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Abstract Cargo proteins exported from the endoplasmic

reticulum to the Golgi apparatus are typically transported

in coat protein complex II (COPII)-coated vesicles of

60–90 nm diameter. Several cargo molecules including

collagens and chylomicrons form structures that are too

large to be accommodated by these vesicles, but their

secretion still requires COPII proteins. Here, we first

review recent progress on large cargo secretions derived

especially from animal models and human diseases, which

indicate the importance of COPII proteins. We then discuss

the recent isolation of specialized factors that modulate the

process of COPII-dependent cargo formation to facilitate

the exit of large-sized cargoes from the endoplasmic

reticulum. Based on these findings, we propose a model

that describes the importance of the GTPase cycle for

secretion of oversized cargoes. Next, we summarize reports

that describe the structures of COPII proteins and how

these results provide insight into the mechanism of

assembly of the large cargo carriers. Finally, we discuss

what issues remain to be solved in the future.
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CMRD Chylomicron retension disease

COPII Coat protein complex II

CLSD Cranio-lenticulo-sutural dysplasia

ECM Extracellular matrix

ER Endoplasmic reticulum

GEF Guanine-nucleotide exchange factor

MIA Melanoma inhibitory activity

MSS Marinesco-Sjogren syndrome

NPC Nuclear pore complex

TANGO Transport ANd Golgi Organization

TRAPP TRAnsport Protein Particle

The requirement of COPII proteins for collagen
export from the ER

Cargoes exiting the endoplasmic reticulum (ER) to the

Golgi apparatus are packaged into coat protein complex II

(COPII)-coated vesicles that typically have diameters of

60–90 nm [1]. The formation of COPII vesicles occurs in

particular regions of the ER called ER exit sites, also

known as transitional ER (tER), which stain as punctuated

dots scattered throughout the cytoplasm by immunofluo-

rescence analysis of mammalian cells (Fig. 1). The

mechanisms to form transport vesicles is highly conserved

from yeast to humans. The small GTPase Sar1 is activated

by its guanine-nucleotide exchange factor (GEF), Sec12

[2–5]. After activation, Sar1 is recruited to the ER mem-

brane [6–8] and forms the pre-budding complex [9–12],

which consists of the inner coat complex Sec23/Sec24 and

Sec24-bound cargo molecules [13–15]. Subsequently, the

outer coat complex Sec13/Sec31 binds, and this binding

event enhances the GTPase-activating protein activity of

Sec23, thereby completing coat assembly [16–19]. Sec16 is

the other factor essential in COPII biogenesis and functions

as a scaffold to interact with particular coat proteins [20–

25]. Recently, Sec16 has also been reported to negatively
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regulate GTP hydrolysis by Sar1 [26–28]. Additional fac-

tors involved in vesicle production have been identified,

such as p125, TFG-1, and ALG2 [29–38]. The details of

conventional COPII biogenesis have been reviewed

extensively in other recently published articles [39–46].

Collagens synthesized in the ER fold into hetero- or

homo-trimers, which form [300-nm-long rigid structures

that are too large to fit into conventional COPII-coated

vesicles [47–50]. However, imaging by fluorescent and

electron microscopy indicates that collagen I exits the ER

via the COPII-dependent process. Stephens and Pepperkok

showed that microinjection of a GTPase-deficient mutant

of Sar1a (Sar1a H79G) blocks the secretion of collagen I.

Moreover, they showed that collagen I exits the ER in

structures labeled with Sec24D, but segregates from

vesicular stomatitis virus glycoprotein VSVG-ts045, a

model of the conventional cargo proteins. The latter result

implies that collagen transport to the Golgi is COPII

dependent but distinct from conventional cargo trafficking

[51]. Mironov et al. strengthened this finding by electron

microscopy analysis, which showed that VSVG and col-

lagen I exit the ER by a COPII-dependent process, but from

distinct domains. Moreover, it was observed that protru-

sions from the ER domains in the vicinity of the ER exit

sites form carriers containing either VSVG or collagen I.

Interestingly, the formation of carriers is COPII dependent

but does not seem to involve budding and fusion of COPII-

coated vesicles [52].

