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Abstract The cystic phenotype in autosomal dominant

polycystic kidney disease is characterized by a profound

dysfunction of many cellular signaling patterns, ultimately

leading to an increase in both cell proliferation and apop-

totic cell death. Disturbance of normal cellular Ca2?

signaling seems to be a primary event and is clearly

involved in many pathways that may lead to both types of

cellular responses. In this review, we summarize the current

knowledge about the molecular and functional interactions

between polycystins and multiple components of the cel-

lular Ca2?-signaling machinery. In addition, we discuss the

relevant downstream responses of the changed Ca2? sig-

naling that ultimately lead to increased proliferation and

increased apoptosis as observed in many cystic cell types.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD)

affects more than 1 in 1,000 live births and is the most

common monogenic cause of kidney failure in humans

[1–4]. ADPKD is characterized by the progressive forma-

tion and enlargement of renal cysts, typically leading to

chronic renal failure by late middle age. In most cases, the

disease arises as a consequence of mutations in the PKD1 or

PKD2 genes, which encode the proteins polycystin-1 and -2,

respectively. Mutations in the PKD1 gene account for

approximately 85 % (ADPKD type 1), and mutations in the

PKD2 gene account for approximately 15 % (ADPKD type

2) of the affected individuals [2]. Disease progression is

typically more rapid in ADPKD type 1, with a mean age of

end-stage renal disease approximately 20 years earlier than

in type 2, but in all other respects ADPKD types 1 and 2

share almost identical disease phenotypes. This suggests

that polycystin-1 and -2 function in common pathways,

implying that loss of activity of either protein results in a

very similar disease manifestation [5]. The biological role of

the polycystin proteins and the molecular basis by which

mutational malfunction of either of them leads to cysto-

genesis, have proven to be very complex, and have been

discussed in several recent reviews [1, 2, 6–13]. A widely

accepted view is that polycystin-1 and -2 are functionally

associated in a receptor-ion channel complex, in which

polycystin-1 acts as a receptor that gates the Ca2?-perme-

able polycystin-2 channel [14, 15]. Polycystin-1 (4,302

amino acids) contains a large extracellular N-terminal

domain, 11 predicted transmembrane spanning segments,

and an intracellular C-terminus [16]. The extracellular

region of polycystin-1 contains [3,000 amino acids and is

implicated in cell–cell and cell–matrix interactions. Poly-

cystin-1 is cleaved at its predicted G-protein-coupled

receptor proteolytic site, a feature that could be essential for

its biological activity [17]. The intracellular C-terminus of

polycystin-1 contains a coiled-coil domain that is involved

in the physical interaction with other proteins, and in par-

ticular with polycystin-2 [18, 19]. Polycystin-2 is a smaller

transmembrane protein (968 amino acids) predicted to

have six transmembrane regions and sharing significant

homology with transient receptor potential (TRP) channels
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[9, 12, 13, 20]. Better understanding of the role of the

polycystin-1/polycystin-2 complex came from the obser-

vation that this co-assembly produced cation-permeable

currents at the plasma membrane [21], and participated in

mechano-sensation and flow-dependent Ca2? signaling in

the primary cilium [22]. As reviewed recently, there is a

clear connection between polycystic kidney disease and

dysfunction of ciliary proteins [13]. The precise cellular

function of the polycystin proteins is, however, still not

completely understood, particularly as both polycystins

have been found in cellular locations other than the cilium

[23]. Polycystin-1 has been localized to cell–cell junctions

and both apical and basolateral membranes [23, 24]. Poly-

cystin-2 is a resident endoplasmic-reticulum (ER) protein

[25] and its trafficking is highly regulated [26–29]. The

differential localization of both polycystins also suggests

that these proteins may display different cellular functions

either alone or as a protein complex [29, 30]. Several

cellular mechanisms have been proposed to explain cyst

formation and cyst growth including a change in cell

polarity [31], an altered matrix composition [32], and

remarkably, a disturbed balance between cell proliferation

and apoptosis [33]. The view that polycystin-2 is a potential

Ca2? channel and polycystin-1 is a receptor regulating its

activity, suggests that intracellular Ca2? signaling could be

one of the most proximal events in many cellular functions

of the polycystins and consequently in the dysfunctional

mechanisms that may lead to cyst formation. Clearly, the

Ca2? effects are not limited to the restricted compartment of

the cilium but will also involve Ca2? influx from other parts

of the plasma membrane as well as Ca2? release from the

ER. The situation becomes even more complex as polycy-

stin-2 was found to associate with other Ca2? channels in the

plasma membrane (TRPC1 [34, 35] and TRPV4 [36]), and

in intracellular membranes (inositol 1,4,5-trisphosphate

receptor (IP3R) [37, 38] and ryanodine receptor (RyR) [39]).

Moreover, polycystin-1 has been found to interact with basic

components of the Ca2? toolkit such as the IP3R [40] and the

stromal interaction molecule-1 (STIM1) [41]. Hence,

polycystins may affect Ca2? signaling in many different

ways, including effects on cytosolic or ER Ca2? concentra-

tion, global or local Ca2? changes, Ca2? oscillations,

intracellular Ca2?-leak pathways or plasma-membrane Ca2?

influx or a combination of these effects. However, the cellular

role of polycystins in Ca2? signaling, and the downstream

parameters that may link the disturbed Ca2? signaling in

ADPKD to cyst formation, are not yet understood [42]. In this

review, we provide an update of the different effects of

polycystins on cellular Ca2? signaling. We also discuss the

current view on the downstream signaling pathways that

could be affected by the dysfunctional Ca2? signals in

ADPKD, ultimately leading to a cystic phenotype with

increased proliferation and increased apoptosis.

