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Abstract Locusts represent the excellent model of insect

olfaction because the animals are equipped with an unusual

olfactory system and display remarkable density-dependent

olfactory plasticity. However, information regarding

receptor molecules involved in the olfactory perception of

locusts is very limited. On the basis of genome sequence

and antennal transcriptome of the migratory locust, we

conduct the identification and functional analysis of two

olfactory receptor families: odorant receptors (ORs) and

ionotropic receptors (IRs). In the migratory locust, there is

an expansion of OR family (142 ORs) while distinctly

lower number of IR genes (32 IRs) compared to the

repertoires of other insects. The number of the locust OR

genes is much less than that of glomeruli in antennal lobe,

challenging the general principle of the ‘‘one glomerulus-

one receptor’’ observed in other insects. Most OR genes are

found in tandem arrays, forming two large lineage-specific

subfamilies in the phylogenetic tree. The ‘‘divergent IR’’

subfamily displays a significant contraction, and most of

the IRs belong to the ‘‘antennal IR’’ subfamily in the

locust. Most ORs/IRs have olfactory-specific expression

while some broadly- or internal-expressed members are

also found. Differing from holometabolous insects, the

migratory locust contains very similar expression profiles

of ORs/IRs between nymph and adult stages. RNA inter-

ference and behavioral assays indicate that an OR-based

signaling pathway, not IR-based, mediates the attraction of

locusts to aggregation pheromones. These discoveries

provide insights into the unusual olfactory system of

locusts and enhance our understanding of the evolution of

insect olfaction.
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Introduction

Olfaction plays a critical role in animal survival and

reproduction, such as foraging, aggregation, predator

avoidance, and mating [1, 2]. To adapt diverse environ-

ments and ecological niches, insects have evolved a wide

variety of olfaction-based behaviors and diverse olfactory

systems, which can be reflected by the morphological

characteristics of antennae, olfactory sensilla type, olfac-

tory receptor repertoire, and antennal lobe (AL)

architecture [2–4]. Despite this diversity, a general princi-

ple has been proposed in the organization of insect

olfactory pathway, from the activation of an olfactory

sensory neuron (OSN) expressing one given OR, to the

projection in one single glomerulus in AL, finally to the
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coding in higher brain centers. However, it remains

unknown whether this general principle applies to all insect

species because studies on important insect taxa, particu-

larly insects undergoing incomplete metamorphosis, have

not been conducted.

The identification of genes encoding odorant receptor

(OR) and ionotropic receptor (IR) families is a key step

toward understanding the characteristics and evolution of

insect olfactory systems. Insects mainly rely on OR and IR

genes to perform the long-range detection of volatile

molecules [5, 6]. Insect ORs are ligand-gated ion channels

and novel seven transmembrane domain proteins with an

inverted topology compared with mammalian ORs [7–9].

These receptors are heteromultimers composed of at least

one odorant-specific, highly divergent OR subunit (ORx)

and a ubiquitous coreceptor Orco [10]. Orco is highly

conserved across insect species and is essential for traf-

ficking, localization and functioning of co-expressed ORx

[9, 11]. OR repertoires have been identified in Diptera,

Hymenoptera, Lepidoptera, Coleoptera, Hemiptera and

Blattodea through whole-genome sequencing. The number

of OR genes varies considerably from 10 in Pediculus

humanus humanus [12] to 170 in Apis mellifera [13] and up

to 352 in Camponotus floridanus [14], reflecting extensive

gene gain and loss over the evolution of insect ORs. The

origin of the OR family might be the adaptation of flying

insects to the rapid spread and diversification of vegetation,

with Orco being present before the appearance of ORs [5].

IRs, a highly divergent family of ionotropic glutamate

receptors (iGluRs), represent a second family of insect

chemoreceptors [15]. These receptors are also ligand-gated

ion channels with three transmembrane domains. IR genes

are found in olfactory organs across Protostomia; therefore,

IRs likely represent an ancestral protostome chemosensory

receptor family [16]. IRs can be further classified into two

sub-families: conserved ‘‘antennal IRs’’ involved in olfac-

tion and species-specific ‘‘divergent IRs’’, which are

detected in Drosophila gustatory organs rather than olfac-

tory organs and function as candidate gustatory and

pheromone receptors [16, 17]. The coreceptors of IRs, IR8a

and IR25a, which are broadly expressed and analogous to

the Orco, play an essential role in tuning IRs sensory cilia

targeting and IR-based sensory channels [18]. However,

the related studies of ORs/IRs mainly focus on holometa-

bolous insects, such as flies, mosquitoes, and moths. The

olfactory systems of more insect species should be exam-

ined to enhance our understanding to the olfactory coding

and evolution of insect olfaction.

Locusts, which are a representative species of hemi-

metabolous insects, have been regarded as excellent model

for studying insect olfaction because of their unusual

olfactory system and striking density-dependent olfactory

plasticity [1, 19, 20]. The organization of AL, which is the

first-order olfactory center of insect brain, drastically dif-

fers in locusts compared with other insect species [20, 21].

In most insects, the number of glomeruli ranges from 50 to

200 [1]. Insects share a characteristic related to OSNs

expressing a specific OR; similar to projection neuron

(PN), each OSN project to a glomerulus [1, 22]. However,

ALs in locusts display microglomerular organization with

thousands of microglomeruli in each AL; similar to PNs,

OSNs are highly branched in ALs and target multiple

microglomeruli [1, 21, 23]. Differing from other insect

species, locusts can add more microglomeruli into ALs and

add new OSNs each time these insects molt, but the

number of PNs remains constant as locusts age [24, 25]. As

such, the olfactory system of locusts has been called the

‘‘puzzle’’ of insect olfactory evolution [1, 20]. Locusts also

exhibit a striking phase polyphenism consisting of ‘‘soli-

tarious’’ phase and ‘‘gregarious’’ phases. Olfactory

preferences of solitarious and gregarious locusts can

rapidly change as phase transition occurs [19, 26]. This

phase-related olfactory plasticity has been regarded as a

critical trigger of large swarm formation.

