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Abstract Bone morphogenetic proteins (BMPs) are

important extracellular cytokines that play critical roles in

embryogenesis and tissue homeostasis. BMPs signal via

transmembrane type I and type II serine/threonine kinase

receptors and intracellular Smad effector proteins. BMP sig-

naling is precisely regulated and perturbation of BMP

signaling is connected to multiple diseases, including mus-

culoskeletal diseases. In this review, we will summarize the

recent progress in elucidation of BMP signal transduction,

how overactive BMP signaling is involved in the pathogenesis

of heterotopic ossification and Duchenne muscular dystrophy,

and discuss possible therapeutic strategies for treatment of

these diseases.
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Abbreviations

HO Heterotopic ossification

DMD Duchenne muscular dystrophy

BMP Bone morphogenetic protein

TGFb Transforming growth factor-b
Dpp Decapentaplegic

R-Smad Receptor regulated Smad

SBE Smad binding element

TAK1 TGFb-activated kinase-1

RGM Repulsive guidance molecule

GPI Glycosylphosphatidylinositol

I-Smad Inhibitory Smad

DUB Deubiquitinating enzyme

SARA Smad anchor for receptor activation

SCP Small C-terminal domain phosphatase

PPM1A Protein phosphatase magnesium-dependent

1A

HDAC Histone deacetylase

NSE Neuron-specific enolase

CA Constitutively activated

Endo-MT Endothelial-to-mesenchymal transition

EMT Epithelial-to-mesenchymal transition

ASP-RNAi Allele-specific RNAi

mrSC Muscle-residing stroma cell

NSAIDS Nonsteroidal anti-inflammatory drugs

CTX Cardiotoxin

TNFa Tumor necrosis factor-a

Introduction

Bone morphogenetic proteins (BMPs) were first discovered

and described by Marshall Urist as secreted proteins that

guide proliferation and differentiation of mesenchymal

cells of muscle into bone cells [1, 2]. Nowadays, BMPs are

recognized to be multi-functional growth factors that

belong to the transforming growth factor b (TGFb)

superfamily, which also includes TGFbs, growth and

S. Shi � P. ten Dijke (&)

Department of Molecular Cell Biology and Centre for

Biomedical Genetics, Leiden University Medical Centre,

Building 2, Room R-02-022, Postzone S-1-P, PO Box 9600,

Einthovenweg 20, 2300 RC Leiden, The Netherlands

e-mail: p.ten_dijke@lumc.nl

D. J. J. de Gorter

Institute for Molecular Cell Biology, University of Münster,

Schlossplatz 5, 48149 Münster, Germany

W. M. H. Hoogaars � P. A. C. ’t Hoen

The Center for Human and Clinical Genetics, Leiden University

Medical Center, Leiden, The Netherlands

Cell. Mol. Life Sci. (2013) 70:407–423

DOI 10.1007/s00018-012-1054-x Cellular and Molecular Life Sciences

123



differentiation factors, activins and Müllerian inhibiting

substance. All TGFb family members are structurally

related and are produced by cells as larger precursor pro-

teins that are proteolytically processed into amino-terminal

remnants and mature carboxy-terminal parts that bind to

cell surface receptors. The mature parts have a character-

istic cysteine knot structure. The TGFb/BMP signaling

pathway is essential for orchestration of embryonic

development and maintenance of tissue homeostasis in

adult animals [3].

More than 20 BMPs have been identified and charac-

terized. Although BMPs were initially identified for their

ability to induce bone formation [4], not all of the BMPs

appear to be osteo-inductive. On the basis of phylogenetic

analysis and sequence similarities, the osteo-inducing

BMPs can be divided into three subgroups: the BMP2/4

subgroup, the BMP5/6/7/8 (OP) subgroup and the BMP9/

10 subgroup [5]. All of the bone-inducing BMPs can

induce mesenchymal stem cells to differentiate into oste-

oblasts in vitro [5]. However, studies using transgenic and

knockout mice or animals with naturally occurring muta-

tions in bone-inducing BMPs suggested that osteo-

inductive BMPs are not only necessary for bone and car-

tilage formation but also play vital roles in heart and neural

development (Table 1).

BMPs are morphogens and can induce different cell

fates at different concentrations [6, 7]. They are not only

required for establishment of dorsal–ventral pattern in

embryogenesis but elicit a broad spectrum of biological

activities in large variety of tissues, such as repair of bone

fracture, maintenance of iron homeostasis, and so on

[6–12]. Therefore, BMP signaling needs to be carefully

regulated by positive and negative regulatory mechanisms to

regulate the intensity and duration of the signaling response

in a spatially controlled manner [13]. Perturbations of BMP

signaling pathways contribute to progression of a variety of

diseases including skeletal diseases, vascular diseases, tissue

dystrophy, and cancer [5, 14]. This review will focus on the

BMP signaling pathway in general and two different diseases

that are linked with ectopic activity of BMPs, i.e., hetero-

topic ossifications (HO) and the muscle degeneration disease

Duchenne muscular dystrophy (DMD).

BMP receptor signal pathway

BMP signaling pathway

Structure of BMPs and type I and II receptors

BMPs are structurally related cytokines that are found in all

multi-cellular organisms. The crystal structure confirmed

that the monomers of BMP7 and BMP2 share a common

scaffold [15, 16]. Functional studies show that BMPs are

highly conserved in evolution; in fact, Decapentaplegic

(Dpp) and 60A, the Drosophila homologues of BMP2 and

BMP7, were shown to induce bone formation in mammals

[17] and human BMP4 can rescue dpp null dorsal–ventral

patterning in Drosophila embryos [18]. Mature BMPs are

dimeric proteins that can function either as homodimeric or

heterodimeric complexes [19]. Most current knowledge of

BMPs are based on studies from homodimeric BMPs,

however, both homodimeric BMPs and heterodimeric

BMPs are present in vivo, and exert multiple bio-functions

[20].

