into five equal sets and obtained the average and

standard deviations between five sets of sequences. For

clarity, we showed the result from SPINE-D only as IUPRED

gives the same trend. Figure 2a indicates that natural

sequences have more long disordered regions than sequences

in Prnd or Preq. The difference is larger than standard devi-

ation. In particular, there are 954 fully disordered sequences

for all 10,000 natural sequences but only 139 for random

sequences with natural amino acid compositions and 0 for

random sequences with fixed amino acid compositions.

While there is a large difference in three sequence data-

bases for number of proteins with long disordered regions

(Fig. 2a), the difference is not significant for number of

proteins (within standard deviations) with long structured

regions ([50 residues, Fig. 2b). Random sequences tend to

have more sequences with structured regions between 40

and 50 residues. There are 58 proteins with C55 residues in

a continuous structured region for Pnat, 55 for Prnd, and 24

for Preq. The small difference between 58 for natural

sequences and 55 for random sequences with the same

overall composition of amino acids suggests that natural

sequences are only slightly or marginally more optimized

than random sequences for full structured proteins.

To confirm the accuracy of predicted structured and dis-

ordered regions (defined by SPINE-D with a threshold at 0.5),

we investigated composition bias (DPo
i and DP

d
i ) in structured

and intrinsically disordered regions and compared to anno-

tated regions in the DisProt database [29]. Composition bias

in predicted regions (ordered or disordered) by SPINE-D is

highly similar to that in annotated regions for three separate

sequence databases with high pairwise Pearson’s correlation

coefficients. For structured regions, the correlation coeffi-

cients to annotated regions are 0.75 for natural sequences,

0.91 for Prnd, and 0.90 for Preq, respectively. For intrinsically

disordered regions, the correlation coefficients to annotated

regions are 0.74 for natural sequences, 0.90 for Prnd, and 0.90

for Preq, respectively. Lower correlation coefficients of

composition biases between natural sequences and annotated

regions are likely because composition biases in random

sequences play more important roles in disorder classification

as a result of less informative sequence profiles from multiple

sequence alignment than natural sequences.

Secondary structural contents predicted by SPIDER2 for

three sequence datasets in structured and disordered

regions are compared in Table 1. The difference is small

but statistically significant (p value for unpaired

t test\0.002 for all cases): Pnat has 3–7 % higher fraction

of helical residues per protein (35.6 %) than Prnd (32.9 %)

and Preq (28.3 %) but 7 % less sheet residues (22.6 %,
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Fig. 2 The average number of protein sequences (times 5 in log2) as

a function of the number of residues in the largest continuous

disordered (a) or structured (b) regions for three separate sequence

datasets (natural sequences, Pnat in circles; random sequences with

native amino-acid frequencies, Prnd in squares; and random

sequences with a fixed 5 % frequency for all residues, Preq in

triangles) according to SPINE-D prediction. 10,000 sequences were

randomly divided into five equal subsets. The averages and standard

deviations are shown. Natural sequences have slightly more nearly

fully structured proteins ([55 residues) than random sequences. Here,

all points with 0 occurrence in any subsets are not shown
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compared to 29.9 % for Prnd and 29.4 % for Preq) in the

structured regions. All sequences in disordered regions

have significantly (10 % or more) less helical and sheet

residues than in structured regions. Table 1 also tabulated

fractions of annotated helical and sheet residues in 110

non-redundant monomeric protein structures (Pstruc).

Helical and sheet contents in Pstruc are similar to those in

Pnat, confirming the overall accuracy of predicted sec-

ondary structures.

Figure 3 compares the length distribution of helices and

sheets in Preq, Prnd, Pnat, and Pstruc in structured regions.

The difference between Pnat and Prnd is small. This

indicates that natural and random sequences (given the

same overall compositions) have similar helical and sheet

lengths. Similar distribution is observed for structured

proteins (Pstruc) although the dataset is much smaller (110

vs. 10,000 sequences), suggesting that there is no evolu-

tionary preference in lengths of helices and sheets in

protein structures.