Several peripheral olfactory genes, including CSPs and

LmigTo1, and two neurotransmitters, namely, octopamine

and tyramine, have been suggested to play important roles

in phase-dependent olfactory plasticity of the migratory

locust, Locusta migratoria [19, 26]. Olfactory plasticity of

locusts should be understood in terms of olfactory receptors

because chemoreceptor family is also involved in the reg-

ulation of insect olfactory plasticity [27, 28]. However,

information on locust chemoreceptors is very limited; thus

far, only seven ORs and two IRs have been identified in

two locust species, L. migratoria and Schistocerca gre-

garia [29–31].

The complete whole-genome sequence of the migratory

locust provides insights into molecular characteristics

related to the olfactory system [32]. In this study, the data

from locust genome and transcriptome were integrated to

perform manual annotation and characterization of the OR

and IR families. Tissue- and development-specific

expression profiles of these genes were also investigated.

The specific olfactory signaling pathway responsible for

the attractive behavior of the locusts was also identified via

a gene silence technique and a behavioral assay. This study

provides basis to understand the mechanism of locust odor

coding and the evolution of insect olfaction.

Materials and methods

Locust rearing

The migratory locusts used in this research were obtained

from colonies maintained in the Institute of Zoology,
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Chinese Academy of Sciences, Beijing, China. Gregarious

nymphs were cultured in large boxes

(40 cm 9 40 cm 9 40 cm) at a density of 500–1000

insects per cage. These colonies were subjected to a 14 h

light/10 h dark cycle at 30 ± 2 �C and fed with fresh

wheat seedlings and bran.

RNA isolation

Total RNA was isolated using an RNAeasy mini kit (Qi-

agen, Hilden, Germany) according to the manufacturer’s

instructions and treated with DNase I (Qiagen, Hilden,

Germany) to digest the remaining genomic DNA. RNA

concentration was determined using an ND-1000 spec-

trophotometer (Nanodrop, Wilmington, DE, USA). RNA

integrity was confirmed through 1 % agarose gel

electrophoresis.

Sequencing, de novo assembly and analysis

of antennal transcriptome

Antennal samples were hand-dissected from fourth-instar

gregarious nymphs (at 3 days after molting; 20 individuals;

male:female = 1:1) and immediately placed in liquid

nitrogen. Total RNA was isolated using the method

described above. mRNA was isolated and cDNA library

was prepared using Illumina TruSeq RNA Sample Prepa-

ration Kits V2 (Illumina Inc., San Diego, CA, USA). The

library was then deeply sequenced using Illumina HiSeqTM

2000.

After sequencing was performed, to de novo assemble

the transcripts, raw reads were preprocessed by filtering

low-quality reads and adaptor contamination by using

Trimmomatic (version 0.30) with the parameters:

‘‘ILLUMI NACLIP:/path/to/adaptor/sequence.fa:2:8:6

SLIDIN GWINDOW:4:15 MINLE N:40’’. The Trinity

pipeline (version r2013-02-25) was used to assemble the

filtered transcriptome data with default parameters [33]. To

reduce redundancy, we firstly use TGICL (version 2.1) to

cluster the assembly according to pairwise sequence simi-

larity; the consensus sequences were produced for each

cluster. The results were further filtered by cd-hit [34]

(version v4.6.1-2012-08-27) with the parameter ‘‘-c 0.95’’,

which clustered the sequences based on the short word and

selected one longest sequence as the representative for each

cluster.

The raw RNAseq reads were mapped to the locust

genome by Tophat (version 2.0.13) [35]. The number of

reads that mapped to each gene model was counted by

Htseq. The gene expression levels were measured by the

RPKM (reads per kilobase per million), which was calcu-

lated by in-house PERL script. The transcript abundances

of genes in the antennal RNAseq were compared with

previously published whole body RNAseq data [36]. To

minimize the influence of differences in the RNA output

size between samples, the number of total reads was nor-

malized by multiplication with normalization factors, as

suggested by Robinson [37]. Differentially expressed genes

were detected using the method described by Chen et al.

[36], which was constructed based on the Poisson distri-

bution and eliminated the influences of the RNA output

size, sequencing depth, and gene length. Differentially

expressed genes were determined by setting a fold-change

cutoff of at least 2 and a false discovery rate (FDR) cutoff

of 1E-5. Enrichment analysis for the supplied gene list

was performed based on an algorithm presented by GOstat

[38], with the whole annotated gene set as the background.

The p value was approximated using the v2 test. The

Fisher’s exact test was used when any expected value of

count was below 5. If one GO item was an ancestor of

another item and the enriched gene list of these two items

was the same, the ancestral item was deleted from the

results. To adjust for multiple tests, we calculated the FDR

via the Benjamini–Hochberg method for each class.