Like other members in the TGFb family, BMPs signal

across the plasma membrane by interacting and inducing

complexes composed of type I and type II receptors that are

endowed with intrinsic serine/threonine kinase activity

(Fig. 1). In mammals, there are seven type I receptors, the

BMPR-I group (ALK3 and ALK6), the ALK-I group

(ALK1 and ALK2) and the TbR-I group (ALK4, ALK5

Table 1 Osteo-inductive BMPs and its mouse mutant

BMP Tissue expression Knockout mice phenotype Ref.

BMP2 Heart, limb, teeth, muscle Embryonic lethal, defect in heart development. Conditional knock out in limb showed

that BMP2 is dispensable for skeleton formation, but required for bone fracture

repair

[151, 183,

184, 185]

BMP4 Teeth, limb, heart, muscle Embryonic lethal; Little or no mesoderm formation. Conditional knock out of BMP4

showed defects in bone formation

[185]

BMP5 Bone, cartilage Spontaneous mutation, viable, short ear with skeleton defect, Loss of one pair of ribs [186]

BMP6 Liver, heart, bone BMP6 knockout mice are viable, association with type II diabetes and iron overload [11]

BMP7 Limb, kidney Die after birth with defects in kidney, eye, and bone [187]

BMP8 Developing skeleton tissue,

male germ cells

BMP8a knockout mice showed defects in maintenance of spermatogenesis, mice

deficient in BMP8b are sterile

[9, 188]

BMP9 Liver N/A [189]

BMP10 Trabecular myocardium,

embryonic and postnatal heart

Embryonic lethal with defects in heart development [8, 62]
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and ALK7) [5]. ALK1, -2, -3, and -6 have been shown to

serve as BMP type I receptors. There are four type II

receptors in mammals, i.e., BMPR-II, ActR-II and ActR-

IIB and MISR-II, of which BMPR-II, ActR-II and ActR-

IIB can serve as type II receptor for BMPs that are

expressed in multiple tissues [5].

Both type I and type II receptors are required for signal

transduction [21]. The type II receptors are constitutively

active and are responsible for activating type I receptors.

The type I receptor contains a so-called L45 loop that

extends from the kinase domain and which is required for

interaction and activation of downstream receptor regu-

lated Smads (R-Smads) [5]. The intracellular GS domain

(glycine and serine-rich domain) of type I receptors

located N-terminal to the serine-threonine kinase domain

controls the kinase activity of type I receptors. The

phosphorylation of serine and threonine residues in the

GS domain by type II receptor activates the kinase

activity of the type I receptor and initiates signal trans-

duction mediated by the type I receptor [5]. Under normal

circumstances, type I receptors can form oligomeric

complexes with type II receptors in the absence of

ligands. To prevent type I receptor activation independent

of ligand stimulation, the negative regulator FKBP12

binds to the intracellular GS domain of type I receptors

thereby preventing it from being phosphorylated in the

absence of a ligand [22–24]. Upon ligand stimulation,

FKBP12 dissociates from the type I receptors, thereby

allowing the phosphorylation by type II receptors on

serine and threonine residues in the GS domains. Muta-

tions in the GS domain of type I receptors can lead to

constitutive activation of the type I receptors [23, 25].

Notably, in contrast to other type II receptors, the BMPR-

II contains a long C-terminal tail following the serine/

threonine kinase domain [26]. The C-terminal tail is not

involved in BMP-induced Smad signaling, however, in

patients suffering from primary pulmonary hypertension

(PPH), the C-terminal tail of BMPR-II was found to be

truncated, suggesting a unique role for BMPR-II in Smad-

independent signaling [27, 28]. Further studies revealed

Fig. 1 Schematic overview of BMP signaling. Upon formation of

heteromeric complex composed of type II and type I receptors and the

BMP dimers, FKBP12 is released from the type I receptors and

released the phosphorylation site on type I receptor. Next, the type I

receptor is phosphorylated by the type II receptor, which propagates

the signal into the cells by phosphorylating the C-terminus of

R-Smads. The phosphorylated R-Smads form a complex with the

Co-Smad and are translocated into nucleus where they in collabora-

tion with other transcription factors to regulate gene expression. The

presence of membrane-tethered type III receptors on the membrane

can enhance R-Smads phosphorylation. The cells can release the

extracellular domain of the type III receptor, which is called the

soluble form of type III receptors. The soluble form of type III

receptors and other BMP antagonists such as Noggin and Chordin,

repress BMP signaling through prohibiting BMP binding to its

receptors. I-Smads repress BMP activity either by repressing complex

of R-Smads/Co-Smads, or directly inactivate type I receptor activity.

In the nucleus, phosphatases represses BMP activity by dephospho-

rylating R-Smads thereby promoting the exportation of R-Smads. In

addition to R-Smads, BMP can also signal via MAPK (non-canonical

BMP pathways) through activation of TAK1, which can further

activate MAPK. MAPK will be transported into the nucleus, and

activate some transcriptional factors, which can further initiate

specific gene expression
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that BMPR-II through its long C-terminal tail mediates

BMP-controlled cytoskeletal rearrangements [29, 30].

Smad protein-mediated BMP signaling

Upon formation and subsequent activation of a BMP

ligand-receptor complex, the activated type I receptors

phosphorylate receptor regulated Smad proteins (R-Smads)

at their two C-terminal serine residues. ALK1, -2, -3, and

-6 mediate the phosphorylation of R-Smad1, -5, and -8.

The phosphorylated R-Smads can form complexes with the

common mediated Smad (Co-Smad), Smad4, and translo-

cate into the nucleus. In the nucleus, this Smad complex

binds the DNA and in collaboration with co-activators and

repressors and other transcription factors regulates the

expression of specific genes [27].

Recently, the nuclear localized Smads were found to

promote also miRNA maturation [31]. TGFb and BMP

stimulation promotes a rapid increase in expression of

mature miR-21 through a post-transcriptional step; this

process involves R-Smads but is Smad4 independent [31].

The Smad binding sequence on pri-miRNA, which is

similar to the Smad binding element (SBE) normally

present in the promoter region of TGFb or BMP responsive

genes, is required for R-Smads function in promoting

mature miRNA processing [32].