Sec23A

The importance of COPII proteins for collagen secretion

has also been suggested by analyzing human diseases and

animal models (Table 1). Two point mutations in Sec23A

genes (F382L and M702V) have been identified as being

responsible for cranio-lenticulo-sutural dysplasia (CLSD),

an autosomal recessive disorder characterized by late-

closing fontanels, facial dysmorphisms, and skeletal

defects [53, 54]. Fibroblasts isolated from CLSD patients

showed extensive dilation of the ER and accumulation of

collagen I within the ER. Both mutations are located close

to the binding site of Sec31. Biochemical and structural

characterization suggests that Sec23A/F382L cannot

recruit Sec13/Sec31 and therefore vesicle budding does not

occur [18, 55]. In contrast, Sec23A/M702V is capable of

interacting with Sec13/Sec31 and has no appreciable

effects on vesicle budding in vitro. Interestingly, the

M702V mutation seems to enhance Sar1B GTPase activity

through an interaction with Sec13/Sec31 [56]. The zebra-

fish crusher mutation was obtained through a chemical

mutagenesis screen to identify genes involved in cranio-

facial development [57]. Further analysis revealed that

crusher has a nonsense mutation at residue 402 of the

Sec23A gene. Crusher chondrocytes have distended ER

with accumulated collagen II inside [58], further support-

ing that Sec23A is required for collagen export from the

ER.

Recently, Sec23A has been identified as a target of the

ER-resident transcription factor BBF2H7, also known as

Creb3L2 [59]. BBF2H7 is expressed in chondrocytes and

normally degraded by the ubiquitin-proteasome pathway,

but upon ER stress, the transcription factor is stabilized and

transported to the Golgi, then activated by proteolysis with

Golgi-localized site-1 protease (S1P) and site-2 protease

(S2P). The cleaved N-terminus translocates to the nucleus

to upregulate the expression of Sec23A [60–62]. BBF2H7

knockout mice were found to show severe chondrodys-

plasia. Chondrocytes from knockout mice have expanded

ER, where collagen II and cartilage oligomeric matrix

protein accumulate in large amounts [59]. A zebrafish

mutant carrying a missense mutation in BBF2H7 (feel-

good) also showed defects in chondrocyte development,

and the accumulation of collagen II was observed in dis-

tended ER [63]. These results suggest that BBF2H7-

mediated transcription activation of Sec23A is necessary

for collagen transport in chondrocytes. The requirement of

the BBF2H7-Sec23A pathway for collagen transport was

also reported for dermal fibroblasts [64].

Sec12 Sec31 MergeFig. 1 Localization of ER exit

sites within HeLa cells stained

by antibodies against trans-

membrane protein Sec12 (rat

monoclonal 6B3) and

cytoplasmic Sec31 (BD

biosciences mouse monoclonal).

HeLa cells were fixed with cold

methanol and processed for

immunofluorescence staining as

described previously [99]. Bar

10 lm
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Sec24D

The vertebrate possesses four isoforms of Sec24, and these

isoforms are considered to fulfill the demands to traffic

varieties of cargo molecules, although they appear to be

partially redundant in cargo recognition [65]. Recent

studies in fish indicated that Sec24D is specifically

important for collagen secretion from the ER. Mutagenesis

screens performed in medaka and zebrafish independently

led to the identification of the nonsense mutations named

vbi and bulldog, respectively [57]. Both mutants showed

craniofacial defects, and chondrocytes from these mutants

failed to secrete collagen II and displayed dilated ER [66,

67]. Osteogenesis imperfecta, a disorder associated with

reduced bone mass, increased bone fragility, and bone

deformity, is caused primarily by heterozygotic mutations

in genes encoding collagen I (COL1A1 or COL1A2) [68].

A recent clinical study revealed that mutations of Sec24D

are also responsible for the osteogenesis imperfecta phe-

notype. Affected individuals either possess two missense

mutations in each Sec24D allele or one missense and the

other nonsense mutation. Fibroblasts from patients showed

accumulation of collagen I within the dilated ER [69].