LmigOR/IR gene identification

To comprehensively identify OR/IR genes, we adopted two

strategies. First, we predicted the locust OR/IR genes from

the recently sequenced locust genome using the protein

profile implemented in AUGUSTUS. The identity of OR/

IR amino acid sequence ranged from 15 to 99 % across

insect species [13]; therefore, the traditional homolog

searching method is not a straight-forward approach to

search the genome. We collected the OR/IR protein

sequences from four insect species: Drosophila melano-

gaster, A. mellifera, Acyrthosiphon pisum and Tribolium

castaneum. For the identification of IRs, we also added the

protein sequences from Zootermopsis nevadensis, which is

closely related to locusts and displays an expansion of IR

repertoire [39]. The multiple sequence alignment was

performed with the Muscle program, whereas the gap-rich

sequences were filtered by the prepareAlign program in

AUGUSTUS. To get a good alignment, the protein

sequences of IRs with length \500 amino acids were

removed. Finally, the profile was generated using the

msa2prfl.pl scripts; this profile was used to search the

locust genome sequence with AUGUSTUS. The predicted

OR/IR genes were further filtered when the best hit in

NCBI/NR database was not an OR/IR gene. The predicted

OR/IR genes were further manually curated utilizing the

Appolo [40] and IGV [41]. Second, to predict more locust

OR/IR genes, we also searched against the antennal tran-

scriptome assembly via the protein profile method. The

protein profile was constructed from all the locust OR/IR

genes identified in the above-mentioned steps. The protein
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profile construction and search were performed with the

HMMER version 3.1 program. The cutoff E value of the

search was 0.01. The searched result was also filtered by

the NCBI/NR database search as described in the above-

mentioned steps. Finally, the OR/IR sequences from both

methods were merged to give a comprehensive locust OR/

IR gene set.

Phylogenetic analyses

Amino acid sequences of the selected ORs and iGluRs/

IRs were aligned with the MAFFT (E-INS-I parameter)

program. The alignments were then manually cleaned to

obtain the final high-quality alignments. We used ProtTest

to evaluate the optimal model of substitution to infer the

phylogeny. Dendrograms were then calculated with the

MrBayes v3.2.1 and RAxML programs before the trees

were viewed and graphically edited with FigTree (http://

tree.bio.ed.ac.uk/software/figtree). Bayesian analysis was

performed via the WAG substitution model, four chains,

two runs with 3 million generations. Trees were sampled

each 100 generations. One-fourth of the 30,000 topologies

were discarded as burn in, whereas the remaining

topologies were used to calculate the posterior

probabilities.

Reverse transcription PCR (RT-PCR)

The antennae, maxillary palp, wing, leg, brain, testis,

ovary, and fat body were dissected from fourth-instar

gregarious nymphs aged 3–4 days after molting or from

gregarious adults aged 7–8 days since eclosion. All sam-

ples were stored at -80 �C before RNA isolation. First-

strand cDNAs were synthesized from 2 lg of total RNA

with the oligo dT(15) primer (Promega, Madison, USA) and

the MMLV reverse transcriptase (Promega, Madison,

USA). Subsequently, the cDNAs were used as templates

for RT-PCR studies. The RT-PCR experiments were con-

ducted in a thermal cycler (Eppendorf, Hamburg,

Germany) and performed in a 40 lL reaction system,

which contained 20 lL of rTaq mix (Takara, Dalian,

China), 10 lmol of each primer, 2 lL of cDNA, and 16 lL
of deionized water. The PCR parameters were 94 �C for

5 min, followed by 35 cycles of 94 �C for 30 s, the

annealing temperature (primer-dependent) for 30 s, and

72 �C for 1 min, with final extension at 72 �C for 10 min.

The RT-PCR products were analyzed on 1 % agarose gels

and verified by DNA sequencing. To distinguish between

genomic DNA and cDNA templates, primers were

designed to span at least one intron. The ribosomal protein

49 (rp49) gene was provided as a control for the integrity

of the cDNA templates. The primers were designed using

the Primer 5.0 software and are listed in Table S1.

RNA interference (RNAi)

Double-stranded RNAs (dsRNA) of green fluorescent

protein (GFP), LmigOrco, LmigIR8a and LmigIR25a were

synthesized with the T7 RiboMAX Express RNAi system

(Promega, Madison, USA), following the manufacturer’s

instructions. The concentration of dsRNA was determined

with an ND-1000 spectrophotometer. The quality was

verified by 1 % agarose gel electrophoresis. Fourth-instar

gregarious nymphs aged 1 day after molting were sepa-

rately injected with 9 lg of dsGFP, dsLmigOrco, or a

mixture of dsLmigIR8a and dsLmigIR25a (dsLmigIR8a/

25a) into the second ventral segment of the abdomen.

Subsequently, the injected gregarious nymphs were marked

and returned to the gregarious-rearing cages. After 3 days,

the effects of RNAi were investigated by qRT-PCR,

whereas the animal behavior was observed in a Y-tube

olfactometer. The primers for dsRNA preparation were

designed with the Primer 5.0 software and are listed in

Table S2.

Quantitative real-time PCR (qRT-PCR)

cDNA pools were generated from 2 lg of total RNA from

each treatment; the pooled cDNA was used as the template

for quantification. The qRT-PCR experiment was per-

formed with a LightCycler� 480 system (Roche,

Mannheim, Germany). The reactions were performed in a

mix containing 5 lL of SYBR Green I master (Roche,

Mannheim, Germany), 5 lmol of each primer, 1 lL of the

cDNA template, and 3 lL of deionized water. The thermal

cycling was set for 1 cycle at 95 �C for 10 min, followed

by 45 cycles at 95 �C for 10 s, 58 �C for 10 s and 72 �C for

20 s. The melting curve was analyzed to confirm the

specificity of amplification. The relative expression level of

the genes was normalized with the rp49 gene. The

expression data were analyzed with the equation: 2-DDCt.

The primers were designed using Primer 5.0 software and

are shown in the Table S3.