Figure 4 compares the length distribution of helices and

sheets in Preq, Prnd, and Pnat in intrinsically disordered

regions. Pnat has more long helices than Prnd and

Preq. This is largely because Pnat has significantly more

long continuously disordered regions (Fig. 2). However,

the length distributions of sheets are much closer to each

other, despite that Pnat has more proteins with long dis-

ordered regions.

Can random sequences have well-defined three-dimen-

sional structures? We performed the fold recognition

method SPARKS X [28] for all proteins with predicted

structural regions of more than 54 residues (59 for Pnat, 55

for Prnd and 24 for Preq). SPARKS X is a method that

Table 1 The average helical and sheet contents in structured and disordered regions

Database Structured Disordered

Helix Sheet Helix Sheet

Preqa 0.28 ± 0.20 0.29 ± 0.17 0.15 ± 0.17 0.10 ± 0.12

Prnda 0.33 ± 0.24 0.30 ± 0.19 0.20 ± 0.19 0.12 ± 0.13

Pnata 0.36 ± 0.29 0.23 ± 0.22 0.21 ± 0.19 0.09 ± 0.11

Pstrucb 0.37 ± 0.32 0.21 ± 0.18 - -

a Based on predicted secondary structure by SPINE-D
b Based on actual secondary structure by DSSP
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Fig. 3 The fraction of helices (a) and sheets (b) in a given length

[log2 (fraction 9 10,000)] in structured regions for four databases as

labeled. To ensure statistics, the sizes of helices or sheets that

appeared in less than five proteins in the dataset are not shown
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Fig. 4 The fraction of helices (a) and sheets (b) in a given length

[log2 (fraction 9 10,000)] in intrinsically disordered regions for three

databases as labeled
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attempts to map a query sequence of unknown structure to

all known structures stored in the protein databank based

on multi-dimensional matches of sequence and structural

information. The significance of a match is measured by a

Z-score with Z-score[7 suggesting a highly significant

match. There are 25 out of 59 proteins with Z-score[7 for

Pnat, two out of 55 for Prnd, and three out of 24 for

Preq. Despite a similar number of proteins with predicted

structural regions of more than 54 residues, Pnat has many

more predicted proteins with quality predicted structures

than Prnd. This is largely because natural sequences have

more naturally occurring homologs or remote homologs.

We performed molecular dynamics simulations for two

sequences from Prnd (Seq 08789 and Seq 04514 with Z-

score = 7.41 and 7.07, respectively) and three sequences

from Pnat (UniRef50_M0WDE6, UniRef50_J9E0E9, and

UniRef50_D6GUH9 with Z-score = 9.24, 8.97, and 8.94,

respectively). As a control, we also performed MD for one

solution NMR structure of a putative copper-ion-binding

protein from Bacillus anthracis str. Ames (PDB ID 2L3 M,

71 residues long). All models either from Pnat or from Prnd

failed to have a stable structure after 100-ns simulations

(6–10 Å RMSD from the starting conformations and

7–10 Å between two last conformations in duplicate simu-

lations, Fig. 5a) while the PDB structure 2L3 M remains

stable (2.8 and 2.6 Å RMSD, respectively, from the native

conformation) after 100-ns simulation. Interestingly, only

minor increases in radius of gyration were observed for Prnd

(1 and 6 %) and Pnat sequences (-2, 3, and -6 %,

respectively). The distributions of radius of gyration in the

last 50 ns for all six pairs of simulations are shown in

Fig. 5b. These results indicate that model structures are

more flexible and slightly less compact than the native

structure (2L3 M). Figure 6 further examines the distribu-

tion of amount of secondary structures (helical and sheet

residues in Fig. 6a, b, respectively) in model structures as

compared to the native structure (2L3 M). It is clear that the

distributions of the numbers of helical and sheet residues are

much narrower in native structures than in model structures.