Interestingly, knockout of Sec24D in mice revealed early

embryonic lethality [70]. These results imply that Sec24D-

dependent cargo transport is required for early stages of

development, and truncated or mutated forms of Sec24D

from fish mutants and patients have marginal activity

required for early development, but not sufficient for

secreting collagen I from the ER. Interestingly, the

expression pattern of Sec24d has been reported to change

during development. It is ubiquitously expressed during the

early stages of development, whereas the expression is

restricted to craniofacial cartilage during later stages of

development [66].

Sec13/31

Sec13 functions by forming individual complexes in dif-

ferent locations within cells. Sec13 is known to constitute

the nuclear pore complex (NPC) [71]. However, Sec13

interacts with Sec31 to serve as an outer layer of COPII

Table 1 COPII-related proteins reported in human diseases and animal models

Gene Organism Diseases or animal models Phenotype References

Sar1B Human CMRD, Anderson disease,

CMRD-MSS

Severe fat malabsorption [111–113]

Zebrafish Morpholino Lipid absorption deficits [114]

Sec23A Human CLSD Intracellular accumulation of collagen I, dilation of the ER [53, 54]

Zebrafish Morpholino Reduced body length, malformation of cranial cartilage [53]

Zebrafish Mutant (crusher) Intracellular accumulation of collagen II, dilation of the ER [57, 58]

Sec23B Human Congential dyserythropoietic

anemia type II

Ineffective erythropoiesis [132, 133]

Mouse Knockout Perinatal lethality [134]

Zebrafish Morpholino Ineffective erythropoiesis, immature and binucleated erythrocytes [132]

Sec24A Mouse Knockout Normal development, reduced plasma cholesterol [135]

Sec24B Mouse Mutant Defects in neural tube closure [136, 137]

Sec24C Mouse Knockout Embryonic lethality at approximately embryonic day 7 [138]

Zebrafish Morpholino Normal in development, short [66]

Sec24D Human Osteogenesis imperfecta Disturbed ossification of the skull, craniofacial defects [69]

Mouse Knockout Embryonic lethality [70]

Zebrafish Mutant (bulldog) Craniofacial defects, defects in collagen II secretion,

dilation of ER

[66]

Medaka Mutant (vbi) Craniofacial defects, defects in collagen II secretion,

dilation of ER

[67]

Sec13 Zebrafish Morpholino Defects in craniofacial development, small eyes [72, 75]

Zebrafish Mutant Hypoplastic digestive organ, small eyes, collagen II accumulation

in ER

[74, 76]

Sec31A Zebrafish Morpholino Defects in digestive organ, collagen II accumulation in dilated ER [74]

TANGO1 Mouse Knockout Defects in collagen I, II, III, IV, VII, IX secretion [82]

Sedlin Human SEDT Short stature, short trunk, degenerative joint, impaired secretion

of ECM

[107]
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vesicles. In addition, Sec13 has been recently suggested to

form a complex with Sec16, serving as a template for the

formation of Sec13/31 outer coats [25].

Townley et al. first reported that zebrafish Sec13 mor-

phants exhibit defects in craniofacial development. In

mammalian cells, depletion of Sec13 by siRNA impairs

collagen I secretion without affecting conventional cargo

transport [72]. Interestingly, a zebrafish mutant originally

identified as the small-liver phenotype in a screen was

revealed to have a C-terminal truncation of Sec13, which

makes it incapable of binding to Sec31 [73]. The mutant

fish exhibits a hypoplastic digestive organ and small eyes

with disrupted retinal lamination, and chondrocytes of the

mutant showed collagen II accumulation in the dilated ER

structures [74, 75]. In this context, a Sec31A knockdown

by morpholino was performed in fish and showed malfor-

mation of the digestive organ, as observed in Sec13

mutants. Moreover, chondrocytes from morphants accu-

mulate collagen II within the dilated ER. These results

strongly suggest that defects in digestive organ develop-

ment and collagen secretion in Sec13 mutant fish are due to

the compromised COPII function. The mutation in NPC

component Nup107 exhibits failure of retinal lamination,

although knockdown of both Sec31A and Sec31B or

treatment with brefeldin A, an inhibitor of ER to Golgi

trafficking, has no effect on eye development. Thus, the

function of Sec13 in the NPC complex appears to be

necessary for retinal development [76].