Behavioral assay

The experiment was performed in a glass Y-tube olfac-

tometer at room temperature (25–30 �C). The system was

equipped according to the instructions described in the

literature [19]. Briefly, a constant airflow (300 mL/min)

was filtered through activated charcoal and humidified with

double-distilled deionized water, before it was introduced

into each arm of the olfactometer. One lateral arm was

connected to one empty bottle that served as the air control,

whereas the other arm connected with one bottle containing

the fourth-instar gregarious nymphs (40 individuals) as a

volatile emission source. After observing 10 individuals,
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the two arms were exchanged to avoid unidirectionality.

The initial choice for volatile or air was recorded when the

locust walked for more than 5 cm into one of the arms. If

locust did not make a choice within 3 min of being

released, the outcome was recorded as ‘‘no choice’’.

Statistical analysis

Data from qRT-PCR were analyzed by Student’s t test. The

choice of locusts in Y-tube olfactometer was analyzed by

the Mann–Whitney U test. Differences were considered

significant at p\ 0.05. Data were analyzed using SPSS

16.0 (SPSS Inc., Chicago, IL, USA).

Results

Antennal transcriptome

To identify candidate OR/IR genes and determine their

transcript abundance, we performed antennal transcriptome

of fourth-instar gregarious nymphs via a deep-sequenc-

ing method and combining previous transcriptome data of

adult antennae [32]. A total of 95,674,882 reads were

generated: 81,356,958 (85 %) of which can be mapped to

the locust genome (Table S4). A combined assembly

pipeline included Trinity, TGICL and cd-hit-est; this

pipeline was used to produce 84,160 contigs (Table S4). A

total of 1281 genes were assigned for molecular function,

4159 for biological process, and 1834 for cellular compo-

nent. The term ‘‘nucleotide binding’’ was the most

represented (54 %) in the molecular function category, but

the terms related to olfactory pathway were not enriched

(Fig. S1).

To characterize further the antennal transcriptome, we

compared the antennal transcriptome with the whole body

transcriptome of fourth-instar nymphs [36]. The results

showed that olfaction- and ribosome-related GO terms,

such as ‘‘odorant binding’’, ‘‘olfactory receptor activity’’,

and ‘‘structural constituent of ribosome’’, were the most

abundant upregulated genes of the antennal transcriptome

(Table 1). Several GO categories, such as ‘‘oxidoreduc-

tase’’ and ‘‘catalytic activity’’, were enriched in

downregulated genes of the antennal transcriptome com-

pared with the whole body transcriptome (Table 1).

Identification and phylogenetic analysis of candidate

odorant receptors

We identified a total of 142 candidate odorant receptors in

the locust genome and antennal transcriptome, including 7

previously annotated ORs [29, 31], and we renamed these

ORs in the present study. Newly identified LmigORs were

consecutively named with Arabic numerals according to

the scaffold locations and phylogenetic analysis of these

genes. 54 % of these candidates (77 ORs) contained full-

length open reading frames (ORF) with 6–7 transmem-

brane domains. Among 142 ORs, we only found a single

pseudogene (LmigOr100) with a premature stop codon

within an exon. Among the 142 candidate ORs, we

detected the expression of 134 ORs in the antennal RNA-

seq except for LmigOr5, -6, -25, -38, -83, -91, -115, and -

141. As expected, the LmigOrco gene exhibited the highest

abundance (31.38 RPKM). The exon number, length,

genomic location, and GenBank accession numbers of all

142 ORs can be seen in Table S5.

Gene mapping showed that most LmigORs were enco-

ded by clusters of tandemly arrayed genes (Table S5). For

example, 15 and 5 ORs were separately located on scaf-

folds 1488 and 14007 in two of the known perfect tandem

gene arrays (Fig. 1). Some of these ORs had a high amino

acid identity (up to 87 %), which reflected recent dupli-

cation events.

The phylogenetic tree of LmigORs was constructed

based on Bayesian analysis, with the Orco lineage as the

outgroup (Fig. 2). Additional ORs from other insect spe-

cies other than Orco were not included because

‘‘orthologous’’ relationships between the 141 conventional

LmigORs and other insect ORs were not detected (Fig. S2).

The phylogenetic tree of LmigORs formed two large lin-

eage-specific clades, including clade 1 (99 ORs) and clade

2 (19 ORs; Fig. 2). In the clade 2, 15 members were dis-

tributed on the scaffold1488 (Fig. 1). Based on the encoded

protein sequences, the evolutionary relationships of these

15 genes conformed well to their locations on the scaffold.

The clade 1 actually consisted of two main sub-clades: sub-

clade A including 52 ORs and sub-clade B including 47

ORs (Fig. 2).

Identification and phylogenetic analysis of candidate

iGluR/IR genes

We identified 16 candidate iGluRs and 32 IRs from the

locust genome, including four pseudogenes (LmigIR5, -16,

-23, and LmigiGluR11) with premature stop codons. Unlike

the OR genes located on the genome as tandem arrays, the

iGluR/IR genes were widely dispersed throughout the

locust genome (Table S5). As expected, we identified the

orthologous genes of Drosophila IR8a and IR25a from the

locust genome; these genes were named LmigIR8a and

LmigIR25a, which shared 46 % and 55 % amino acid

identity with DmelIR8a and DmelIR25a, respectively. In

the antennal RNAseq, we detected the expression of all

LmigIRs except IR7, -11, -13, -14, -15, and -16. Among

these IRs, IR8a and IR25a had the highest transcript

abundance (8.38 and 11.00 RPKM, respectively). The exon
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number, length, genomic location, and GenBank accession

numbers of all 48 iGluR/IR genes can be seen in Table S5.