Disturbed cellular Ca21 fluxes in ADPKD

Cilium and plasma membrane

Polycystin-1 and -2 can form heteromeric complexes

in vivo [43]. Importantly, co-expression of both proteins in

Chinese hamster ovary (CHO) cells promoted the translo-

cation of polycystin-2 to the plasma membrane and the

complex produced a Ca2?-permeable non-selective cation

channel [21]. Neither of the polycystins alone produced an

ion current, while disease-associated mutants that are

incapable of heterodimerization did not result in channel

activity. Heterologous expression of both proteins resulted

in the formation of a plasmalemmal ion-channel complex

in neurons as well as in kidney cells, in which polycystin-2

activation occurred through structural rearrangement of

polycystin-1 [14]. An important finding was that both

proteins co-localize in the primary cilia of epithelial cells,

where their role could be to promote mechano-sensation

and fluid-flow sensation [22, 44] (Fig. 1). Cells isolated

from transgenic mice that lack functional polycystin-1

formed cilia, but did not increase Ca2? influx in response to

physiological fluid flow. Inhibitory antibodies directed

against polycystin-2 similarly abolished the flow response

in wild-type cells. Defects in proteins involved in the

function or structure of primary cilia such as cystin, polaris,

inversin, and kinesin-II also cause polycystic kidney dis-

eases [45]. Fluid shear-force bending of the cilium causes

the influx of Ca2? through mechanically sensitive channels

in the ciliary membrane [46]. The Ca2? signal could then

be further amplified by Ca2? release from IP3Rs or RyRs

via a Ca2?-induced Ca2?-release (CICR) mechanism. This

view proposes a dysregulated Ca2? influx as an important

first step in the initiation of cystogenesis [47].

There has been some confusion regarding the structural

model for the polycystin-1/-2 complex. A newly identified

coiled-coil domain in the C-terminus of polycystin-2 (a.a.

839–873), different from a more upstream coiled-coil

domain (a.a. 772–796) [19], has been proposed to mediate

assembly into a homotrimer to which a single coiled-coil

domain in the C-terminus of polycystin-1 (a.a. 4214–4248)

can bind [48, 49]. Other evidence, obtained by atomic force

microscopy, however, showed that the polycystin-1/-2

complex assembles as a tetramer with a 2:2 stoichiometry

[50]. The latter is more in line with recently described

homo- and heteromeric polycystin-2 channel properties

suggesting fourfold symmetry [35, 36, 51]. Differences

between both models may be due to different structural

properties of the helix containing a coiled-coil-domain

motif, which may oligomerize differently as an isolated

peptide than when embedded in the folded protein [52].

Deletion of this polycystin-2 coiled-coil domain (referred to

as CC2 domain) indicated that although this domain is
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required for heterotypic interaction with polycystin-1, it

does not represent the binding site itself [52]. In agreement

with earlier studies [19, 48], the domain responsible for

binding was found distal from CC2 (a.a. 872–895). Fur-

thermore, there is evidence for a dimerization site in

polycystin-2, N-terminally located of the first transmem-

brane domain, which regulates channel tetramerization

[53]. Although CC2 is considered an assembly domain, it

does not seem to have a prominent role in the self-associ-

ation of polycystin-2 [52]. Polycystin-2 channels with CC2

deletions still tetramerize [52], and C-terminal mutants can

co-immunoprecipitate full-length polycystin-2 [53]. The

role of the C-terminus of polycystin-2 may therefore be to

provide an essential scaffolding platform for heteromeric

assembly with other channel proteins, including polycystin-

1 [19], TRPC1 [34], TRPV4 [36], and the IP3R [37].

The polycystin-2 C-terminus is important for the regu-

lation of the Ca2?-channel activity [54–56]. An EF-hand

motif was identified connected by a linker to a coiled-coil

domain overlapping with CC2 [54]. An affinity for Ca2? in

the micromolar range was found for the EF-hand domain

by isothermal titration calorimetry. This region may

therefore sense local Ca2? concentration changes and

operate as a Ca2?-sensitive switch with a role in proper

TRPV4; TRPC1; TRPC4

Ca2+ oscillations

Syntaxin- 5

SERCA

IP3R

Ca2+

V

Ca2+

Ca2+

PI3K

AKT

SOCE

STIM1

PC1

PC1

PC1

PC1

PC1

PC2

PC2

PC2

PC2

PC2
RyR2

Ca2+

Ca2+ Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

VOCC

NCCE

Cilium

Ca2+

PC2

Fig. 1 Major players controlling cellular Ca2? signaling by polycys-

tins. Polycystin-1 (PC1) and polycystin-2 (PC2) form a signaling

complex in the cilium that mediates Ca2? influx via PC2, possibly in

response to mechanical stimuli. Also TRPV4, TRPC1, and TRPC4

interact with PC2 and could play a role in mechano-sensitive Ca2?

influx. PC2 is also present in the ER where it directly interacts with

the IP3R and in cardiac cells also with the RyR2. PC2 behaves as a

Ca2?-induced Ca2?-release channel and thereby amplifies IP3-

induced Ca2? release. The RyR2 is activated by Ca2? influx via

voltage-operated Ca2? channels and is inhibited by PC2. Ca2? leak

via PC2 may be controlled by other proteins such as syntaxin-5. PC1

activates the PI3-K/AKT signaling. This leads (by as-yet-unresolved

mechanisms) to an increase in the STIM1-IP3R interaction, which

reduces the interaction between the IP3R and PC2 with possibly a

translocation of PC2 to the plasma membrane. PC1 and PC2 compete

for the same binding site on the IP3R. PC1 dysfunction leads to

strengthening of the IP3R-PC2 interaction and remodeling of the Ca2?

fluxes with an increase of IICR, more ER Ca2? depletion, and Ca2?

influx via activation of SOCE. PC1 also negatively modulates

agonist-evoked NCCE activity through a still undefined mechanism.

Loss of function of PC1 causes an increase in NCCE-channel activity

leading to Ca2? oscillations. PC1/PC2 polycystin-1/-2, NCCE non-

capacitive Ca2? entry, DV voltage change over the plasma membrane,

VOCC voltage-operated Ca2? channel. Inhibitory and stimulatory

mechanisms are represented by red and green arrows, respectively;

the purple arrow represents the trafficking of PC2; dotted lines

indicate that the mechanisms are as yet undefined
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folding and oligomerization of polycystin-2 [54] and sub-

sequent channel gating [56].