As evidence accumulates, there is no doubt that collagen

secretion from the ER requires COPII components. How-

ever, these results are not sufficient to conclude whether

collagen is directly transported by modified COPII-coated

structures, which can accommodate large-sized cargoes, or

the COPII requirement for oversized-cargo secretion is

limited and indirect. Recently, several molecules associ-

ated with ER exit sites have been identified to be

specifically required for large cargo secretion and some

models have been proposed. We will focus on this topic in

the next section.

Components specifically required for collagen
secretion

TANGO1

Genome-wide screening in Drosophila S2 cells revealed

several genes involved in protein secretion and Golgi

morphology [77]. Transport ANd Golgi Organization 1

(TANGO1), also known as Melanoma Inhibitory Activity 3

(MIA3), was isolated in this screening as being involved in

the ER to Golgi trafficking. TANGO1, a multi domain-

containing protein, with a non-canonical SH3 domain,

trans-membrane regions, two coiled-coil domains, and

proline-rich domain (PRD), is only conserved through

metazoans (Fig. 2). TANGO1 is localized at ER exit sites

with the SH3 domain facing into the luminal side and PRD

to the cytoplasmic side. Luminal SH3-like folds in MIA-

family proteins have unique structural properties when

compared with canonical cytoplasmic SH3 domains [78].

PRD of TANGO1 has been shown to interact with Sec23/

Sec24, probably in a manner similar to the binding of

Sec31 with Sec23/Sec24, because PRD of Sec31 is

responsible for the interaction with Sec23/Sec24 [79, 80].

The SH3 domain of TANGO1 is capable of interacting

with collagen VII, and a knockdown of TANGO1 impairs

collagen VII export from the ER without affecting general

transport of proteins. These data suggest that TANGO1

acts as a cargo receptor for collagen VII at ER exit sites

[81]. Of note, TANGO1 is not required for collagen I

secretion in cultured cells, suggesting that the role of

TANGO1 as a cargo receptor is limited to a certain set of

molecules and not for all oversized cargoes. In an in vitro

vesicle budding assay, TANGO1 was shown to not be

exported from the ER along with collagens. In contrast,

conventional cargo receptors do exit the ER together with

cargo proteins within COPII-coated vesicles. Thus,

TANGO1 may employ a unique mechanism for exporting

large cargoes from the ER.

TANGO1 knockout mice have been made and exhibit

chondrodysplasia, which leads to dwarfing of the fetus,

peripheral edema, and neonatal lethality. These phenotypes

are probably due to the intracellular accumulation of col-

lagens and the induction of the strong unfolded protein

response, especially in the developing skeleton. The

TANGO1 knockout was found to show defects in secretion

and part of the maturation of collagen I, II, III, IV, VII, and

IX from chondrocytes, fibroblasts, endothelial cells, and

mural cells [82]. Unlike TANGO1 depletion by siRNA, the

TANGO1 knockout inhibited collagen I and VII export

MIA2

cTAGE5

TANGO1

MIA2

1 200 1000

1907aa.

1412aa.

804aa.

654aa.

2000

signal sequence

transmembrane

Coiled-CoilSH3

signal anchor Proline-Rich Domain

(secreted form)

(fusion with cTAGE5)

Fig. 2 The domain organization of MIA2, cTAGE5, and TANGO1
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from the ER. It is interesting to note that the transcriptional

block of the collagen I gene in mice by retrovirus insertion

led to embryonic lethality [83], which is a more severe

phenotype than the TANGO1 knockout. Whether

TANGO1 has direct roles in the secretion and maturation

of a broad range of collagens remains to be investigated;

however, we propose that the phenotype of knockout ani-

mals is an accumulative outcome because of impaired

secretion of a limited number of collagens. Of note, it has

been reported that TANGO1 in drosophila is also involved

in collagen IV secretion from the ER [84, 85].

cTAGE5

Cutaneous T cell lymphoma-associated antigen 5

(cTAGE5), also known as meningioma-expressed antigen-

6 (MGEA6), which was originally isolated as tumor-

specific antigens for several types of cancer, is a close

homolog to TANGO1 in mammalian cells [86–89].