The alignment of the amino acid sequences of Lmi-

giGluR/IR genes showed that one or several key amino

acids (arginine, threonine, and aspartate/glutamate) were

absent in the predicted glutamate binding domains of most

LmigIR genes, which was similar to other IRs [5, 15].

However, these key amino acids were conserved among

most LmigiGluR members (Fig. S3).

The phylogenetic tree of LmigiGluR/IR further sup-

ported our classification, in which 26 LmigIRs were

well clustered into the conserved antennal IR sub-

family (Fig. 3a). LmigIR8a and LmigIR25a were

grouped close to a cluster of IR8a/25a genes from other

insect species (Fig. 3a). Sixteen genes were classified

into the iGluRs sub-family. There were only four

LmigIRs belonging to the ‘‘divergent IR’’ subfamily

(Fig. 3a). The number of divergent IR in the migratory

Table 1 GO enrichment of differentially expressed genes between fourth-instar nymph antennae and whole-body transcriptomes

GO ID GO name p value GO classification

Up GO:0005549 Odorant binding 2.37E-15 MF

GO:0004984 Olfactory receptor activity 8.17E-13 MF

GO:0007608 Sensory perception of smell 8.17E-13 BP

GO:0004871 Signal transducer activity 1.45E-08 MF

GO:0004888 Transmembrane signaling receptor activity 2.02E-08 MF

GO:0038023 Signaling receptor activity 1.04E-07 MF

GO:0004872 Receptor activity 1.09E-07 MF

GO:0003735 Structural constituent of ribosome 3.81E-07 MF

GO:0005840 Ribosome 5.27E-07 CC

GO:0030529 Ribonucleoprotein complex 7.27E-06 CC

Down GO:0055114 Oxidation–reduction process 7.06E-22 BP

GO:0016491 Oxidoreductase activity 2.46E-18 MF

GO:0003824 Catalytic activity 5.05E-12 MF

GO:0008152 Metabolic process 1.69E-11 BP

GO:0042302 Structural constituent of cuticle 2.26E-10 MF

GO:0005344 Oxygen transporter activity 1.94E-09 MF

GO:0022607 Cellular component assembly 9.50E-09 BP

GO:0044282 Small molecule catabolic process 1.15E-08 BP

GO:0071844 Cellular component assembly at cellular level 1.31E-08 BP

GO:0065003 Macromolecular complex assembly 1.81E-08 BP

This table lists the top ten gene categories from the comparison of the expression levels of genes in the antennae RNAseq with those in the whole

body RNAseq

Up GO terms enhanced in antennae, Down GO terms enhanced in whole bodies, MF molecular function, BP biological process, CC cellular

component

Or11  12  13  14

 15

  16 17

  18

  19  20   21 22 23 25

Or66 67 68 69 70

250 kb

50 kb

Scaffod1488

Scaffold14007

24

40~83% AA identity

50~87% AA identity

Fig. 1 Genomic locations of

partial LmigOR genes. The

central lines represent two of

scaffolds assembled in the

locust genome. The orientation

of gene transcription is shown

with an arrow. The scaffold

length (kb), gene locations and

orientations are based on data

from Release 2.4 of locust

genome. AA amino acid

4434 Z. Wang et al.

123



locust was dramatically reduced compared to most

other insect species (Fig. 3b).

Tissue-specific expression of OR and iGluR/IR genes

To characterize further the candidate LmigOR/IR genes, we

investigated their tissue-specific expression by RT-PCR

analysis in several tissues of fourth-instar nymphs. Among

142 putative LmigORs, 108 OR genes were detected by

RT-PCR in at least one tissue (antennae, maxillary palp,

wing, and leg) of fourth-instar nymphs (Table 2; Fig. S4).

More than half of these OR genes (63 of 108) were only

expressed in olfactory organs (antennae and maxillary

palp), including 52 antennae-specific ORs (Table 2;

Fig. S4). Interestingly, 12 ORs showed a broad expression

in all detected tissues (Table 2; Fig. S4).

Among the 32 putative LmigIRs, 21 genes were detected

by RT-PCR analysis in at least one tissue (antennae,

maxillary palp, brain, and leg) of fourth-instar nymphs

(Table 2; Fig. S5). Most of the putative LmigIRs (18/21)

were detected in antennae tissue including 4 antennae-

specific expressed IRs (Table 2; Fig. S5). Several LmigIRs

were observed to have high expression in brain tissue

(Fig. S5). A total of 14 iGluR genes were detectable and
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Fig. 2 Phylogenetic analysis of

LmigORs. 126 LmigORs (AA

length[ 250) were selected to

build the tree. The dendrogram

was generated by Bayesian

analysis (WAG substitution

model) and RAxML (JTT

substitution model). Only

support values for major

branches and above 50 % are

shown. The value before the

solidus is given by Bayesian

analysis whereas that after the

solidus is given by RAxML

method. Suffixes after OR

names: P pseudogene, N N-

terminal missing, C C-terminal

missing, I internal region

missing. Species abbreviations:

Amel, Apis mellifera; Apis,

Acyrthosiphon pisum; Bmor,

Bombyx mori; Dmel,

Drosophila melanogaster;

Agam, Anopheles gambiae;

Lmig, Locusta migratoria. The

scale bar represents the

expected changes per site
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displayed a broad expression pattern; among these genes, 7

can be detected in antennae (Fig. S5). All the 3 NMDAR

receptors showed brain-specific expression (Fig. S5).

