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Abstract Reactive oxygen species (ROS) are cellular

signals but also disease triggers; their relative excess

(oxidative stress) or shortage (reductive stress) compared to

reducing equivalents are potentially deleterious. This may

explain why antioxidants fail to combat diseases that cor-

relate with oxidative stress. Instead, targeting of disease-

relevant enzymatic ROS sources that leaves physiological

ROS signaling unaffected may be more beneficial. NADPH

oxidases are the only known enzyme family with the sole

function to produce ROS. Of the catalytic NADPH oxidase

subunits (NOX), NOX4 is the most widely distributed

isoform. We provide here a critical review of the currently

available experimental tools to assess the role of NOX and

especially NOX4, i.e. knock-out mice, siRNAs, antibodies,

and pharmacological inhibitors. We then focus on the

characterization of the small molecule NADPH oxidase

inhibitor, VAS2870, in vitro and in vivo, its specificity,

selectivity, and possible mechanism of action. Finally, we

discuss the validation of NOX4 as a potential therapeutic

target for indications including stroke, heart failure, and

fibrosis.

Keywords siRNA � Antibodies �
NADPH oxidase inhibitor � NOX4 � VAS2870 �
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Oxidative stress: the need for validated targets

and therapeutic specificity

Reactive oxygen species (ROS) have long been suspected

as being ‘bad guys’. They are frequently associated with

the development and progression of chronic, degenerative,

cancerous and inflammatory diseases. Indeed an excess of

ROS, i.e. oxidative stress, caused by an imbalance between

ROS production and their removal by antioxidant systems,

may be a common underlying pathogenic mechanism in

these diseases. With the recent additional description of

possible roles of ROS in diverse physiological signaling

processes another form of imbalance deserves attention, i.e.

reductive stress—the excess of reducing agents in a cell

that leads to shortage of ROS. These and other phenomena

[1] may explain the poor outcomes of antioxidant therapies

in clinical studies where even deleterious effects of untar-

geted antioxidant treatment have been reported [2–10].

Rather than attempting to systemically scavenge ROS, it

may be more effective to specifically target the different

enzymatic sources of pathophysiologically relevant ROS.

Nevertheless, until this has resulted in clinical benefits, the

oxidative stress hypothesis remains unproven.

Several ROS producing enzyme systems exist, including

xanthine oxidase [11], the mitochondrial respiratory chain

[12], lipid peroxidases [13], cytochrome P450 enzymes

[14], and uncoupled endothelial NO synthase [15]. How-

ever, these enzymes produce ROS secondary to their

damage, which can be proteolysis but is often caused by

oxidative stress itself [11, 15]. Thus, there would still be
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the need to identify this primary source of oxidative stress.

The only enzyme family known to produce ROS as their

primary and sole function are NADPH oxidases. These

multi-protein complexes are comprised of a catalytic,

transmembrane-spanning subunit (NOX), as well as several

structural and regulatory proteins localized in both the

membrane and the cytosol.

The NADPH oxidase family

We are only beginning to understand the enzyme family of

NADPH oxidases, their players and their interaction. The

NOX family consists of seven members, NOX1–5, and two

dual oxidases (Duox), Duox1 and Duox2. Of those, NOX1,

2, 4, and 5 have been implicated in vascular diseases, on

which we focus in this review. All NOX isoforms have six

trans-membrane spanning alpha helices with cytosolic N-

and C-termini. They are differentially expressed and reg-

ulated in various tissues and have different subcellular

localizations, and even different ROS products, i.e. super-

oxide versus hydrogen peroxide (reviewed in [16]). NOX1,

NOX2, and NOX5 appear to produce mainly superoxide

NOX4, mainly H2O2 [17]. All NOX isoforms have been

reported to bind to one or more membrane and/or cytosolic

proteins. p22phox appears to be a general binding partner for

NOX1-4 in the membrane. NOX1 and 2 also bind the small

GTPase, Rac. Moreover, NOX1 binds the cytosolic sub-

units, NOX organizer 1 (NOXO1) and NOX activator 1

(NOXA1), and NOX2 binds the respective homologues,

p47phox and p67phox, and also the cytosolic protein, p40phox

[18, 19]. NOX4 was reported to bind to the polymerase

(DNA-directed) delta-interacting protein 2 (PolDip2) [20].

In addition to these established NOX binding partners, the

tyrosine kinase substrate with 4/5 SH3 domains (Tks4/5)

[21, 22], and protein disulfide isomerase (PDI) were

recently suggested to bind to both NOX1 and 4 [23]. Upon

overexpression in cells, the C-terminus of NOX5 was

shown to interact with Hsp90, which may also bind to

NOX1 and 2 [24]. However, the physiologic relevance of

Fig. 1 The vascular NOX isoform-based NADPH oxidase com-

plexes. Cell or subcellular compartment membranes are shown in

gray, core proteins in yellow, activator binding proteins in green and

organizer binding proteins in blue. All the NOX isoforms shown are

membrane proteins and are localized in the plasma membrane (PM).