Although cTAGE5 lacks the N-terminal long luminal

stretch when compared with TANGO1, it contained a

trans-membrane region, two coiled-coil domains, and a

PRD located at the C-terminus, and it localizes to the ER

exit sites (Fig. 2). The PRD of cTAGE5 also binds to

Sec23/Sec24. cTAGE5 directly interacts with TANGO1

through one of the coiled-coil domains. Cells depleted of

cTAGE5 by siRNA accumulate collagen VII within the

ER, suggesting that cTAGE5 acts as a co-receptor of

TANGO1 at ER exit sites [90].

cTAGE5 is conserved throughout vertebrates and forms

a multigene family with nine pseudogenes in humans and

possibly in other primates [91]. cTAGE5 expression is

fairly ubiquitous, but tissue-specific alternative splicing

produces longer forms of cTAGE5, designated as MIA2

(Fig. 2). MIA2 expression is only restricted to hepatocytes,

and like TANGO1, it contains an N-terminal SH3-like fold.

Mice possessing point mutations in MIA2 have lower cir-

culating VLDL, LDL, HDL, and triglycerides [92]. Further

investigation is required to determine whether MIA2 acts

as a cargo receptor for oversized cargo. MIA2 is known to

have a shorter secreted form, and its role in carcinogenesis

has been reported (Fig. 2) [93–97].

Based on the experimental data described above, a

model for collagen VII export by the cTAGE5/TANGO1

complex has been proposed (Fig. 3) [81, 90, 98]. The

cTAGE5/TANGO1 complex at ER exit sites binds to col-

lagen VII via the luminal SH3-like fold of TANGO1 and

Sec23/Sec24 through the PRDs of both cTAGE5 and

TANGO1. The interaction of these two PRDs with Sec23/

Sec24 inhibits the recruitment of Sec13/Sec31, thereby

delaying the Sar1 GTP hydrolysis required for vesicle

formation. Once collagen VII is accommodated in a COPII

carrier of the right size, collagen VII may dissociate from

TANGO1, which would lead to the dissociation of the

PRDs from Sec23/Sec24. Sec13/Sec31 may then be

recruited and complete the carrier formation. Further

experimental validation is required for proving this

hypothesis.

Sec12

Immunoprecipitation following mass spectrometry analysis

revealed Sec12 as a new binding partner of cTAGE5 [99].

Sec12, also known as prolactin regulatory element-binding

Fig. 3 Schematic of

conventional COPII-vesicle

budding and cTAGE5/

TANGO1-mediated collagen

export. Collagen secretion may

require tight regulation of the

Sar1 GTPase cycle. The

cTAGE5/Sec12 complex

efficiently activates Sar1,

whereas TANGO1/Sedlin

enhances its hydrolysis for

collagen export
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protein in mammalian cells, is a type II transmembrane

protein with WD-40 folds and acts as a GEF for Sar1 [5,

100]. Sec12 binds directly to one of the coiled-coil

domains of cTAGE5, and this interaction does not exert

any changes to the GEF activity of Sec12 toward Sar1. The

interaction, however, is necessary for Sec12 to correctly

localize to the ER exit sites, as a knockdown of cTAGE5

leads to the dispersion of Sec12 throughout the ER. Inter-

estingly, the cTAGE5 knockdown inhibits collagen VII

secretion, but has no effects on general protein secretion,

indicating that conventional cargoes can be secreted as

long as Sec12 is present within the ER. Thus, Sec12

recruitment to the ER exit sites by interaction with

cTAGE5 appears to be specifically required for collagen

VII to exit from the ER [99]. As Sec12 is a GEF for Sar1,

these data imply that collagen export from the ER requires

high levels of activated Sar1 in the vicinity of ER exit sites

(Fig. 3).