Non-Smad BMP signaling

In addition to Smad proteins, BMPs are also able to

transduce signals via Smad-independent signaling path-

ways, for example via ERK, p38, and JNK MAP kinases,

small GTPases, and PI3K–Akt/PKPB pathways. BMPs

can also activate TGFb-activated kinase-1 (TAK1), a

member of the MAP kinase kinase kinase family [33],

which mediates the phosphorylation of p38, JNKs or

ERK1/2 in various cell types [34–36]. Interestingly, the

ERK1/2 MAPK kinase and TAK1 are important BMP-

Smad signaling modulators. It has been demonstrated that

both the Smad pathway and the P38/ERK MAPK pathway

are required for BMP-induced osteoblast differentiation

[37–39]. TAK1 was also shown as positive and negative

regulator for Smad signaling. TAK1 was originally dis-

covered as a BMP agonist that synergizes with Smad1/5

to induce ventralization in Xenopus embryos [40], how-

ever, TAK1 was also shown to interact with R-Smads and

to interfere with R-Smads transactivation thereby

repressing BMP-induced osteoblast differentiation [41].

Recently, TAK1 was found to promote Smad1/5/8 phos-

phorylation at C-terminal serine residues in chondrocytes

and to be an essential regulator for BMP signaling in

chondrogenesis in vitro and in vivo [42–44]. Therefore,

BMP-induced TAK1 and its downstream MAP kinases

might function as modulators for the canonical BMP-

Smad pathway.

Modulators of the BMP signaling pathway

Given the important role BMP signaling is playing in a

wide variety of biological processes, it has to be tightly

regulated. This is achieved by both positive and negative

regulation, which occurs at each step of the BMP/Smad

signaling pathway. The expression, localization, and acti-

vation of BMP ligands, receptors, and Smads are intricately

regulated, and this also involves the crosstalk with other

signaling pathways [27, 39]. For instance, the Wnt, Notch,

and FGF signaling pathways are reported either to be

required or to promote BMP-induced osteoblast differen-

tiation [39]. In the following section, we will first discuss

the regulation of BMP/Smad signaling at the extracellular

level, followed by intracellular BMP receptor/Smad-initi-

ated responses and then the activity of Smads as nuclear

effectors.

BMP antagonists

Numerous secreted proteins have been identified as BMP

antagonists. BMP antagonists can directly bind to BMPs

and thereby prohibit BMPs from binding to their recep-

tors. All of these BMP antagonists have a cysteine-knot

structure. Based on the size of cysteine-knots, the BMP

antagonists can be divided into three subfamilies: the

DAN subfamily (eight-membered ring) including USAG-

1 and Sclerostin, the twisted gastrulation (Tsg) subfamily

(nine-membered ring), and chordin and Noggin (ten-

membered ring) [45, 46]. Detailed functional studies

demonstrated that BMP antagonists selectively block the

activity of specific BMPs. For instance, Noggin inhibits

BMP2 and BMP4 but can not block BMP6 and BMP9

activity [47]. Chordin can bind to BMP2, -4, -7, but

cannot interact with the other BMP-family proteins [48].

Sclerostin binds BMP6 and BMP7 and inhibits their

activity [49].

BMP co-receptors

Currently a number of transmembrane and membrane-

anchored proteins have been characterized as co-receptors

or type III receptors, and function as modulators for TGFb/

BMP signaling. The repulsive guidance molecules (RGM)

family, comprised of RGMa (also known as RGM), RGMb

(also known as Dragon), RGMc (also denoted as Hfe2 or

HJV), and RGMd (currently only found in fish [50]) form

the first known BMP selective co-receptor family that can

potentiate BMP signaling. RGM proteins are glycosyl-

phosphatidylinositol (GPI)-anchored membrane proteins
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[50–53]. The mechanisms of how RGM proteins potentiate

BMP signaling are still elusive. One possibility is that

RGM proteins can interact with type I receptors and alter

utilization of BMP type II receptors by BMP ligands [52,

54]. Recently, RGMs were suggested to enable associa-

tion of neogenin with other BMP receptors (BMPRs) in

lipid rafts of chondrocytes. The modes of receptors

oligomerization could determine which downstream BMP

signaling pathways are activated [55]. Neogenin and

RGMc could facilitate the formation of membrane

receptor complexes that deliver continuous Smad sig-

naling, and are required for BMP-induced chondrogenesis

in vitro and in vivo [56]. Betaglycan and endoglin were

initially described as co-receptors for TGFb, but have

also been shown to function as co-receptors for BMP2, -4,

-7, and BMP9, respectively [57–59]. Betaglycan can

promote the binding of BMP ligands, BMP2, -4, -7, to

ALK3 and ALK6 to enhance BMP signaling [57].

Endoglin is highly expressed in endothelial cells, which

usually have little or no expression of betaglycan [60, 61].

The presence of endoglin in the endothelial cells may

make endothelial cells more responsive to ALK1-medi-

ated BMP9 signaling [59, 62]. Notably, cells can release

the extracellular domain of the co-receptors by cleavage

at the sites near their transmembrane regions [63–65].

The soluble forms of RGM proteins and endoglin, which

only contain the extracellular domain of these receptors,

were established as BMP inhibitors in recent studies

[11, 66] as they could possibly compete with membrane-

receptors for binding to BMP ligands. Moreover, Xenopus

BAMBI and its mammalian homolog Nma have been

identified as pseudo-receptors that contain extracellular

domains structurally related to that of type I receptors.

They lack the intracellular kinase domain, and as a con-

sequence function as repressors of BMP signaling to

prevent the formation of active receptor complexes

[67, 68].

Intracellular regulation of BMP signaling

The inhibitory Smads (I-Smad) comprise Smad6 and

Smad7, which serve as inhibitors for the Smad signaling

pathways. Smad6 mainly targets BMP signaling while

Smad7 represses both TGFb and BMP signaling [69–71].

Smad6 has been shown to compete with R-Smads for

interaction with Smad4, and can recruit the transcrip-

tional corepressor CtBP to repress BMP-induced

transcription [69, 72]. Smad7 represses R-Smad phos-

phorylation. In addition, it can recruit phosphatases that

can mediate type I receptor dephosphorylation and inac-

tivation [70, 73].