These results indicate that model structures are not accurate

enough to confirm whether random sequences are capable of

having unique structures by molecular dynamics simula-

tions. Nevertheless, MD simulation results confirm that

random sequences are capable of forming collapsed globule

structures with some secondary structures.
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dent simulations as a function of simulation time for six proteins
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Discussion

We have studied structure and disorder in 10,000 naturally

occurring and random protein sequences by using current

state-of-the-art techniques for prediction of protein intrin-

sic disorder, secondary structure, and tertiary structure.

Based on intrinsic disorder prediction, natural sequences

have many more disordered residues in long continuous

regions but only marginally more nearly full-structured

proteins than random sequences. In predicted structured

regions, natural sequences have marginally higher helical

residues but less sheet residues than random sequences

with the same amino acid compositions. In predicted dis-

ordered regions, there is no significant difference in helical

and sheet contents between natural and random sequences

of the same amino acid compositions. The distributions of

helical and sheet lengths for random and natural sequences

follow essentially the same power-law distribution in the

structured region. Although molecular dynamics simula-

tions of a few selected model structures did not reveal

stable conformations, these model structures remain highly

compact, suggesting that these proteins (with random and

natural sequences) at least are collapsed molten globules

with some secondary structures.

Random protein sequences are nearly as structured or

more structured than natural sequences. This finding, based

on disorder prediction and prediction of secondary struc-

ture, is consistent with several experimental examinations

of sequences from random co-polymerization of mixed

amino-acid N-carboxyanhydrides [6, 7], random three

residue types (Q, R, and L) of 70–90 amino acid residues

[8], random 120-amino-acid sequences of 20 and 12 resi-

due types [9], random 50-residue proteins [10], and random

71-residue proteins [11]. These experimental studies

showed that random sequences have compact structures,

cooperative unfolding, secondary structures, and/or pro-

tected from serine protease thrombin. The consistency

between experimental and our computational studies

occurs despite that experimental protein sequences were

obtained at DNA levels, expressed in E. coli (i.e., subjected

to codon optimization).

It should be noted, however, that SPINE-D [26] likely

over-predicts structured regions because it cannot distin-

guish proteins in molten globule states (compact with some

secondary structures [30]) from proteins in unique three-

dimensional structures. This happens because only native

structures and disordered regions were employed for

training SPINE-D [26]. Indeed, long molecular dynamics

simulations of predicted model structures of random

sequences failed to produce a well-defined conformation.

However, model structures of natural sequences also failed

to have a well-defined conformation, suggesting that model

inaccuracy is likely the main reason for unfolding of model

structures in molecular dynamics simulations. If the

majority of predicted structured regions are in a molten

globule state, it explains the difficulty in producing folded

structures from in vitro random recombination of sec-

ondary structure elements (blocks) [14, 15].

What is interesting is that natural sequences have more

disordered residues and more long disordered regions with

helical conformations. In a recent paper, we have shown

that the fraction of order and semi-disorder (disorder

probability\0.7) predicted by SPINE-D can be effectively

employed to predict residues in aggregation prone regions

with an accuracy comparable to several state-of-the-art

techniques dedicated for aggregation prediction [31]. Thus,

more disordered and long disordered regions for natural

sequences indicate that natural sequences are created and

evolved for solubility so as to avoid protein aggregation.

This is consistent with the finding that random 120-amino-

acid sequences of 20 residue types are aggregation-prone

[9]. The existence of helical regions in long disordered

regions indicates that nature may also employ disorder to

enhance plasticity for function because helices in disor-

dered regions are one of the widely utilized motifs in

protein–protein interactions [32]. Disordered regions also

provide accessibility of key residues for post-translational

modifications, and serve as flexible linkers for separating

functional domains or entropic bristles for keeping non-

interacting molecules apart [33].

Materials and methods

Construction of protein sequence databases

Natural sequences in Pnat are obtained from the UniRef50

sequence database [34]. Its sequence redundancy was

removed by using BLASTClust [35] with 30 % sequence

identity cut-off. Sequence non-redundancy in Prnd and

Preq was examined and confirmed by the program CD-HIT

[36] with 30 % sequence identity cut-off. The natural

occurrences of amino acid types were obtained from

BLOSUM62 [37].