Polycystin-2 can form spontaneously active nonselec-

tive cation channels in lipid bilayers [35, 57, 58]. Analysis

of the channel properties revealed a high-conductance,

nonselective, voltage-dependent cation channel [58]. Using

various organic cations of different size, the pore diameter

was estimated to be at least 1.1 nm [59]. Heterologous

expression in Xenopus oocytes revealed a channel that is

sensitive to changes of the cytosolic Ca2? concentration

[60]. Spontaneous activity of polycystin-2 was, however,

not always obtained upon heterologous expression of

polycystin-2 and polycystin-1 [48], which clearly illus-

trates the difficulty in identifying the physiological

activation mechanisms of polycystin-2 or of the polycystin-

1/-2 complex. An even larger complexity is suggested from

the observations that polycystin-2 may associate and per-

haps form heteromeric channels with other TRP-family

members such as TRPC1 [34, 35, 51], TRPC4 [61], and

TRPV4 [36] (Fig. 1). The function and regulation of

polycystin-2 at the plasma membrane downstream of

mechanical stimulation, cell-surface receptors, and cell

adhesion, were recently discussed in an excellent review

[12]. A role for polycystin-2 as a mechanosensitive channel

has been suggested from measurements of changes in the

cytosolic Ca2? concentration in response to fluid flow [22,

62–64]. Also, regulation of polycystin-2-channel activity

by environmental signals such as hydrostatic and osmotic

pressure [65] and by cytoskeletal [66] and microtubular

[67] elements in the human syncytiotrophoblast supports

such a role. Mechanosensitivity of polycystin-2 may result

from its interaction with TRPV4, which was required for

fluid flow-induced Ca2? entry in Madin–Darby canine

kidney (MDCK) cells [36]. Loss of TRPV4, however, did

not result in cyst formation, which suggests that mecha-

nosensitive activation of this channel complex alone is not

sufficient for cyst formation [36]. Polycystin-2 can also

function as a bona fide receptor-operated channel down-

stream of epidermal growth factor (EGF) receptor

activation [68]. EGF-induced activation of polycystin-2

required the activation of phospholipase C (PLC). Poly-

cystin-2 interacted with PLC-c2 and colocalized in the

primary cilium with the EGF receptor and phosphatidyl

inositol 4,5-bisphosphate (PIP2) [68]. EGF-induced acti-

vation of PIP2 breakdown resulted in the relieve of PIP2-

mediated inhibition of polycystin-2 [68]. The localization

of the EGF receptor in the primary cilium could represent a

sensitization of the polycystin-2-channel activity with

implications for cilium-based mechano-transduction, as it

may reduce its threshold for activation by mechanical

stimulation [12]. Channel activity of polycystin-2 com-

plexed with TRPC1 but not with polycystin-1 could also be

activated in response to PLC-coupled bradykinin-receptor

stimulation [51]. This polycystin-2/TRPC1 channel with

distinct properties from the polycystin-1/-2 complex has

implications in mechano-sensation and cilium-based Ca2?

signaling [51]. Homologs of polycystin-1 and -2 have been

shown to form receptor channel complexes acting as sour-

taste receptors [69]. As there is increasing evidence from

several gene-inactivation studies indicating that cilium-

mediated mechano-transduction is not alone responsible

for cyst formation, receptor-operated activation may play

an important role [36, 51, 70–72]. A combined mechanism

of flow-dependent delivery of a ligand would thereby

become an intriguing possibility [13].

Intracellular membranes

The intracellular distribution of polycystin-2 is very com-

plex, with the largest pool in the ER in addition to its

localization at the plasma membrane and in more restricted

domains such as the primary cilium and mitotic spindles as

discussed in several reviews [3, 27, 73]. Next to its role as a

plasma-membrane Ca2? channel and its ciliary function in

complex with polycystin-1, polycystin-2 was proposed to

have a function in intracellular Ca2? release [25, 58]. Other

findings, however, suggested that whereas heterologous

expression of polycystin-2 showed a predominant ER

localization, endogenous polycystin-2 was found primarily

in the cilium and plasma membrane of mouse inner med-

ullary collecting duct (IMCD) cells and in MDCK cells

[74]. The long-standing controversy about this differential

distribution has been clarified to some extent by the iden-

tification of specific signal sequences and trafficking

proteins [3, 30, 60, 75]. A stretch of acidic amino acids in

the C-terminus of polycystin-2 functions as an ER-reten-

tion signal by binding phosphofurin acidic cluster-sorting

proteins (PACS-1 and -2) [25, 28]. Binding of PACS-1 and

PACS-2 requires polycystin-2 phosphorylation by casein

kinase II (CK-II) at Ser 812, and mediates retrieval back to

the trans-Golgi network (PACS-1) and the ER (PACS-2),

respectively [28]. Prevention of this phosphorylation in the

Caenorhabditis elegans polycystin-2 homologue promoted

its translocation to the cilium [76]. Polycystin-2 interactor

Golgi- and ER-associated protein (PIGEA-14) is another

regulator of polycystin-2 trafficking, causing its movement

to a putative trans-Golgi compartment [77]. Plasma-mem-

brane, but not cilia, localization of polycystin-2 is regulated

by glycogen synthase kinase 3 (GSK3) phosphorylation of

Ser 76 in the N-terminus [78]. In the presence of specific

GSK3 inhibitors, the lateral plasma-membrane pool of

endogenous polycystin-2 redistributes into an intracellular

compartment in MDCK cells without any change in pri-

mary-cilia localization [78]. Furthermore, the N-terminus

of polycystin-2 contains a motif (R6V7xP8), which is

required for localization in the cilia [79]. Cyst cells
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expressing an ADPKD-associated polycystin-1 mutant had

decreased amounts of both polycystin-1 and -2 in the pri-

mary cilium, indicating that impairing the function of one

protein negatively affects the localization of the other [80].

An interaction between the C-termini of polycystin-1

and polycystin-2 is considered to be important for activa-

tion of the Ca2?-channel activity [14, 21]. This does not

necessary require a co-localization in the same membrane,

and a model for interaction with polycystin-2 either

localized in the plasma membrane or in the ER has been

proposed [47, 81]. The concept that polycystin-2 may be a

novel type of intracellular Ca2?-release channel was based

on the observation that polycystin-2 exogenously expressed

in LLC-PK1 epithelial cells caused a marked augmentation

of intracellular Ca2? release upon vasopressin stimulation

[58]. A similar role as an intracellular Ca2?-release channel

was also found for the endogenous homologue of polycy-

stin-2 in Caenorhabditis elegans [82]. The open probability

of the channel was increased by Ca2? in the physiological

range (0.1–10 lM), whereas higher cytosolic [Ca2?] low-

ered the open probability [58]. The observation that

polycystin-2 may function as a CICR channel was further

strengthened by the sensitization towards Ca2? upon CK-II

phosphorylation at the C-terminal S812 site [83]. Polycy-

stin-2-mediated Ca2? release from the ER required

activation of the IP3R [37, 58]. Moreover, it was demon-

strated that polycystin-2 and the IP3R physically interact

and the C-terminus of polycystin-2 is required for this

interaction [37] (Fig. 1). The binding site was further

identified as the acidic cluster in the C-terminus of poly-

cystin-2, which interacts with a cluster of basic residues in

the N-terminal suppressor domain of the IP3R [38]. Dis-

ruption of this molecular interaction by using competitive

peptides eliminated the stimulation of IP3-induced Ca2?