The ubiquitin system also actively participates in the

regulation of BMP signaling. Smad7 can recruit Smurf E3

ubiquitin ligases and mediate the turnover of activated type

I receptors [74, 75]. In addition, Smurfs can directly

interact with R-Smads and promote their degradation [76,

77]. The deubiquitinating enzyme (DUB) UCH37 can bind

to Smad7. Then it can deubiquitinate and stabilize type I

receptors and hence function as agonist for TGFb signaling

[78].

Smad anchor for receptor activation (SARA) protein can

enhance TGFb signaling by recruiting and presenting non-

phosphorylated R-Smads to active membrane type I

receptors [79]. Recently, endofin was characterized as a

protein acting similarly to SARA in BMP signaling, which

can recruit nonphosphorylated Smad1, enhance Smad1

phosphorylation, and the subsequent nuclear translocation

of Smad1 [80].

Since the BMP signaling is transduced by phosphory-

lated C-terminal R-Smads, phosphatases for R-Smads

could function as repressor for BMP signaling. The phos-

phatase proteins, small C-terminal domain phosphatase

(SCP1/2) and protein phosphatase magnesium-dependent

1A (PPM1A), can efficiently dephosphorylate the C-ter-

minal domain of Smad1 in the nucleus and attenuate BMP

signaling [81, 82]. Recently, SCP1 was established to

repress BMP-induced osteoblast differentiation [83]. In

contrast, PP2A, which can dephosphorylate R-Smads at

their linker region, was shown to enhance canonical Smad

signaling [84].

In the nucleus, the activated Smad complexes interact

with other transcription factors to control gene expression.

Histone deacetylases (HDACs), chromatin modulators,

function as negative regulators for BMP signaling. c-Ski

and Twist-1 are well-studied negative regulators for BMP

signaling, which interact with Smad4 and recruit HDACs

to the Smad complex thereby repressing its transcriptional

activity and antagonize BMP signaling. Both c-Ski and

Twist-1 can inhibit BMP-induced osteoblast differentiation

[85–88].

Endocytosis and BMP signaling

Formation of the ligand-receptor complex can initiate

endocytosis of active ligands and receptors. Endocytosis-

mediated internalization of receptors cannot only control

receptor density, thus modulating signaling activity, but is

also required for signal transduction in some situations [89,

90].

It was proposed that BMP type I receptors internaliza-

tion is mediated by clathrin-mediated endocytosis, which is

required for continuation of Smad signaling [91]. Endofin,

the SARA-like protein in BMP signaling located in the

endosome derived from clathrin-coated pits, promotes the

BMP-Smad signaling [80]. However, the interaction of

Smad7–Smurf2 complexes that are present in lipid raft
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caveolae to the type I receptors can promote their rapid

turnover and repress signaling [89].

Negative feedback loops for BMP signaling

In the previous section, we have discussed various negative

regulatory mechanisms for BMP signaling. Multiple neg-

ative regulators have been demonstrated to be direct target

genes of BMP signaling. For instance, Noggin/Chordin and

I-Smads are all well established as direct BMP target genes

[92–96]. Endofin contains a protein-phosphatase-binding

motif. Depending on the amount of nonphosphorylated

Smad1 in the cells, endofin can also function as a BMP

inhibitor by recruiting phosphatases to inactivate type I

receptors [80]. The activation of BMP signaling can also

result in degradation of type I receptors via endocytosis

[89]. These mechanisms establish auto-regulatory negative

feedback loops for BMP signaling to exert spatial–tempo-

ral control over its multiple activities.

In the above sections, we have summarized current

research results on BMP signaling. BMPs were originally

discovered as bone inducers and repressors of myogenesis

[1, 4, 97]. In the following sections, we will discuss the

roles of BMP signaling in the progression of two repre-

sentative bone and skeletal muscle diseases: heterotopic

ossification (HO) and Duchenne muscular dystrophy

(DMD).

BMP signaling in heterotopic ossification

Heterotopic ossification (HO) is defined as bone formation

at aberrant locations outside the skeleton; mature bone

tissue can be found in the soft tissue where bone normally

does not exist. The presence of HO might cause joint

stiffness, limited range of motion, swelling and pain, and

can even result in severe functional limitations [98]. HO

was first clearly described in 1883, and then in 1918,

Déjerine and Ceillier found that soldiers in World War I

with spinal cord trauma frequently acquired HO. Nowa-

days, it is well described in multiple clinical reports, for

example, patients who have total hip arthroplasty or injury

at spinal cord are at risk of developing HO [99]. A few

years ago, Charmers and colleagues proposed that osteo-

genic precursor cells, inducing agents and permissive

microenvironments are essential conditions for ectopic

bone formation [100]. Among all the discovered osteo-

inductive growth factors, BMPs are considered important

growth factors involved in bone formation; the ability to

induce bone when implanted at ectopic sites in rats led to

their discovery [1, 4, 101–103]. Besides the trauma-

induced HO, there is also a hereditary form of HO called

fibrodysplasia ossificans progressiva (FOP).

Fibrodysplasia ossificans progressiva

Fibrodysplasia ossificans progressiva (FOP) has an inci-

dence of 1 in 2 million. Patients develop progressive

heterotopic ossification (HO) in the soft tissues either as a

result of trauma or spontaneously. Children born with FOP

appear normal at birth apart from deformed great toes [25].

Before the age of ten, FOP patients develop painful and

highly inflammatory soft tissue swellings, which can

transform into bone [104]. The occurrence of ectopic bone

usually follows a fixed pattern: starting from the neck, then

in the shoulders, arms, chest areas, and finally in the feet.

The development of ectopic bone formation in FOP

patients occurs through an endochondral ossification

pathway. A histological examination identified several

stages of the FOP lesion formation: lymphocyte infiltration,

degradation of muscle tissue, fibroproliferative and highly

angiogenic stages, cartilage and finally formation of bone

[105]. Minor trauma to soft tissue can initiate painful

ectopic bone formation in FOP patients, but sometimes

bone formation seems to occur spontaneously without

detectable trauma [106, 107]. Surgical resection to remove

the ectopic bone tissue is not an option for treatment of the

FOP patients as the surgical trauma induces the formation

of new heterotopic bone [107].