Sly1-syntaxin18

Nogueira et al. recently reported that Sly1 interacts with

the cytoplasmic domain of TANGO1 in the presence of a

crosslinker. Sly1, one of the Sec1/Munc18 (SM) proteins

involved in the membrane-fusion reaction, is known to

interact with ER-specific target-soluble N-ethylmaleimide-

sensitive fusion protein-attachment proteins (t-SNAREs),

syntaxin17 and syntaxin18 [101, 102]. A knockdown of

Sly1 or syntaxin18 specifically blocks secretion of collagen

VII, but not collagen I or other conventional cargoes

exported from the ER [103]. Recently, a model of collagen

VII transport incorporating these findings was reported,

suggesting that sly1-syntaxin18-dependent fusion of recy-

cling membranes such as the ER-Golgi intermediate

compartment is responsible for enlarging the COPII-me-

diated carrier, in which formation would be triggered by

the action of cTAGE5/TANGO1 [103, 104].

Cul3-KLHL12

Jin et al. recently reported that ubiquitylation of COPII

components is involved in large cargo secretions. Mouse

ES cells depleted with ubiquitin ligase CUL3 form tightly

packed cell clusters, suggesting the aberrant deposition of

the extracellular matrix (ECM). KLHL12 was isolated as

an adaptor of CUL3, which binds and shows a similar

phenotype to CUL3 when knocked down in ES cells.

Interestingly, CUL3-KLHL12 monoubiquitylates Sec31,

and this ubiquitylation promotes the formation of enlarged

COPII-coated structures (200–500 nm in diameter) where

KLHL12 is also present. In addition, the formation of these

enlarged COPII structures is required for collagen I and IV

transport [105].

Sedlin

Sedlin, also known as TRAPPC2, is a component of the

TRAnsport Protein Particle (TRAPP) complex, which is

involved in the tethering of vesicles during ER to Golgi and

intra-Golgi transport [106]. Sedlin has been identified as a

gene mutated in spondyloepiphyseal dysplasia tarda, an

X-linked skeletal disorder characterized by disproportion-

ately short stature with a short trunk and degenerative

joints, and chondrocytes from patients show impaired

secretion of ECM molecules [107]. Venditti et al. recently

showed that Sedlin is localized to the ER exit sites by

interaction with TANGO1 and seems to directly interact

with the GTP-bound form of Sar1. Knockdown of Sedlin

leads to the accumulation of an activated form of Sar1 at

ER exit sites and specifically blocks the secretion of col-

lagen I and II from chondrocytes and fibroblasts. The

authors suggest that Sedlin regulates the Sar1 GTPase

cycle for controlling collagen exit from the ER (Fig. 3)

[108].

As described above, collagen secretion from the ER

appears to be regulated by specialized factors, which would

modify the function of conventional COPII proteins. A

cargo receptor complex cTAGE5/TANGO1 is proposed to

regulate the Sar1 GTPase cycle by interacting with Sec12,

in addition to the binding to Sec23/Sec24 for possible

competition with Sec13/Sec31; CUL3-KLHL12

monoubiquitylates Sec31 for enlarging the carriers, and

molecules engaged in tethering and fusion, Sedlin and

Sly1-syntaxin18, are also involved in the secretion of large

proteins.

Chylomicron secretion

Sar1B

Chylomicrons synthesized in the enterocyte ER differ in

size under different conditions (75–450 nm), but some are

considered to be larger than conventional COPII vesicles

[109, 110]. Chylomicron retention disease (CMRD),

Anderson disease, and CMRD with the neuromuscular

disorder Marinesco-Sjogren syndrome (MSS) are all

inherited disorders of severe fat malabsorption with

impaired chylomicron transport and found to be associated

with mutations in Sar1B (Table 1) [111]. The mutations in

these diseases mostly lie in the nucleotide binding pockets

of Sar1B, indicating the importance of the Sar1 GTPase

cycle [111–113]. The zebrafish model of Sar1B deficiency

based on a morpholino knockdown showed a similar phe-

notype, where dietary lipids accumulate in enterocytes of

mutant fish [114]. Of note, the fish also exhibit defects in

craniofacial cartilage associated with abnormal collagen II

3714 K. Saito, T. Katada
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secretion, although these defects are not normally seen with

CMRD and related diseases.