release (IICR) by polycystin-2. In both studies, the channel

death mutant (D511 V) did not provoke stimulation of

IICR, which is a strong indication that polycystin-2 oper-

ates as a CICR channel that becomes activated by IICR in

the immediate proximity of the IP3R-channel pore. Acti-

vation appears to be restricted to a microdomain of IICR as

reduction of this microdomain by the fast Ca2? buffer

BAPTA eliminated activation of the CICR via polycystin-

2, whereas the slower Ca2? buffer EGTA did not have such

effect [38]. It is conceivable that ER-localized polycystin-2

is silent in resting conditions as inappropriate opening of

this channel would represent a Ca2? leak from the ER

eventually resulting in ER depletion and an ER-stress

response [84]. At variance with these data, it was observed

that exogenous expression of polycystin-2 in HeLa cells

increased the ER Ca2? permeability, which resulted in

lowering of the ER Ca2? content and a decrease in the

histamine-evoked Ca2? response [85]. The IP3R was not

required for the polycystin-2-mediated reduction of the ER

Ca2? load, which suggested that polycystin-2 forms an

independent ER Ca2?-leak channel [85]. The apparently

contradictory results regarding amplification of IICR as a

result of CICR via polycystin-2 [37, 38, 58], versus a

diminished IICR due to ER Ca2?-store depletion [85], can

possibly be reconciled by the cell- and condition-specific

factors that regulate activation of polycystin-2 in the ER.

Syntaxin-5, an ER- and Golgi-associated t-SNARE that

functions in vesicle targeting and fusion, was found to

directly interact with polycystin-2 and to inactivate its

channel activity [86]. Syntaxin-5 was proposed to have a

function in preventing the Ca2? leak from the ER via

polycystin-2. LLC-PK1 cells expressing D(5–72) polycy-

stin-2 that lacks the syntaxin-5-binding site had a reduced

ER Ca2? content and a concomitant lower increase in

cytosolic [Ca2?] upon agonist stimulation [86]. Polycystin-

2 in the ER may therefore play an important role for

controlling ER Ca2? levels and its activity may be tightly

controlled. Among the other polycystin-2-interacting pro-

teins, polycystin-1 [87], a-actinin [88], mammalian

diaphanous-related forming 1 (mDIA-1) [89], and fibro-

cystin [90] have been found to modulate polycystin-20s
activity.

Polycystin-2 was also found to bind and regulate the

RyR2 in the sarcoplasmic reticulum (SR) of cardiac myo-

cytes [39]. The C-terminus of polycystin-2 functionally

inhibited the RyR2 channel and polycystin-2-deficient

cardiomyocytes showed changes in store content and Ca2?-

release properties. This altered RyR2 function could play a

role in the development of cardiovascular abnormalities in

ADPKD patients [39].

On the one hand, polycystin-2 can act as a regulator of

other ER/SR channels, but on the other hand, it has its own

channel properties that may be controlled by different cel-

lular parameters. An obvious candidate for the regulation of

polycystin-20s channel properties in the ER is polycystin-1.

As stated above, models were proposed for interaction of

polycystin-1 in the plasma membrane with polycystin-2 in

the ER [47, 81]. Although it is still unclear what the func-

tion could be of polycystin-1 at the level of the ER, there is

compelling evidence that a significant amount of polycy-

stin-1 is also localized there [43, 91]. This is particularly the

case for shorter C-terminal cleavage forms, which were

shown to functionally interact with the IP3R thereby

inhibiting IICR [40]. The interaction site was found to be

the IP3R ligand-binding domain similarly to the binding site

for polycystin-2 but with an opposite effect. It was therefore

proposed that polycystin-1 and polycystin-2 both interact

with the IP3R in a complementary way to maintain a bal-

ance of proper ER-mediated Ca2? signaling [40]. A

different result was obtained by other authors [92], showing

that exogenous expression of polycystin-1 in MDCK cells

accelerated the decay of ligand-activated cytoplasmic Ca2?

Polycystins and cellular Ca2? signaling 2701
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transients. These data were interpreted as due to an inhibi-

tion of the Ca2? leak across the ER membrane. These

studies clearly illustrate the importance of polycystins in

maintaining proper ER Ca2? homeostasis [93]. Another

unexpected finding, consistent with the reduction of the

intracellular Ca2? responses, was the identification of a

P100 C-terminal fragment of polycystin-1 that is localized

in the ER and interacts with STIM1 [41]. P100 probably

contains the six C-terminal transmembrane domains and the

C-terminal tail. It would interact with STIM1 via its coiled-

coil domain and thereby interfere with the translocation of

STIM1 to the plasma membrane, inhibiting the activation of

store-operated Ca2? currents. This would then lead to

decreased store filling and subsequently to diminished

agonist-induced Ca2? transients [41]. It should be noted,

however, that the expression of the C-terminal tail of

polycystin-1 as a fusion protein yielded an opposite result

and led to an increase in the cytosolic Ca2? concentration

and store-operated Ca2? entry (SOCE) [94, 95]. This dis-

crepancy may be due to a dominant negative effect of the

polycystin-1 C-terminus, given the observation that the

formation of P100 actually requires the presence of full-size

polycystin-1 [41]. The nature of the polycystin-1 cleavage

responsible for P100 generation and the significance of this

mechanism are as yet unknown, but these findings clearly

illustrate the importance of polycystin-1 as well as

polycystin-2 for ER Ca2? signaling. Mechanistically,

polycystin-1 was proposed to increase the interaction

between the IP3R and STIM1, which thereby inhibited Ca2?

release and SOCE [96] (Fig. 1). This regulation implicated

the activation of the phosphatidylinositol 3-kinase (PI3-K)/

protein kinase B (AKT) signaling pathway and would act

upon a protein complex involving polycystin-2/IP3R/

STIM1. It should be pointed out, however, that in a study

comparing STIM1-/- and wild-type MEF cells, no evi-

dence was found for a direct interaction between STIM1

and the IP3R, but the effects on IICR were attributed to

changes in the connections between the ER and plasma

membrane [97].