In 1997, Shafritz reported that BMP4 is overexpressed

in lymphoblastoid cells and lesional cells of FOP patients

[108]. The BMP4 antagonist Noggin is a direct target gene

for BMP signaling. However, BMP4-induced Noggin

expression in lymphocytes of FOP patients was found to be

attenuated compared to the control lymphocytes [108,

109], implying the dysregulation of BMP4–Noggin nega-

tive feedback loop in FOP patients. However, until now,

only transgenic mice expressing BMP4 under the control of

the neuron-specific enolase (NSE) promoter developed a

FOP-like phenotype [102]. Others reported that BMP4

transgenic mice either died at birth or failed to develop a

FOP-like disorder [110–113]. Moreover, the FOP lym-

phocytes displayed higher expression of ALK3 and a defect

in endocytosis-dependent degradation of BMP type I

receptors, which could result in constitutively high

expression of ALK3 on the membrane [114]. In 2006, the

gene responsible for the FOP disease was identified as the

ALK2 gene encoding a BMP type I receptor. The classic

FOP-associated ALK2 mutation is R206H; this residue is

located in the GS domain and interferes with the binding of

the negative regulator FKBP12, which results in ALK2

activation in the absence of BMP ligands [25, 115–117].

Recently, an ALK2 R206H knock in mice was reported to

have FOP symptoms, including malformed first digits in

the hind limbs and postnatal extraskeletal bone formation

[118]. These results further supported that mutant ALK2,

which can sensitize mesenchymal cells to undergo BMP-
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induced osteoblast differentiation and bone formation in

vitro, caused FOP [118].

The mutated ALK2 in FOP patients that leads to ele-

vated BMP signaling plays a pivotal role in ectopic bone

formation in the FOP patients. However, transgenic mice

with global postnatal expression of constitutively activated

(CA)-ALK2 (induced without inflammation) do not

develop ectopic bone. CA-ALK2 in combination with local

inflammation mediated by adenoviral infection induced

bone formation in skeletal muscle, joint fusion, and func-

tional impairment [119]. Moreover, mice treated with the

anti-inflammatory drug dexamethasone showed signifi-

cantly reduced ectopic bone formation induced by

adenoviral infection in the skeletal muscle of CA-ALK2

transgenic mice [119]. Many studies on FOP patients

support the important role of inflammation in disease

progression [120, 121]. A clinical study found that bone-

marrow transplantation from a normal donor in a FOP

patient, which received immunosuppression, ameliorated

the activation of ectopic bone formation [122]. Thus,

hematopoietic cells may contribute to ectopic bone

formation.

For a long time, osteoprogenitor cells for ectopic bone

were considered to be the mesenchymal stem cells

residing in the skeletal muscles which have the potential

to differentiate into multiple mesenchymal lineages [101,

123–126]. In 2010, Medici and colleagues [127] showed

an endothelial origin of up to 50 % of the heterotopic

cartilage and bone in both FOP patients and the CA-

ALK2 transgenic FOP mouse model. In vitro, CA-ALK2

or TGFb and BMP4 stimulation is able to induce endo-

thelial-to-mesenchymal transition (Endo-MT). CA-ALK2

or TGFb and BMP4 stimulation induce the expression

of transcription factors Snail/Slug/Twist/ZEB-1/Sip-1, all

of which are important for epithelial-to-mesenchymal

(EMT) transition, and convert mature endothelial cells

into mesenchymal stem cell-like cells, which subse-

quently differentiate into chondrocytes, osteoblasts, or

adipocytes under the appropriate differentiation condi-

tions [127] (Fig. 2). In addition, the increased number of

circulating osteoprogenitor cells of hematopoietic origin,

were reported to associate with active HO formation in

patients with FOP, and to be present in the pre-osseous

fibroproliferative lesions. Therefore, circulating osteo-

progenitor cells are another group of osteoprogenitor

cells that can contribute to HO in susceptible host tissue

[128].

Elevated BMP signaling due to a defect in the auto-

regulatory feedback loop was already confirmed in the

lymphocytes from FOP patients [129]. Lymphocytes are

important responsive cells in inflammation and therefore it

could also be interesting to determine the role of lympho-

cytes with dysregulated BMP activity in inflammation and

whether they can promote bone formation. Moreover, the

defective negative regulatory loop of BMP signaling is

mainly observed in lymphocytes from FOP patients. It

is not clear whether the negative regulation mechanism is

also defective in osteoprogenitor cells in FOP patients. It

could be interesting to investigate negative regulatory

mechanisms in the osteoprogenitor cells from the FOP

patients, and whether mutated ALK2 could lead to defec-

tive negative regulatory mechanisms in lymphocytes and

other cell types.

Mutated ALK2 from FOP patients can directly convert

mature endothelial cells into multi-potent mesenchymal

cells, and sensitize mesenchymal cells to BMP-induced

osteoblast differentiation [117, 127], thus making ALK2 a

putative therapeutic target to prevent HO in FOP patients.

LDN-193189, a specific BMP type I receptor kinase

inhibitor, with the highest potency towards ALK2 kinase

activity, was reported to decrease HO in CA-ALK2

transgenic mice [119]. Although in CA-ALK2 transgenic

mice, LDN-193189 treatment showed no toxicity on mice

growth, behavior, or bone density [119], further investi-

gation is required before LDN-193189 can be applied to

FOP patients. LDN-193189 is a potent BMP receptor

inhibitor that significantly reduces ALK2 activity, but also

other kinase activities at high dose [130, 131]. Recently,

BMP signaling was found to be required for muscle

regeneration, as discussed in more detail below, and

therefore complete inhibition of ALK2-dependent BMP

signaling should be avoided. The ideal kinase inhibitor for

treatment of FOP without possible on-target side-effects

in other tissues is one that specifically targets mutated

ALK2, inhibiting the extra activity of ALK2 derived from

the FOP allele, while also not affecting ALK1, ALK3,

ALK6, and wild-type ALK2 kinase activity. Nowadays,

genetic tools, including antisense therapy and RNA

interference, have already been developed to modify

specific gene or protein expression [132, 133]. Kaplan and

colleagues have successfully employed allele-specific

RNAi (ASP-RNAi) technique to reduce disease-causing

ALK2 activity without inhibition of the normal ALK2

allele in FOP cells [134]. In the future, other genetic tools

to specifically modulate mutant ALK2 expression in FOP

patients might be good alternatives for treatment of

disease.