Interestingly, Sar1B appears to have unique character-

istics when compared with the function of Sar1A. Based on

the biochemical analysis of a CLSD mutant, Sar1B has

been suggested to have a weaker affinity than Sar1A

toward Sec13/Sec31. The loose interaction of Sec13/Sec31

with Sar1B may facilitate the formation of a more flexible

outer coat that can then accommodate large cargoes [55,

115].

Structural analysis of COPII proteins that provide
insight into the assembly of large cargo carriers

Cryo-electron microscopic analysis of purified Sec23/

Sec24 and Sec13/Sec31 showed that these two complexes

can co-assemble into the cage-like structure from a

cuboctahedron with a diameter of 60 nm to an icosido-

decahedron with a diameter of 100 nm [116]. However,

these structures are apparently not large enough to

accommodate large cargoes such as collagens and chy-

lomicrons. O’Donnell et al. recently reported that Sec13/

Sec31 could also form tubules with 330-nm-long hollow

cylindrical interiors with a diameter of 30 nm [117].

COPII-dependent tubule formation has also been

reported in semi-intact cells, which were treated with an

activated form of Sar1 (Sar1 H79G) [7, 118]. In addition,

several reports indicate that artificial liposomes can be

tubulated by incubation with Sar1 H79G or with Sar1 in the

presence of non-hydrolyzable GTP analogs such as GMP-

PNP and GTPcS [8, 119–122]. These data imply that

secretion of large cargoes requires either large amounts or

stabilized GTP-bound Sar1, which is consistent with the

proposed function of Sec12 in collagen secretion described

above (Fig. 3) [99]. By using cryo-electron tomography

and subtomogram averaging, Zanetti et al. showed that

giant unilamellar vesicles incubated with Sec12, Sar1,

Sec23/Sec24, Sec13/Sec31, and GMP-PNP generate

tubules coated with COPII proteins. The arrangement of

the inner and outer coats into these tubules is structurally

connected to but distinct from that of conventional COPII

vesicles reported previously [10, 116, 123–127]. It should

be noted that the architecture of assembly of these tubules

is quite different from the in vitro-assembled Sec13/31

tubules described above [117].

Although yet to be proven, these tubules may be

involved in large cargo transport, and it is interesting to

speculate that tubulation is dependent on Sec31

monoubiquitylation. In this regard, a recent study of S.

cerevisiae showed that the function of Sec13 in COPII

vesicle formation may be to rigidify the COPII outer

complex for increasing membrane-bending capacity [128].

In addition, phosphorylation of Sec31 by casein kinase II

has been reported to reduce its affinity to Sec23, although

its involvement in large cargo secretion remains unclear

[129]. Future work is expected to reveal whether these

modifications of core COPII components are (partly)

responsible for the formation of carriers of over-sized

cargoes [130, 131].

Future perspectives

Recent studies on human diseases and animal models have

revealed that COPII components are crucial not only for

conventional cargo export but also for the export of large

proteins and protein complexes from the ER. Moreover,

several factors specifically involved in the secretion of

huge proteins have been identified and found to modify the

process of COPII-dependent vesicle formation to enable

them to secrete from the ER. However, several issues still

need to be addressed. A major issue that remains to be

resolved is the identification of the carriers responsible for

large protein transport. The existence of megacarriers or

tubules, which could accommodate large cargoes, has been

proposed as described in this review, but the exact entities

of and the mechanisms to form these containers are not

fully understood.

A second issue is the relationship between the special-

ized factors identified. The cTAGE5/TANGO1 complex

and sly1-syntaxin18 axis are reported to be rather specific

for collagen VII transport, but not for collagen I. However,

CUL3-KLHL12 and Sedlin have been implicated in col-

lagen I transport. Whether they can cooperate to

accomplish the large cargo export or they individually

apply distinct mechanisms requires further investigation.

Although there are still unresolved matters, recent identi-

fication of specialized factors has certainly provided us

with clues to solve these problems.
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