The effects of polycystin-1 on ER Ca2? release were

mostly obtained by exogenous expression of polycystin-1

or its C-terminal fragments. The properties of endogenous

polycystin-1 as obtained from knock-down experiments are

much less documented. In studies of polycystin-1 hap-

loinsufficiency in renal cells [98] or in vascular cells [99],

the results pointed to a decreased resting cytosolic Ca2?

concentration in the polycystin-1?/- as compared to the

wild-type cells. Moreover, vascular smooth-muscle cells

from polycystin-1?/- mice exhibited a decreased agonist-

induced Ca2? release as compared to the wild type [99].

This result is in contrast to the data obtained with exoge-

nous polycystin-1 expression, but it is more in line with the

general concept that polycystin-1 and polycystin-2 form a

functional complex with Ca2?-channel properties. Distur-

bance of this complex by either polycystin-2 or polycystin-

1 knock-out is then expected to result in a decreased Ca2?-

release activity. This is exactly what was recently found for

the effect on IICR in a model system of plasma membrane-

permeabilized cells upon lentiviral knock-down of either or

both polycystins [100]. The presence of both polycystins

seemed to be required for stimulation of Ca2? release from

the ER and knock-down of either polycystin decreased the

apparent sensitivity of IICR [100]. The conflicting results

from different groups may be caused by the fact that on the

one hand exogenous expression may result in abnormal

processing, trafficking and localization, and on the other

hand knock-out or knock-down of endogenous genes may

result in adaptive responses. For both approaches, the

unraveling of the detailed mechanism is presently not at

hand, but it becomes increasingly clear that both polycys-

tins are implicated in ER-related Ca2? fluxes. An

interesting view that was presented in a model by the

Guggino group [96], proposed a role for polycystin-1 in

preventing a phenotype with more IICR and SOCE-medi-

ated Ca2? fluxes and promoting a situation with more filled

stores and inactivated SOCE with Ca2? influx via plasma

membrane (or cilia)-localized polycystin-2 (Fig. 1). While

not all data are easily reconciled with this model, it pre-

sents the very appealing idea that defective polycystins in

ADPKD provoke a shift in the spatial properties of intra-

cellular Ca2? signals with the appearance of different

microdomains with altered cytosolic Ca2? concentrations,

which can then elicit different downstream effects.

Downstream effects of Ca21 signaling in ADPKD

Effects on cAMP signaling

Disturbed Ca2? signaling is a proximal event in ADPKD

and it directly or indirectly affects several other very

important signaling pathways [101]. Among these, an

increased cAMP concentration is a common finding in

different models of ADPKD and cAMP stimulates cyst

fluid and electrolyte secretion [102], possibly involving the

stimulation of the cystic fibrosis transmembrane conduc-

tance regulator (CFTR) [103]. The reasons for the high

cytosolic cAMP concentration in cyst cells are not very

well understood. The polycystin proteins may alter the

activity of G-protein-coupled receptors, like the V2 vaso-

pressin receptor, that signal via cAMP [102, 104]. A link

with cellular Ca2? homeostasis was proposed via the

activity of Ca2?-inhibitable adenylyl cyclase (AC) and/or

Ca2?-dependent phosphodiesterase (PDE) [101]. The

interaction between cytosolic Ca2? and cAMP is, however,

very complex, as there are nine different genes encoding
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transmembrane-domain ACs (AC1–9) along with numer-

ous splice variants of the gene encoding soluble ACs, while

also the cyclic nucleotide-PDE superfamily consists of

over 30 genes [105]. Moreover, different members of these

families are sensitive to Ca2?, either directly or via cal-

modulin. A common theme in the regulation of cAMP

production is the pronounced intracellular compartmen-

talization. Three modes of cAMP microdomain/

compartment formation are found: via (a) lipid rafts,

(b) A-kinase anchor proteins (AKAPs), and (c) targeting of

soluble AC to cellular organelles [105]. It can therefore be

anticipated that a relation between polycystin dysfunction

and the cAMP levels in ADPKD may be very much linked

to specific microdomains either at the plasma membrane or

at intracellular membranes and may involve particular AC

or PDE isoforms. In this respect, it was recently demon-

strated that the primary cilium plays an important role as a

subcellular cAMP-signaling compartment [106]. A protein

complex comprising AKAP150, AC5/6, and protein kinase

A (PKA) was found in primary cilia of renal epithelial

cells. Polycystin-2 and PDE4C were further identified as

components of this ciliary AKAP complex. Under normal

conditions PDE4C would promote the hydrolysis of cAMP

and polycystin-2 could provide local accumulation of Ca2?

that inhibits the Ca2?-sensitive AC5 and AC6. Malfunction

of polycystin-2 as a Ca2? channel may reduce the local

Ca2? concentration in the cilium and thereby activate AC5/

6. Other mechanisms like mutations of the transcription

factor hepatocyte nuclear factor-1ß (HNF-1ß) were found

to inhibit the expression of PDE4C and thereby increase

cAMP levels [106]. As HNF-1ß also regulates the

expression of Pkd2 itself [107], downregulation of poly-

cystin-2 and subsequent impaired ciliary trafficking of the

AKAP complex may also contribute to the elevation of

cAMP levels [106]. PDE1 isoforms (PDE1a, PDE1b, and

PDE1c) are expressed to high levels in the kidney cells

[108]. Importantly, these PDE isoforms are also regulated

by cytosolic Ca2?, which in ADPKD would result in

decreased PDE activity and a higher cAMP concentration

[42]. An additional mechanism that could be important in

ADPKD is cAMP production related to Ca2?-store deple-

tion and STIM1 translocation [109]. These data are

indicative of a mechanism of store-operated cAMP sig-

naling, in which lowering of the Ca2? concentration in the

ER led to recruitment of ACs through a process involving

STIM1 [109]. This mechanism was also found in polycy-

stin-2-defective cholangiocytes, where polycystin-2 was

suggested to play a role in SOCE activation and in inhib-

iting the STIM-dependent activation of AC6 [110]. In view

of the observation that polycystin-1 expression impairs

translocation of STIM to the plasma membrane, this

mechanism could also link polycystin-1 defects to

increased cAMP signaling in ADPKD [41, 96].