Acquired form of heterotopic ossification

As mentioned before, FOP is a very rare genetic disease

characterized by progressive heterotopic ossification (HO)

induced by an activated ALK2 mutant. The most common

form of HO is the acquired form, which is either induced

by trauma or linked to damage in the nervous system

(spinal cord or brain). Post-traumatic HO is caused by
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injuries at soft tissue at any site. The most common post-

traumatic HO is observed after severe long bone fracture or

in the hip after total hip arthroplasty [135]. More than 50 %

of patients develop HO after total hip arthroplasty [136,

137]. The damaged muscle is another area at high risk of

developing HO [101, 102, 138]. Recently, HO was unex-

pectedly discovered in end-stage valvular heart disease

[139–142]. In spinal cord injured patients, the incidence of

HO is between 20 and 25 %, while in closed brain injury

HO occurs in 10–20 % of patients [99]. Patients with brain

injury could develop peri-articular HO especially in the hip

and elbow joint [143]. For patients with spinal cord injury,

the HO is mostly observed in the hip region [144]. Until

now, it is not well understood how the injuries in the

nervous system lead to HO in the hip or elbow joint. In the

following section, we will mainly discuss post-traumatic

HO.

As mentioned, inflammatory conditions have been

reported to be important for the progression of the disease

in FOP [120, 145]. Like in FOP, inflammation is involved

in the formation of ectopic bone in acquired HO. The pro-

inflammatory cytokine, TNFa can stimulate the expression

of BMP2, an important bone inducer in endothelial cells

[146]. In addition, TNFa can augment the recruitment and

differentiation of muscle-residing stroma cells (mrSCs) to

enhance bone formation [125]. So the nonsteroidal anti-

inflammatory drugs (NSAIDS) are important therapies for

reducing the risk of HO. The anti-inflammatory agent

Indomethacin is already commonly used as treatment of

patients after acetabular fracture to prevent the possible

occurrence of HO [147].

BMPs may mediate the induction of acquired HO. In the

valve where HO was identified, BMP2 and BMP4 were

found to be expressed by myofibroblasts and preosteoblasts

in areas adjacent to B- and T-lymphocyte infiltrations

[139]. Moreover, multiple studies showed that BMP2,

BMP4, and BMP9-induced HO in skeletal muscle by

intramuscular injections [101, 103, 138].

Tie2? progenitor cells are discovered as major osteo-

progenitor cells that respond to an inflammatory

stimulation and further differentiate into heterotopic bones

in BMP2 and BMP4-induced HO in the skeletal muscle

[138]. Tie2 is a hallmark for endothelium cells, suggesting

an important role of endothelial cells in contributing to HO

[127, 138]. Interestingly, another report identified a group

of non-endothelium Tie2? cells residing in the interstitium

of skeletal muscle and other tissues, displaying multi-

potent ability to differentiate into mesoderm linage cells

including osteoblasts and adipocytes [148]. Instead of other

Tie2? cells from the endothelium, it is this Tie2? cell

population of non-endothelium origin that are responsive to

BMP2-induced HO in the skeletal muscle [148]. Medici

et al. [127] discovered that multipotent cells derived from

endothelial cells still expressed Tie2. Therefore, it would

Fig. 2 Diagram illustrating endothelial-to-mesenchymal transition

(Endo-MT) and its role in the heterotopic bone formation in FOP

patients. In the endothelial cells, TGFb or BMP4 induces expression

of transcription factors for mesoderm induction including Snail/Slug/

Twist/ZEB-1/Sip-1, and reprogram endothelial cells into multipotent

mesoderm cells through Endo-MT transition. The multipotent meso-

derm cells can be further differentiated into osteoblasts, chondrocytes,

and adipocytes under proper differentiation conditions. The type I

receptors ALK2 and ALK5 participate in the process. In FOP patients,

the mutant ALK2 can directly induce Endo-MT and convert

endothelial cells into multipotent mesoderm cells. Then, under

pathogenic inflammatory conditions in FOP patients, the mesoderm

cells differentiate into cartilage, which can be further developed into

heterotopic bone through endochondral ossification
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be interesting to investigate whether these Tie2? multipo-

tent mesenchymal cells might be converted from

endothelial cells, or whether the niche holding these cells

could facilitate transition of endothelial cells into multi-

potent mesenchymal cells in vivo. In addition to Tie2?

cells, mrSCs also contributed to the HO induced by BMP2

and BMP9 in the damaged muscle [101]. In addition, cir-

culating osteogenic precursor cells are considered as a

group of possible osteoprogenitor cells for HO. Circulating

osteogenic cells were discovered to home to sites of vas-

cular injury and were associated with HO formation in the

heart valve [149].

Interestingly, in an in vitro study, BMP9 appeared to

be more potent for inducing differentiation of mrSCs

into osteoblasts than BMP2 [101]. In vivo, BMP2 can

induce ectopic bone formation in the skeletal muscle

with or without cardiotoxin (CTX)-induced muscle

damage, whereas BMP9 only induced ectopic bone

formation in CTX-induced damaged muscle [101].

Thus, it seems that BMP2 and BMP9 are not func-

tionally equivalent to induce bone formation in the

skeletal muscle [101, 150]. In vivo, BMP2 is secreted at

the bone fracture area and is required for the initiation

of fracture healing [12, 151]. BMP9 appears to function

mainly in angiogenesis [152]. Therefore it would be

interesting to investigate whether BMP2 and BMP9

play different roles in the initiation of bone formation

in the muscle, or have different roles in the inflamma-

tory reaction. A recent study suggested a group of non-

endothelial Tie2? cells as osteoprogenitor cells

responsive to BMP2 to induce bone formation in skel-

etal muscle [148]. Further research might focus on the

responsiveness of these cells to BMP2 and BMP9

stimulation in normal muscle or CTX injured muscle.