Furthermore, the transcript abundances of candidate

LmigOR/IR genes in various adult tissues were analyzed

based on the transcriptomic data [32]. As expected, most of

LmigORs had higher RPKM values in antennae than in other

tissues (Fig. 4a). Interestingly, we found that 10 LmigOR

genes were highly expressed in several internal tissues,

especially in the testis (Fig. 4a). Additionally, the Lmi-

gOR95 transcript abundance in the fat body (11.33 RPKM)

was much higher than the mean expression level of antennae

ORs (1.39 RPKM; Fig. 4a). In addition to antennae tissue,

the LmigOrco transcript was also detected in the testis and

ovary with very low transcript abundance (0.24 and

0.02 RPKM, respectively), but was absent in other investi-

gated internal tissues (Fig. 4a). Subsequently, the expression

of these 10 ORs and Orco was confirmed by RT-PCR

(Fig. 4b). Moreover, RNAseq analysis showed that several

LmigIR transcripts had a high expression level in the adult

testis tissue other than the antennae (Fig. S6).

Comparison of LmigORs/IRs expression

in the antennae of nymphs and adults

We compared the expression patterns of LmigOR/IR genes

between the fourth-instar nymphs and adults based on the

antennal RNAseq data. The RNAseq analysis showed that

134 and 139ORswere detected in the nymph and adult stages,

respectively. Most of the LmigORs (133) were expressed in

both stages (Fig. 4c). However, 6 LmigORs (LmigOR5, -6, -

25, -83, -91, and -141) were adult specific, although only one

OR, LmigOR66, displayed fourth-instar nymph-specific

expression (Fig. 4c). The expression patterns of these devel-

opment-specificLmigORswere confirmedbyRT-PCRexcept

for the expression of LmigOR6 and -66, both of which had

very low transcript abundance (0.09 and 0.18 RPKM,

respectively; Fig. 4d). No development-specific LmigIRs

were identified because all 26 IRswere detected in both stages

(data not shown). In addition, we found 12 differentially

expressed LmigOR/IR genes (fold-change[ 2, FDR\ 0.05)

between the nymph and adult stages; 8 ORs and 2 IRs were

upregulated in the nymphs, whereas 2 ORs and 1 IR were

upregulated in the adults (Table S6).

Olfactory signaling pathway linked with attractive

behavior of gregarious locusts

To distinguish the role of ORs from IRs in locust

chemoreception, we tested behavioral responses of fourth-

bFig. 3 iGluRs/IRs identified in the locust. a Phylogenetic analysis of

iGluRs/IRs. The dendrogram was generated using Bayesian analysis

(WAG substitution model). Only support values for major branches

are shown. Sequences of Daphnia pulex, A. pisum, and D.

melanogaster are taken from reference 16; Z. nevadensis sequences

are taken from reference 39. The scale bar represents the expected

changes per site. b Histogram of the number of iGluR, antennal IR,

and divergent IR genes identified in different species. The gene

number of the different sub-families is counted according to reference

16 except for P. siccifolium, which is counted according to reference

5. The gene numbers in Z. nevadensis and L. migratoria are counted

according to our in-house phylogenetic analysis. The species names

involved in phylogenetic tree building are colored, and the color

pattern is consistent with that in the tree. The organisms are sorted

according to the evolutionary status. Filled triangle, genome is not

sequenced

Table 2 Summary of the tissue-specific expression of LmigORs/IRs

Pattern A M L WOR BIR No. of OR/IR OR/IR (%)

1 d s s s s 52/4 48/19

2 d d s s s 11/1 10/5

3 d s s d d 16/3 15/14

4 d s d s s 3/1 3/5

5 d d s d d 10/3 9/14

6 d d d s s 1/2 1/9

7 d s d d d 3/0 3/0

8 d d d d d 12/4 11/19

9 s d d d d 0/1 0/5

10 s d s s s 0/1 0/5

11 s d s s d 0/1 0/5

108/21 100/100

The expression of ORs and IRs was investigated in different tissues by RT-PCR

Wing tissue was investigated only for ORs, and brain tissue was investigated only for IRs. The tissue samples were dissected from fourth-instar

gregarious nymphs aged 3–4 days after molting

A antennae, M maxillary palp, L leg, W wing, B brain, d detectable, s undetectable
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instar nymphs to aggregative pheromones from gregarious

locusts via the RNA interferences of the coreceptor genes,

LmigOrco, or LmigIR8a/IR25a. Compared with the con-

trols, the relative mRNA expression levels of LmigOrco,

LmigIR8a, and LmigIR25a significantly decreased by 74,

93 and 92 %, respectively (t = 3.635, 5.008, 8.637;

p = 0.013, 0.015, 0.00013, respectively), after injecting

their double-strand RNAs (Fig. 5a–c).
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Fourth-instar nymph Adult

Fig. 4 Expression of LmigOR

genes in different adult tissues.

a Left Heat map of LmigOR

transcript abundances expressed

in different adult tissues. Right

Expanded view of the ORs

expressed predominantly in

internal tissues. b Expression of

OR transcripts was confirmed

by RT-PCR. The tissue samples

were dissected from gregarious

adults. c Comprehensive list of

LmigORs expressed in adult and

nymphal antennae

RNAseq. 133, the number of

ORs detected in both stages.

d RT-PCR analysis of

development-specific LmigORs

in the adult and nymph antennae
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The Y-tube olfactometer assay was performed to

determine the behavioral choice of fourth-instar gregarious

nymphs to the odors of gregarious locusts. Compared with

the dsGFP group, the attraction to the odors from the

gregarious locusts was significantly decreased in the gre-

garious nymphs by dsLmigOrco injection (Mann–

Whitney U = 666.5; p = 0.009) but remained unchanged

in the locusts by dsLmigIR8a/25a injection (Mann–Whit-

ney U = 806; p = 0.394; Fig. 5d).