Additionally, NOX1 was found at the plasma membrane in caveolae

[147], NOX2 in membranes of phagosomes, and NOX4 in mitochon-

drial [182] and ER-membranes [191], as well as in the nucleus [97].

Little is known about subcellular localization of NOX5 other than the

plasma membrane, but a localization at the ER membrane has been

reported [29, 192]. NOX1, NOX2, and NOX4 are associated with

p22phox, but only NOX1 and NOX2 are regulated by the small

GTPase Rac. For its activation, the NOX1 enzyme complex requires

the assembly of NOX organiser 1 (NOXO1) and NOX activator 1

(NOXA1), but also forms complexes with p47phox and p67phox (not

shown). The NOX2 enzyme complex requires binding of p47phox,

p67phox, and optionally p40phox that can further support the activity. In

contrast to NOX1 and NOX2, NOX4 and NOX5 do not depend on

any of the ‘classical’ cytosolic NADPH oxidase subunits. Recently,

the protein polymerase (DNA-directed) delta-interacting protein 2

(Poldip2) was identified to bind and to increase the activity of NOX4.

Further, protein disulfide isomerase (PDI) [23] and a p47phox analogue

tyrosine kinase substrate with 4/5 SH3 domains (Tks4/5) have been

reported to bind and activate NOX1 and NOX4 [21, 22]. NOX4 is the

only isoform that produces hydrogen peroxide instead of superoxide

[17]. The NOX5 protein contains four N-terminal calcium-binding

sites that regulate activation of the enzyme. Activity of NOX5 can be

further supported by the binding of Hsp90 or Calmodulin to the

C-terminus of the protein [24]
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these new potential binding partners for NOX function

needs to be further analyzed (Fig. 1).

With respect to activity regulation, there are funda-

mental differences between the individual NOX catalytic

subunits. Most seem to be dynamically switched on and off

by either regulatory subunits (NOXA1 for NOX1 [25–27],

p67phox for NOX2 [28], and calmodulin for NOX 5 [29,

30]) or intramolecularly by the N-terminal EF hands that

bind free intracellular calcium (NOX5 and Duox1/2 [31]).

In contrast, NOX4 is constitutively active, and modulation

of its expression may thus be a major activity regulator.

The tools to validate the role of NADPH oxidase

in health and disease

During the validation of the involvement of a protein in a
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Fig. 2 Published NOX4 knock-out (KO) mouse models. a Wild-type

NOX4 has six transmembrane helices and cytosolic binding domains

for FAD and NADPH at the C-terminus. b Deletion of exons 1 and 2

should delete the complete NOX4 protein [32]. c Deletion of exon 4

only leaves the first transmembrane domain of NOX4. However,

hypothetically, this may also result in the formation of a splice variant

that contains both FAD and NADPH binding domains and thus has

remaining ROS-forming activity [43]. d Another knock-out was

generated by conditionally deleting exon 9 of NOX4 in cardiomyo-

cytes, thereby deleting the FAD binding domain, likely leaving a non-

functional enzyme [34]. e The fourth published NOX4 KO mouse was

generated by deleting exons 14 and 15 that refer to the NADPH

binding domain. This likely results in the expression of a non-

functional enzyme [33]
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inhibition or genetic deletion are frequently applied. In

addition, specific antibodies are required to confirm the

expressional regulation of NOX in a given cell or subcel-

lular compartment. With respect to NOX biology these

tools include genetic knock-out [32–35] and transgenic

animals [32, 36, 37], pharmacological inhibitors, and siR-

NAs (see Table 1).

NOX knock-out mouse models

NOX2 knock-out (KO) mice in which exons 2 and 3 are

deleted are commercially available [38], and no other

NOX2 KO model has been published. Two identical NOX1

KO mice carrying a deletion of exons 3–6 have been

published showing a mild hypotensive phenotype and

attenuated angiotensin II-induced hypertension [39, 40].

Unfortunately, no western blot data using tissues of these

mice to confirm the absence or size of a possibly residual

NOX1 protein have been published. An N-terminally

truncated or alternatively spliced NOX1 protein may still

be expressed [41]. However, it is unlikely that NOX1

splice variants lacking the binding sites for regulatory

subunits have any ROS-producing activity. With respect to

NOX4, there is more variety, and four NOX4 KO mouse

models have been published to date (Fig. 2). All differ in

the genetic strategy that was applied to generate them, i.e.

different exons were deleted (exons 1/2, exon 4, exon 9, or

exons 14/15) and constitutive, cell-specific or inducible

cre/lox systems were used. In future, this may also help to

elucidate the role of alternative splicing in mouse NOX4

biology [32–35]. Indeed, the possibility exists that, at least

in some tissues, the deletion of an early exon may lead to

truncated but active NOX4 variants and thus residual

NOX4 activity. Interestingly, an analogue to the human

NOX4 splice variant D [42] lacking exons 3–11 of murine

NOX4 has been found in kidney and colon. Importantly,

this 28-kDa NOX4 isoform (Fig. 2c) was still capable of

producing ROS, and the authors could blunt this activity by

selective siRNA silencing of this particular isoform [43].