Different from FOP patients, in whom the ectopic bone

is impossible to be removed by surgical operation, the only

effective treatment of symptomatic established HO is sur-

gical resection of ectopic bone tissue. To prevent the

possible relapse of HO, it is prudent to avoid soft-tissue

trauma in the operation room. Gentle handling of tissues

includes complete wound lavage and removal of all bone

debris and reaming was suggested to decrease the risk of

HO after surgery [153, 154]. Radiation and usage of

NSAIDS are used to further decrease the chance of getting

HO [154]. Radiating pluripotential mesenchymal cells, the

possible osteoprogenitor cells for HO, may effectively

prevent the formation of HO [155]. Unfortunately, the

NSAID therapy, while reasonably effective, has side-

effects, most notably gastrointestinal ulceration, decreased

platelet aggregation and renal toxicity [154, 156]. Since

BMPs are well-established inducers of the HO, BMP

inhibitors might turn out to be useful in the prevention of

HO in the future.

BMP signaling in muscle regeneration and DMD

disease

BMP signaling in muscle regeneration

In damaged regenerating muscle, BMPs, such as BMP2,

BMP4, and BMP9, can potently induce bone formation

[138]. Therefore one may think of the use of BMP inhib-

itors to repress HO in the skeletal muscle. However,

recently studies [157, 158] on muscle regeneration after

muscle damage suggested an essential role of BMP sig-

naling in muscle regeneration [159].

Muscle regeneration is comprised of three steps: upon

muscle damage, quiescent muscle stem cells or satellite

cells (characterized by Pax7?, MyoD-), which reside

between the basement membrane and sarcolemma of

individual muscle fibers, are activated; activated satellite

cells (Pax7?, MyoD?) proliferate and subsequently either

differentiate into myoblasts (Pax7-, MyoD?, Myog-),

which initiate myogenic differentiation (Pax7-, MyoD?,

Myog?) and fuse to repair damaged fibers or form nascent

muscle fibers. Part of the activated satellite cells convert

back to quiescent satellite cells (Pax7?, MyoD-) thereby

self-renewing the satellite cell pool [160]. Together with

satellite cells, mrSC, fibroblasts, and immune cells also

participate in the regeneration process. Following acute

tissue injury, inflammatory cells, fibroblasts, and mrSC

migrate to the injured areas to restore tissue homeostasis.

The inflammatory cells remove the damaged or dead fibers,

which are then replaced by the activated satellite cells and

the mrSCs [161]. In addition, fibroblasts and inflammatory

cells stimulate satellite cell activation by secreting stimu-

latory growth factors/cytokines, such as HGF, FGF, and

IGF [162]. The relevance of these different cell populations

in muscle regeneration has recently been shown by several

studies. Ablation of satellite cells, muscle fibroblasts, or

macrophages all resulted in impaired muscle regeneration

in mice [163–166].

Upon muscle damage, ALK3 expression is elevated in

the activated satellite cells, and Smad1/5/8 phosphorylation

is detected in the nucleus of the activated satellite cells,

implying the activation of the BMP pathway [157]. In

contrast, BMP antagonist Noggin is expressed in satellite

cells committed to myogenic differentiation. The use of

BMP inhibitors to repress BMP signaling in the regener-

ating muscle by means of dorsomorphin or a soluble ALK3

extracellular domain ligand trap, resulted in smaller

regenerated myofibers and fibrosis; in vitro either inhibi-

tion of Noggin or exogenous BMP4 stimulated satellite

cells division and repressed satellite cell differentiation,

whereas addition of Noggin or soluble ALK3 had the

opposite effect. Therefore, it was hypothesized that BMP

signaling is required for the maintenance of the pool of
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activated satellite cells [157]. Clever’s study on Id1?/-;

Id3-/- mutant mice suggested that Id1/3, which are direct

target genes of the BMP-induced Smad pathway, mediate

BMPs inhibitory effect on muscle differentiation. The

Id1?/-; Id3-/- mutant mice displayed delayed and

reduced skeletal muscle regeneration, characterized by a

decreased number of activated satellite cells after injury

[167]. BMP signaling repressed differentiation of satellite

cells into myotubes. Therefore, the activity of BMP sig-

naling should be switched off when enough satellite cells

have been generated. The mechanisms controlling the

timing that induce the satellite cells to switch from pro-

liferation to differentiation are not well deciphered. But

BMP antagonist Noggin and Chordin are elevated upon

differentiation, which could repress the endogenous BMP

signaling in activated satellite cells, and initiate the dif-

ferentiation program [130, 157, 158].

Activation of BMP signaling is necessary for mainte-

nance of activated satellite cells in the damaged muscle.

However, BMP2, BMP4, and BMP9 have been demon-

strated to induce ectopic bone formation in the damaged

muscle. Therefore one might be prudent when using BMP

inhibitors to repress HO occurrence in skeletal muscle as

they may disturb the muscle regeneration. One option to

overcome this complication could be to use the inhibitors

that could specifically target the osteoprogenitor cells for

ectopic bone cells. Another possibility is to inhibit the

activity of receptors that are involved in the HO process,

but not in the muscle regeneration process. Up to now,

ALK3 is the only BMP type I receptor discovered to be

involved in the muscle regeneration process [157] and it is

not known if the other BMP receptors are involved in this

process. It is not known whether ALK3 is also actively

involved in HO occurrence in the skeletal muscle, like

ALK2. Further research should therefore be focused on the

specific and/or overlapping functions of different BMP

type I receptors in muscle regeneration and HO.

BMP signaling in DMD disease

BMP signaling is important in balancing the satellite cell

proliferation and differentiation program. Dysregulated

BMP signaling might be linked with progression of muscle

diseases. DMD disease is one of the diseases in which

elevated BMP signaling in the satellite cells might exac-

erbate the disease [168].