Effects on B-Raf-extracellular signal-regulated kinase

(ERK) signaling and cell proliferation (Fig. 2)

In general, cystic epithelia in ADPKD have high levels of

cAMP and also of mitogen-activated protein kinase

(MAPK) activity. This signaling pathway, involving

cAMP-dependent PKA, stimulates the proliferation of cells

from ADPKD cysts, but not cells from normal human

kidney [111–113]. In normal cells, cAMP via PKA-medi-

ated phosphorylation inhibits the MAPK pathway by

blocking the activation of Raf-1 (Raf-C). In cystic cells,

however, cAMP signaling is changed, an effect which is

attributed to the low cytosolic Ca2? concentration [114,

115]. Ca2? restriction was associated with an elevation in

B-Raf protein levels. In these conditions, cAMP stimulates

B-Raf/MEK/ERK signaling in a sarcoma (Src)- and Ras-

dependent manner. Moreover, the activity of AKT, a neg-

ative regulator of B-Raf, was decreased by Ca2? restriction.

Inhibition of AKT or PI3-K also allowed cAMP-dependent

activation of B-Raf and ERK at normal Ca2? levels. These

results suggest that Ca2? restriction causes an inhibition of

the PI3-K/AKT pathway, which relieves the inhibition of

B-Raf to allow the cAMP growth-stimulated phenotypic

switch [112, 114]. The steady-state cytosolic Ca2? con-

centration was found to be 20 nM lower in cyst-derived

ADPKD cells compared with normal cells. Elevation of the

cytosolic Ca2? concentration in ADPKD cells increased

AKT activity and blocked cAMP-dependent B-Raf and

ERK activation. Thus, an increase in the cytosolic Ca2?

concentration was able to restore the normal anti-mitogenic

response to cAMP [115], while Ca2?-channel inhibition by

verapamil accelerated polycystic kidney-disease progres-

sion [116]. On the other hand, it was found that down-

regulation of polycystin-1 using RNA interference [117] or

expression of the dominant-negative polycystin-1 C-termi-

nus [95, 118] resulted in an increase in basal Ca2?

concentration. The differential effects of polycystin-1

expression on the cytosolic Ca2? concentration and down-

stream effects could reflect the use of different cell types

such as immortalized cells versus primary cells [117].

Effects on mammalian target of rapamycin (mTOR)

signaling (Fig. 2)

Cyst-lining epithelial cells exhibit higher levels of mTOR

signaling as compared to normal epithelial cells [119].

mTOR is a serine/threonine protein kinase that provides

catalytic activity for two distinct multiprotein complexes

(mTORC1 and mTORC2). mTORC1 is a metabolic sensor

and its activation promotes cell growth and cell prolifera-

tion. The effects of mTORC2 include modulation of cell

survival, cytoskeletal organization, and cell polarity [120].

Hyperactivity of mTORC1 and possibly also of mTORC2,
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contributes to cyst formation [121]. Tuberin, the protein

product of Tsc2, in a complex with hamartin, the product of

Tsc1, is the primary negative regulator of mTORC1. Tub-

erin is a GTPase-activating protein (GAP), which regulates

Rheb, a small G-protein belonging to the Ras superfamily.

Hamartin and tuberin form a heterodimer, which converts

Rheb-GTP to the inactive Rheb-GDP. Rheb is an activator

of mTORC1 and conversion of Rheb to the GDP-bond form

inactivates the mTORC1 pathway [120–123]. The tuberin–

hamartin complex is a nodal point for several polycystin-

dependent pathways. The cytoplasmic tail of polycystin-1

interacts with tuberin. This may occur via direct interaction

with tuberin [119] or indirectly via ERK-dependent phos-

phorylation and inactivation of the tuberin complex [124].

A prominent activation of the ERK pathway together with

cystogenesis was found upon inactivation of the Pkd1 gene

in conditional knock-out mice [125]. The regulation may,

however, be more complex as tuberin has been reported to

be phosphorylated by at least nine distinct protein kinases

[126]. Among these are multiple pathways that may be

linked to proper functioning of polycystins and some of

these are clearly linked to Ca2? (Fig. 2). As explained

above, a potential link with Ca2? and cAMP may occur via

B-Raf/ERK signaling. The lower Ca2? levels in cystic cells

would together with the increased cAMP concentration lead

to activation of B-Raf/ERK and subsequent mTORC1 sig-

naling [42, 114, 115]. Another mechanistic input of

polycystins on mTORC1 is via ciliar activation of liver

kinase B1 (LKB1), which, like the polycystins, is localized

in the basal bodies of primary cilia [127]. LKB1 activates

AMP-activated protein kinase (AMPK), which then acti-

vates tuberin with subsequent negative regulation of

mTORC1. This cilium-mediated effect on mTOR was,

however, found to be independent of flow-induced Ca2?

transients or AKT [127]. Next to LKB1, however, AMPK

activity is also directly linked to the cytosolic Ca2? con-

centration by calmodulin-dependent protein kinase kinase ß

(CaMKKb) [128]. The link between the changed cytosolic

Ca2? concentration in cystic cells and mTORC1 via

CaMKKb-dependent regulation of AMPK is, however, not

yet established. A relation between AMPK activity and cyst

formation was, however, found by using metformin, a drug

[Ca2+]i [cAMP]

PC1 / PC2 (PM)PC1 (PM)

NCCE

Ca2+

oscillations

NFAT; PKC Cell proliferation

GFR

MEK

ERK

PKACaMKK 

AMPK

mTORC1

TSC1/TSC2

Protein synthesis

Gene transcription

Cyclin D

Wnt

GSK3
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Ras

Src

?

(PI3K/AKT)

Fig. 2 Signaling pathways that relate disturbed polycystin-mediated

Ca2? signaling to cell proliferation. Defects in polycystin functions

generally lead to a decrease in the cytosolic Ca2? concentration

([Ca2?]i). This results in an increase in cAMP concentration, probably

via changes in Ca2?-dependent phosphodiesterase or Ca2?-dependent

adenylate-cyclase activity (not shown). The Ca2?-cAMP link is

represented by the box. In the presence of low [Ca2?]i, cAMP

becomes pro-proliferative via activation of the Src/Ras/B-Raf/MEK/

ERK pathway. Ca2? restriction causes decreased PI3-K/AKT signal-

ing, which relieves the inhibition of B-Raf. Activation of growth-

factor receptors with tyrosine-kinase activity (GFR) also contributes

to the stimulation of MAPK/ERK signaling and cell proliferation.