Discussion

The orthopterans are excellent models for investigating the

evolution of insect olfaction because of their exclusive

evolutionary trend of olfactory system [1, 20]. However,

few investigations have focused on the components and

functions of olfactory receptors in these species. Here, we

identify a nearly complete set of OR/IR genes in the

migratory locust. Their expression profiles and in vivo

functions in olfactory behavior were also determined. Our

discoveries provide the first extensive molecular insights

into the unusual olfactory system of orthopteran insect.

LmigORs/IRs repertoire in the locust

We performed a bioinformatic search for olfactory receptor

genes based on the data of locust genome sequence com-

bining with various transcriptomes. Transcriptome has the

main advantage of facilitating novel gene discovery,

especially for the species-specific chemoreceptor genes,

whose detection is confounded in comparative genomic

methods [42]. In addition, transcriptomic data help to

modify the existing gene models. Finally, we identified a

total of 142 candidate ORs and 32 IRs in the migratory

locust. All these candidates are confirmed as true olfactory

receptor genes by bioinformatics and tissue-specific

expression analysis. Therefore, we believe that we have

identified almost complete repertoire of LmigOR/IR genes.

Our results show an expansion of OR family (142 ORs)

compared with the repertoires of other insects, except for

species including honey bees (163 ORs) [13], beetles (341

ORs) [43], and ants (350 ORs) [14]. Most OR genes in the

locust can be mapped onto genome in tandem arrays,

which are also observed in other insect species [13, 44].

However, only a single pseudogene was found in the large

LmigORs repertoire. The result reflects that the LmigORs
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Fig. 5 Behavioral changes of

gregarious nymphs after RNAi.

a–c Effects of RNAi of

LmigOrco, LmigIR8a, and

LmigIR25a genes (n = 4 or 6).

Data conformed to a normal

distribution as checked by the

Shapiro–Wilk test, and

statistical difference was

evaluated by two-tailed

Student’s t-test assuming

unequal variance. d Dual-choice

of gregarious nymphs in Y-tube

olfactometer after injection of

dsGFP, dsLmigOrco, or

dsLmigIR8a/LmigIR25a

(n = 57, 65, 56, respectively).

Attraction index = (Nv - Na)/

Nv ? Na ? Nnc; Nv, the number

of ‘‘choose volatiles’’; Na, the

number of ‘‘choose air’’; Nnc,

the number of ‘‘no choice’’.

Statistical difference was

evaluated by Mann–Whitney

U test. *p\ 0.05, **p\ 0.01,

***p\ 0.001, n.s., not

significant. Data are

mean ± SEM
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repertoire may be subject to a low gene death rate, similar

to that of transposons in the locust genome [32], according

to the birth-and-death model of insect ORs [45]. Never-

theless, because the ORF of many ORs is incomplete, we

cannot exclude the possibility that some of these ORs

might be pseudogenes. This expansion of the LimgOR

family has presumably provided the diversity of odorant

receptors that allow locusts to recognize diverse odors.

Indeed, locusts are polyphagous herbivores, which feed on

a wide range of plants that emit complex and species-

specific volatiles [46, 47]. In addition, locusts are sur-

rounded by very complex odors emitted by other locust

individuals and their feces when they form large swarms.

Therefore, the expansion of the OR family in the locust

may be adaptive for a voracious, generalist diet and com-

plex olfactory cues.

Interestingly, the number of IR genes in the locust (32

IRs) is lower than that in other insect species, such as A.

gambiae (46 IRs) [16], D. melanogaster (66 IRs) [16], and

Z. nevadensis (150 IRs) [39]. The fruit fly has a similar

number of OR and IR genes [16, 48]. However, the number

of IR genes in the locust is much less than the number of

ORs. Additionally, phylogenetic analysis shows that most

LmigIRs (28/32) belong to the ‘‘antennal IRs’’ subfamily

but only four ‘‘divergent IRs’’ were identified in the locust.

Compared with other insect species, the number of diver-

gent IRs is much lower in the migratory locust, implying

that the contraction of ‘‘divergent IRs’’ subfamily in the

locust may be the result of selection or drift during the

evolution of the locust. A recent study on Drosophila

suggested that divergent IRs are mainly expressed in

peripheral and internal gustatory neurons, thereby impli-

cating the involvement of this gene family in taste and food

assessment [16]. Therefore, the contraction of ‘‘divergent

IRs’’ subfamily might be related to an ecological adapta-

tion of the gustatory sensory system in the locust. Future

comparative and functional studies are needed to further

explore the roles of LmigIRs in ecological adaption.

Hypothesis of cluster organization in locust ALs

In the migratory locust, we identified a total of 142 ORs,

which were much less than the number of glomeruli

(*1000) within the AL [21]. Obviously, the locust olfac-

tory system does not conform to the canonical relationship

of one OR/one OSN/one glomerulus in other insect species

studied so far [1, 22]. The organizational mode of one OR/

one OSN/one glomerulus adopted by other insect species

studied may ensure that odor representations are dispersed

in the periphery but clustered centrally in the ALs [49].

To answer the question of how the locust species

operates with the numerical disequilibrium between ORs

and glomeruli in the olfactory system, we speculate that the

locust AL may be divided into several anatomical or

functional glomerular clusters (*142 clusters). These

clusters have analogous roles to those of single glomeruli

in other insect species. Each cluster is composed of a

number of microglomeruli (*7 per cluster) that represent

the same ORs, such that, all OSNs expressing the same

ORs project their axons to the glomeruli of one cluster. The

speculation of cluster organization in the locust ALs can be

supported by evidence on the anatomical and physiological

properties of the locust AL [20, 25]. Each glomerulus can

be regarded as an individual dimension. Therefore, the

huge addition of the temporal dimension in the locust AL

can greatly expand the ‘‘coding space’’ of locusts [2].