DMD disease is a recessive X-linked form of muscular

dystrophy that results in muscle degeneration. The disease

is caused by mutations in the DMD gene [169], encoding

the dystrophin protein that connects the cytoskeleton of

muscle fibers to the underlying basal lamina. The absence

of functional dystrophin in the myofiber leads to membrane

damage, which results in increased calcium-influx and

subsequent muscle fiber breakdown in DMD patients [170,

171]. Due to the constitutive muscle fiber damage, DMD

patients suffer from chronic inflammation, in which infil-

trated inflammatory cells and persistently activated

fibroblasts stimulate fibrosis [161]. In addition to fibro-

blasts, muscle fibers in DMD patients are replaced by

adipose tissue, although the underlying molecular mecha-

nism is unknown [172]. Furthermore, the muscle’s

regenerative capacity may be exhausted under chronic

inflammatory conditions. Although the mechanism is not

known, the continuous activation of satellite cells may lead

to depletion of the satellite cell population. In addition,

myoblasts isolated from DMD patients show proliferation

and/or differentiation defects, which may further contribute

to the decline in muscle regeneration [173, 174]. Moreover,

myoblast to myofibroblast transdifferentiation has been

reported to be partially causal for muscle fibrosis and may

also further contribute to impaired muscle repair in DMD

muscle [175].

To find the underlying molecular mechanism for the

inefficient differentiation of DMD myoblasts, Sterrenburg

and colleagues performed a microarray assay to compare

expression profiles in DMD myoblasts and healthy myo-

blasts [168]. BMP4 expression was found to be

significantly higher expressed in DMD cultures compared

to myoblasts of healthy individuals [168]. BMP4 can

maintain satellite cells in a proliferative state and inhibit

myogenic differentiation [157]. In vitro, BMP4 was shown

to inhibit both MyoD and myogenin, muscle-specific

transcription factors that regulate differentiation of satellite

cells into skeletal muscles. The elevated level of BMP4 in

DMD myoblasts could partially explain the inefficiency of

satellite cells to form new muscle fibers in DMD patients

[176].

Muscle fibrosis is a prominent pathological symptom in

DMD patients. The TGFb signaling pathway has already

been established as a key factor involved in fibrosis in

DMD patients [177]. Multiple studies have demonstrated

that BMP7 can reduce TGFb-induced renal fibrosis and

cardiac fibrosis [178–180]. Recently, BMP6 was discov-

ered to attenuate TGFb signaling in Dupuytren’s

fibroblasts, and inhibit the fibrotic response [181]. How-

ever, there are no reports that BMP signaling affects TGFb-

induced muscle fibrosis. It is not known whether elevated

BMP4 signaling contributes to the chronic inflammatory

reaction in damaged skeletal muscle and subsequent

fibrosis in DMD patients. A recent study suggested that

BMP4 can induce EndoMT [127]. EndoMT transition has

been demonstrated to contribute to cardiac fibrosis [180].

Therefore BMP4 might possibly play a role in muscle

fibrosis through induction of EndoMT. It would be inter-

esting to investigate the exact role for BMP signaling in

muscle fibrosis.
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As mentioned above, adipose tissue also replaces muscle

fibers in dystrophic muscle of DMD patients [172]. A

group of Tie2? cells residing between skeletal muscle and

endothelium was established as multipotent cells, and could

differentiate into adipocytes in vitro [148]. BMP4 is able to

induce mesenchymal stem cells into adipocyte-lineage cells in

vitro [182]. Therefore BMP4 might also contribute to the

accumulation of adipocytes in DMD patients.

To validate whether BMP signaling indeed contributes

to the progression of DMD disease, we administrated

dystrophin-deficient mdx mice with the BMP antagonist

Noggin [130]. We observed enhanced MyoD and myoge-

nin expression in the mice treated with Noggin, suggesting

improved muscle regeneration, characterized by improved

muscle histology [130], but could not detect a decrease in

the inflammatory response. These results suggested that

inhibition of BMP signaling might be beneficial for

improving muscle regeneration in DMD patients. However,

considering the importance of BMP signaling during

muscle regeneration in healthy muscle, a potential benefi-

cial effect of BMP antagonists in dystrophic muscle is

likely to be dose-dependent, and complete repression of

BMP signaling may even be detrimental. Therefore, the

dose-dependent effects of such approaches should be

assessed in more detail in animal models of DMD. In

addition, one has to keep in mind that improving muscle

regeneration will not result in improved muscle function in

DMD muscle, since the primary genetic defect remains.

Therefore, future DMD therapies should aim at both

restoring dystrophin function and improve the muscle

condition by counteracting fibrosis and improving muscle

regeneration.

Conclusions

In this review, we have summarized the current progress of

research on HO and DMD diseases that are related to

elevated BMP signaling. The critical involvement of

overactive BMP signaling in ectopic bone formation in HO

patients is well established. Whether deregulated BMP

signaling also contributes to DMD pathology by repressing

muscle regeneration needs more investigation. Inhibition of

excessive BMP signaling might be a promising therapeutic

approach for treatment of these diseases, especially in FOP

patient and DMD patients, in which the surgical treatment

is impossible.

BMPs have been well established as crucial cytokines

that control multiple biological phenomena, either during

embryonic development or to control postnatal tissue

homeostasis. Therefore anti-BMP treatment in the above-

mentioned diseases should be considered with care to

prevent the possible on-target side-effects and dose-

dependent effects of such treatments should be determined

in animal models. The BMP type I receptor kinase inhib-

itors dorsomorphin and LDN-193189 have shown to inhibit

at high dose both BMP and TGFb activity. The BMP

antagonist Noggin is not so stable in vivo and was shown

not to be able to inhibit BMP6 and BMP9 [47]. The soluble

receptors and the neutralizing antibodies can only target the

extracellular BMPs, therefore they would not be so bene-

ficial for treatment of FOP patients who have mutated

ALK2. Currently, ASP-RNAi technique has been suc-

cessfully applied to specifically decrease mutant ALK2

allele activity and restore normal BMP activity in FOP

cells [134]. In the future, other genetic tools, including

antisense therapy and mi-RNA can be employed to

decrease BMP activity.
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