Intrinsic disorder prediction

The existence of intrinsic disorder in proteins (natural or

artificial sequences) is probed by two different algorithms.

One method is IUpred, which predicts disorder based on

knowledge-based interaction strengths within sequentially

neighboring amino acid residues [25]. IUpred is computa-

tionally fast because it does not require evolutionary

information of protein sequences. Another method is
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SPINE-D, which employs a neural network trained for dis-

order prediction [26]. SPINE-D provides a more accurate

prediction of intrinsic disorder than IUpred and was inde-

pendently assessed to be among the best-performing

methods in the Critical Assessment of Structure Prediction

techniques (CASP 9, 2010) [38]. It is more accurate because

protein evolutionary information accounts for the fact that

structured regions are more likely conserved than unstruc-

tured, intrinsically disordered regions. Comparing

predictions between IUpred and SPINE-D will allow us to

evaluate the consistency in computational predictions in the

presence and absence of sequence evolution information.

Protein secondary-structure prediction

A recently developed method SPIDER2 [27] was employed

to predict secondary structure by iterative deep learning of

multiple structural properties (backbone torsion angle,

solvent accessible surface area, and Calpha angles) in

addition of secondary structure. It was chosen because it is

one of the most accurate predictors of secondary structures.

Protein secondary structure analysis

For comparison, we also obtained structured proteins

(Pstruc) with 3.5-Å resolution or better and sequence

lengths between 50 and 70 amino acid residues from the

protein databank. We further removed protein structures

that are in complex with RNA, DNA, or proteins. The final

dataset (Pstruc) contains 110 proteins after removing

redundancy at 30 % sequence-identity cut-off. The sec-

ondary structures of these proteins were obtained from the

PDBfinder database [39]. Eight-state annotations were

merged into three states [H, G, and I for Helix (H), B and E

for sheet (E), T, S, and D for Coil (C)].

Amino acid preferences

We evaluated the preferences of amino acid residues in

ordered or intrinsically disordered regions by examining

the difference of their occurrence in the region ðPo
i ;P

d
i Þ

from their occurrence in all sequences in the database ðPall
i Þ

[40]. That is, DPo
i ¼ ðPo

i � Pall
i Þ=Pall

i and DPd
i ¼ ðPd

i �
Pall
i Þ=Pall

i in addition to calculating amino acid preferences

from predicted ordered and disordered regions, we also

calculated amino acid preferences in annotated structured

and disordered regions by using the DisProt database [29].

A total of 548 annotated sequences were obtained from the

DisProt database after removing redundancy by using CD-

HIT (30 % sequence identity cut-off). These sequences

contain 911 intrinsically disordered regions and 978

structured regions.

Structure prediction and molecular dynamics

simulations

For those random sequences predicted to be structured, we

performed template-based structure prediction by SPARKS

X with default parameters [28]. Selected model structures

are then simulated in the presence of water molecules.

Molecular dynamics (MD) simulation in the isothermal-

isobaric (NPT) ensemble was performed using the GRO-

MACS 4.6.2 software package [41]. We employed the

amber99sb-ildn force field for proteins and TIP3P for water

molecules [42]. The protein was solvated in a truncated

octahedron box with the minimum solute-box boundary

distance being set to 12 Å. The long-range electrostatic

interaction was treated with the particle-mesh Ewald method

with a grid spacing of 1.2 Å and a fourth-order interpolation

[43, 44]. Protonation states of ionizable groups were chosen

for pH = 7.0. For each protein, two independent simulations

were performed for 100 ns with different initial velocities

for pressure P at 1 bar and temperature T at 298K. The

temperature of the system was kept constant by velocity

rescaling with a stochastic term [45]. The pressure of the

system was kept constant by using the Berendsen algorithm

[46]. The simulation employed a temperature coupling time

of 0.1 ps and pressure coupling time of 2 ps. The time step

for the MD integrator was set to 2 fs and LINCS [47] was

applied to constrain all bond lengths.

Availability of data and materials

All sequence datasets (Pnat, Prnd, and Preq) are made

available at http://sparks-lab.org.
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