However, if the cluster organization is true in the locust

AL, the coding space in the locust would not be expanded

as compared with those of other insects. Further experi-

ments will be needed to verify this hypothesis.

Tissue-specific expression of LmigORs/IRs

Our results showed that LmigOR/IR genes exhibit diverse

expression patterns, which can be briefly classified into

three types: olfactory-specific, internal-expressed, and

broadly-expressed. Consistent with their roles in olfaction,

most LmigOR/IR genes display olfactory-specific expres-

sion. However, we found that 11 conventional ORs are

highly expressed in wings and legs other than in antennae.

Given the co-expression of the LmigOrco gene in wings

and legs, these ORs may be involved in olfaction, but

unlike antennal ORs that respond to airborne volatiles,

these ORs may perceive contacting pheromones [50].

Additionally, we found that several LmigOR/IR genes have

higher expression in the testis rather than in antennae.

These testis-enhanced LmigORs/IRs may be involved in

endogenous ligand recognition, sperm chemotaxis, fertil-

ization, or the activation of spermatozoa, as observed in

mosquitoes [51]. Impressively, we observe the co-expres-

sion of a conventional OR (LmigOR95) and LmigOrco in

the fat body. This phenomenon indicates that LmigOR95

might play a role in monitoring internal metabolite levels

by binding exogenous or endogenous ligands.

Furthermore, no phylogenetic pattern is associated with

these internally or widely expressed OR genes in the

phylogenetic tree, thereby suggesting that the ORs do not

represent a single lineage of genes, but evolved indepen-

dently. However, among the 142 putative LmigORs, 34

were not detected in all four tissues by RT-PCR, thereby

indicating that these ORs may be not expressed in fourth-

instar nymphs or are expressed at levels below the

threshold of detection by RT-PCR. Instead, these ORs may

manifest higher expression in other developmental stages

such as the adult stage. In support of this hypothesis, Or5, -

82, -91, and -95 became detectable by RT-PCR in the adult
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antennae (Fig. 4b). Therefore, these LmigORs may have an

important role in the adult stage, which is linked with the

recognition of sexual pheromones and mating behaviors.

Consequently, further research on these LmigORs is

worthwhile to elucidate their roles in the non-olfactory

tissues.

Consistent with the characterization of ‘‘antennal IRs’’,

most LmigIRs are highly expressed in the locust antennae.

However, some LmigIRs are also detected in other tissues,

such as the maxillary palp and brain, thereby indicating

that LmigIRs may also have a gustatory function or may

influence neuron activity in the CNS, as previously repor-

ted in D. melanogaster and Spodoptera littoralis [16, 52].

Expression of LmigORs/IRs between nymphs

and adults

Dynamic changes in the expression of olfactory receptors

have been proposed to play important roles in olfactory

plasticity depending on developmental stage, life experi-

ence and physiological state of insects [27, 53, 54]. The

migratory locust, as a hemimetabolous insect species, has

similar feeding habitats in nymphs and adults. Therefore, a

similar expression repertoire for ORs (133/134) and IRs

(26/26) is expected between the nymph and adult stages.

By contrast, several related studies have shown large dif-

ferences in the OR repertoire between the larval and adult

stages in holometabolic species, such as D. melanogaster

[55], A. gambiae [56], and Bombyx mori [57], all of which

undergo a completely different lifestyle and feeding

experiences from larva to adult. Additionally, six OR

genes, including LmigOR5, -6, -25, -83, -91, and -141, are

observed to be specifically expressed in the antennae of the

adult locusts, thereby indicating potential important roles

of these ORs in adult-specific behaviors, such as sexual

communication or mating.

OR-based signaling pathway mediates attractive

behavior of gregarious locusts

The RNAi and behavioral assay indicated that OR-based

signaling pathway, not IR-based, is mainly responsible for

the attractive behavior of gregarious nymphs in the

migratory locust. In Drosophila, ORs are usually located in

the basiconic and trichoid sensilla, whereas IRs are

expressed in the coeloconic sensilla [15]. IRs mainly

respond to amines and acids that are largely ignored by

ORs [58]. Therefore, ORs and IRs represent two evolu-

tionarily and functionally distinct chemosensory

subsystems [58]. Recent studies have indicated that Orco

and IR8a/25a have a similar distribution pattern on the

antennal sensilla of locust to that of Drosophila, that is,

Orco is expressed in basiconic and trichoid sensilla,

whereas IR8a/IR25a is located in coeloconic sensilla [30,

31]. The exclusive sensilla location of Orco and Irco in the

locusts indicates that two different odor-sensing pathways

may be present in the locust as in the fly. In the desert

locust, aggregative pheromones are detected by basiconic

sensilla that house OR-expressed OSNs [31, 59], being

consistent with our results in the migratory locust. How-

ever, the identification of the conventional OR responsible

for the detection of aggregative pheromones should be

investigated in the future.

In brief, we characterized the unusual olfactory system

of the migratory locust, including the large OR repertoire,

the loss of ‘‘divergent IR’’, and the possible existence of

glomerular clusters in the AL. We also revealed expression

patterns of broadly and internally expressed ORs/IRs, a

similar expression repertoire of ORs/IRs between nymph

and adult stages, and functional differentiation of ORs and

IRs in the olfactory behavior of gregarious nymphs. Our

study sheds new light on the understanding of unusual

olfactory system of locusts and the evolution of insect

olfaction.
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