Polycystin-1 dysfunction thus upregulates the MAPK/ERK pathway,

which results in inactivation of the tuberin complex and increased

mTORC1. Cytoplasmic Ca2? also regulates the mTOR pathway via

CaMKKß and AMPK (the question mark indicates that the occurrence

of this mechanism was not yet explored in cystic cells). The

deregulated Ca2? signaling switches on canonical Wnt signaling,

which activates mTOR via inhibiting GSK3 phosphorylation of

tuberin. Another link to cell proliferation may depend on the

activation of Ca2? oscillations and subsequent effects on gene

transcription and cyclins via Ca2?-dependent NFAT or via protein

kinase Ca (PKCa) signaling. Boxed areas indicate mechanisms not

shown in detail. Dotted arrows indicate still-unresolved mechanisms.

GFR growth-factor receptor
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in wide clinical use as a pharmacological activator of

AMPK [129]. Stimulation of AMPK activity by metformin

resulted in inhibition of the mTOR pathway and significant

arrest of cystic growth in in vitro and ex vivo models of

renal cystogenesis [129].

Additional pathways may converge on mTOR signaling

in a Ca2?-dependent way. Wnt signaling, which was shown

to be regulated by polycystin-1 [130], can activate a

ß-catenin-dependent (canonical) and a ß-catenin-indepen-

dent (non-canonical) pathway. In addition, a Wnt-Ca2?

pathway influences both canonical and non-canonical

pathways [131]. Inversin, a ciliar protein, functions as a

molecular switch between the different Wnt signaling

pathways [132]. It can be speculated that ciliary events as

flow-induced Ca2? influx can switch off the canonical and

activate the non-canonical pathway [42]. Over-activation

of canonical Wnt and subsequent over-production of acti-

vated ß-catenin would promote the polycystic phenotype

[133]. This is further supported by many observations

showing a link between disturbed polycystin function and

enhanced activity of Wnt signaling [130, 134–136]. In

addition, the Wnt pathway is also able to act on mTOR via

AMPK and GSK3 [137] (Fig. 2). Tuberin was reported to

be a physiological substrate of GSK3, which required

priming phosphorylation by AMPK. Canonical Wnt then

activates mTOR via inhibiting GSK3 phosphorylation of

tuberin [137]. Moreover, GSK3ß was shown to be activated

by polycystin-1 [138]. In ADPKD, disturbed polycystin-1

function and disturbed Ca2? signaling may thus both

contribute to a GSK3-dependent increase in mTOR activity

[124].

Effects on cell proliferation and apoptosis (Figs. 2, 3)

Kidneys from ADPKD patients have high levels of apop-

tosis in addition to increased cellular proliferation [139–

141]. This dysregulation of both apoptosis and proliferation

may represent a general mechanism for cyst growth and

remodeling [140, 142], and the imbalance between pro-

apoptotic and pro-proliferative factors was proposed to be

critical for the development of cystic kidney disease [143–

145]. Different signaling pathways may be implicated in the

abnormal cell-cycle progression. Polycystin-1 activates the

JAK-STAT pathway, thereby up-regulating p21 (waf1), an

inhibitor of cyclin-dependent kinase (CDK), and thereby

inducing cell-cycle arrest in G0/G1. This process requires

polycystin-2 as an essential cofactor [146]. A decrement of

p21 in cystic kidneys as compared to non-cystic kidneys

was demonstrated in humans and rat models [147]. Ros-

covitine, which has been shown to arrest progression in a

murine model of polycystic kidney disease, increases p21

levels and decreases renal tubular epithelial-cell prolifera-

tion [147, 148]. Renal tubular epithelial cells exposed to

‘‘low’’ concentrations of roscovitine showed minimal

apoptosis in association with markedly increased levels of

the anti-apoptotic protein p21, and these cells became

senescent. Conversely, cells exposed to ‘‘high’’ levels of

roscovitine became apoptotic [149]. Tubular-cell apoptosis

occurs in most animal models of ADPKD like the SBM

mouse [150, 151] and the Han:SPRD rat model [152], as

well as in kidneys from ADPKD patients [139–141]. Mice

deficient in the anti-apoptotic Bcl-2 gene develop poly-

cystic kidney disease characterized by dilated proximal and

distal tubular segments and hyper-proliferation of the epi-

thelium and interstitium [153, 154]. While ablation of the

pro-apoptotic Bim prevented the development of polycystic

kidney disease in mice deficient in Bcl-2 [155], this was not

the case in polycystin-1-deficient mice. This indicates that

loss of Bcl-2 or loss of polycystin-1 elicit polycystic kidney

disease through different mechanisms [156]. Similarly,

deletion of another anti-apoptotic gene, the AP2ß tran-

scription factor, in AP2ß-/- mouse resulted in polycystic

kidney disease with concomitant down-regulation of anti-

apoptotic Bcl-2-family proteins and massive apoptotic cell

death [157]. A direct cause-and-effect relationship between

cyst formation and apoptosis was demonstrated in

Han:SPRD rats using caspase inhibitors. Caspase inhibition

was found to reduce tubular apoptosis and proliferation and

to slow disease progression in polycystic kidney disease

[158]. A marked increase in caspase-3 and -7 activity has

been reported in the Han:SPRD rat [143, 159, 160], and

targeted caspase-3-gene deletion prolongs survival [161]. In

the SBM mouse that overexpresses the proto-oncogen

c-myc, both proliferative and apoptotic indexes were highly

increased, reflecting a critical imbalance in c-myc regula-

tion of the opposing processes of cell proliferation and

apoptosis [162]. Overexpression of c-myc was found in

cystic tissue and is supposed to play a role in the dysregu-

lation of both proliferation and apoptosis in ADPKD [140,

162–165].

Ca2? signaling is implicated in the phenotypic feature of

ADPKD cells showing elevated rates of both proliferation

and apoptosis, but the downstream mechanisms are not

fully resolved. It was found that polycystin-1 induces

resistance to apoptosis and normal tubulogenesis through

the PI3-K/AKT pathway [166] (Fig. 3). These data are

consistent with observations that loss of polycystin-1

function results in changes in cytosolic Ca2? concentration,

down-regulation of PI3-K/AKT and activation of B-Raf/

ERK in ADPKD cysts [114]. As already outlined above,

the disturbed intracellular Ca2? signaling could be a pri-

mary event in ADPKD and may be responsible for the

switch to a proliferative phenotype with an elevation in

B-Raf protein levels and cAMP-stimulated, Ras-dependent

activation of B-Raf and ERK [114, 115]. Also, a PKD2

transgenic7 mouse model resulted in renal-cys formation
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via B-Raf signaling, probably by acting as a dominant

negative modulator for polycystin function and down-

stream Ca2? signals [167]. Pkd2?/- vascular smooth-

muscle cells also have an abnormal phenotype with a

defective Ca2? signaling with decreased levels of the

cytosolic Ca2? and an increased cellular cAMP concen-

tration, which is probably underpinning increased

proliferation and apoptosis [168]. The low cytosolic Ca2?

concentration apparently provoked increased proliferation

in these vascular smooth-muscle cells but the effect in this

cell type was independent of cAMP/B-Raf signaling [168].

A divergent mechanism was proposed, in which dis-

turbed polycystin-1 function affected cell proliferation by

an increase in intracellular Ca2? signaling in the form of

activation of Ca2? oscillations [117] (Fig. 2). Serum treat-

ment of HEK293 cells with down-regulated polycystin-1 or

of cystic cells expressing mutated polycystin-1 resulted in

increased oscillatory activity of the cytosolic Ca2? con-

centration which led to activation of cell proliferation. The

proposed mechanism involved non-capacitative Ca2? entry

(NCCE), which was proposed to be negatively regulated by

polycystin-1. The loss of polycystin-1 resulted in NCCE

activation and increased Ca2? oscillations. The downstream

effects were related to activation of the calcineurin/nuclear

factor of activated T cells (NFAT) pathway. The explana-

tion could be that Ca2? oscillations rather than the basal

Ca2? concentration are crucial for activation of the NFAT-

dependent cell proliferation [117].

Another important factor, particularly for the increased

apoptosis in ADPKD, could be the regulation of the ER

Ca2? content by polycystins [84] (Fig. 3). The ER Ca2?

content is determined by the activity of Ca2? pumps and by

the Ca2?-leak rate via different pathways. The resulting ER

Ca2? load is a primary determinant of the extent of ER-to-

mitochondrial Ca2? transfer and pro-apoptotic Ca2? sig-

naling [84]. Polycystin-2 in the ER may act as a Ca2?-leak

pathway and in this way control the degree of ER Ca2?

filling [85]. Normal polycystin-2 functioning would then

reduce Ca2? release from the ER in response to apoptotic

stimuli, and conversely, its loss in ADPKD would lead to

an increased apoptosis [85]. Although this mechanism may

provide a simple molecular explanation for the increased

apoptosis rate in ADPKD upon loss of polycystin-2 func-

tion, the situation may be more complex. As discussed

above, polycystin-2 activity and its modulation of ER Ca2?

are probably tightly regulated by many other cellular fac-

tors and interacting proteins. Not only is polycystin-2 a

Ca2? channel but it also interacts with the two main

(PI3K/AKT)

IP3R-P

Apoptosis

SOCE

PC2 (ER)

[Ca2+]ER

ORAI-STIM1 PC2-IP3R

ER Ca2+ leak

IICR

IP3R

STIM1 PC2

[Ca2+]i [cAMP]

PC1 / PC2 (PM) PC1 (PM) 

Fig. 3 Signaling pathways relating disturbed polycystin-mediated

Ca2? signaling to apoptotic cell death. Disruption of PC1 function

leads to a phenotype with low intracellular Ca2? concentration and

high cAMP concentration that showed a mitogenic response towards

cAMP and down-regulation of PI3-K/AKT. This provokes a profound

remodeling of the relation between Ca2? release and Ca2? influx via

an IP3R/PC2/STIM1 protein complex. Decreased AKT signaling

would strengthen the IP3R-PC2 interaction and lead to increased

IICR, translocation of STIM1 to the plasma membrane, and refilling

of the ER via SOCE. AKT can also directly phosphorylate the IP3R

thereby inhibiting its activity. A decreased AKT activity in cystic

cells would thereby relieve the inhibition of the IP3R and contribute to

the increase in IICR. PC2 can function as an ER Ca2?-leak channel

and a loss of function would therefore increase the ER Ca2? content

and IICR. The increased IICR via these different mechanisms

ultimately leads to increased Ca2? transfer from the ER to the

mitochondria. Mitochondrial Ca2? overload is a very important

determinant of Ca2?-dependent apoptosis. Boxed areas indicate

mechanisms not shown in detail. Dotted arrows indicate still

unresolved mechanisms. IP3R-P: IP3R phosphorylated by AKT

(S2681 in IP3R1)
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intracellular Ca2?-release channels, IP3Rs and RyRs, and

with various plasma-membrane TRP channels. Polycystin-

1 controls the activity of polycystin-2 directly and also in

an indirect way via PI3-K/AKT signaling. Decreased PI3-

K/AKT signaling in ADPKD would thereby lead to a

profound remodeling with increased IICR and SOCE

(Fig. 3). This results from activation of Ca2? release via

polycystin-2, but also from a higher IP3R activity resulting

from the relieve of the brake imposed by AKT-mediated

phosphorylation [169]. Increased IICR, particularly at the

contact sites of the ER and mitochondria, constitutes a

strong apoptotic signal [84, 170].

In conclusion, disturbed or remodeled cellular Ca2?

signaling is clearly a very early event in the development of

the cystic phenotype of renal cells. This phenotype is

characterized by a concomitant activation of both cell

proliferation and apoptotic cell death. Despite the increased

proliferation as an invariable component of cystogenesis,

there is seldom progression towards renal carcinoma [171].

Overexpression of polycystin-1 provoked apoptosis in dif-

ferent cancer cell lines, and it is tempting to speculate that

polycystins, by controlling the balance between prolifera-

tion and cell death, may play a role in preventing malignant

transformation [171]. ADPKD epithelial cells are thereby

characterized by a modest degree of cell proliferation

together with a proportional increase in apoptosis [139, 140,

146, 153, 157, 172]. Both polycystins are closely involved

in cellular Ca2? signaling by direct or indirect interaction

with many proteins of the cellular Ca2? toolkit. It becomes

increasingly evident that polycystin dysfunctions lead to a

profound remodeling of cellular Ca2? signaling and pro-

voke changes in the spatio-temporal modes of Ca2?

signaling. This could lead to changes in the occurrence of

different Ca2?-signaling microdomains located at the cilia

or at the ER-mitochondria junctions, and it could lead to

oscillatory Ca2? signals that may evoke nuclear responses.

It will be a challenge for future research to experimentally

detect the subcellular Ca2?-signaling microdomains and to

identify their downstream responses that result in the

increased proliferation and increased apoptosis responses,

which are characteristic for the cystic phenotype.
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