This observation is supported by the findings that the iso-

lated NOX4 dehydrogenase domain is still able to reduce

substrates like certain artificial dyes [44]. Although not

shown directly for NADPH oxidases, it is known that fla-

vin-binding domains are able to reduce oxygen, thus

forming superoxide [45, 46]. Accordingly, the residual

NADPH- and flavin-containing protein seems to be suffi-

cient to catalyze ROS formation. Only in mice containing a

deletion of either exon 9 (FAD binding site) or 14/15

(NADPH binding site) is it unlikely that any residual

NOX4 protein could still produce ROS. It is discussed in

the field that potential shortened inactive NOX4 proteins

present in exon 9 or exons 14/15 deletions exert dominant

negative or positive effects on other NOX isoforms (e.g.,

NOX1 and NOX2) or NOX binding proteins. For example,

in the absence of NOX4, more free p22phox may be avail-

able to interact with NOX1/2. Such mechanisms could

affect both the expression and activity of other NOX iso-

forms. However, protein levels of other NOX isoforms

have not been reported to be altered in NOX4 KO mice

[33]. Further, if the activity of other NOX isoforms would

be influenced these mice would then be expected to show a

mixed phenotype of NOX4 and NOX1 and/or NOX2 KO

mice, e.g. reduced blood pressure and angiotensin II-

induced pressure response (NOX1; [39, 40]) or impaired

oxidative burst activity of circulating neutrophils (NOX2;

[38]). The neutrophil phenotype remains to be analyzed. A

dominant negative regulation of other NOX isoforms in

other cell-types of NOX4 KO cannot be completely ruled

out unless studied. The lack of an effect on blood pressure

by NOX4 deletion in mice [33] argues against such a

hypothetical mixed NOX1/4 phenotype.

Transgenic NOX4 overexpressing mouse models

Parallel to the NOX4 KO mice, three different transgenic

NOX4 (tgNOX4) overexpressing mice have been pub-

lished, two of a cardiomyocyte-specific manner [32, 36]

and the most recent in an endothelial-specific manner [37].

Surprisingly, the endothelial tgNOX4 mouse had a lower

systemic blood pressure compared to littermate wild-type

mice, which does not match the vascular phenotype of any

of the NOX4 KO mice, which are all reported to have

unchanged blood pressures [32–34]. Similar to the dis-

cussion above on bystander effects on other NOX isoforms

in NOX4 KO mice, NOX4 overexpression may also affect

both expression and activity of NOX1/2. For example, less

p22phox may be available to interact with NOX1/2. How-

ever, NOX1 was below detection limits in aortae from both

wild-type and tgNOX4 animals, and NOX2 levels were

unchanged [37]. Thus, dominant negative effects of a

transgenic expression of NOX4 on other NOX isoforms

cannot be excluded, but based on all available data are

unlikely. The discrepancy in blood pressure might be due

to non-physiologically high levels or different subcellular

localization of the overexpressed NOX4 compared to

endogenous NOX4, a general problem of transgenic over-

expression models. A similar subcellular localization of

tgNOX4 and endogenous NOX4 was shown in cardio-

myocytes [32], but no immunofluorescence data in the

endothelium have been published up to date.

siRNA mediated knock-down of NOX4

There are an increasing number of reports using siRNAs

approaches directed against NOX4 (Table 1). Unfortu-

nately, only a few of those siRNAs have been properly
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validated regarding their overall and NOX isoform specific-

ity. The necessity for confirming specificity was impressively

underlined in a recent study [47], which showed that out of

nine tested NOX4-directed siRNAs only six down-regulated

murine NOX4 mRNA levels. Moreover, five of those six also

down-regulated NOX1 mRNA levels. Another problem with

investigating the role of NOX4 using siRNAs is the lack of

specific antibodies against NOX4. Many if not all publica-

tions thus rely primarily on the down-regulation of NOX4

mRNA (see Table 1). These reports may need to be

re-evaluated, as it was also recently shown that NOX4 is

highly regulated at the post-transcriptional level, and there-

fore mRNA levels may not necessarily reflect protein levels

and ROS formation [48, 49].

Antibodies against NOX

The lack of specific, freely available and validated anti-

bodies against NOX1 and NOX4 represents one of the

biggest roadblocks in the field. As described above, the

validation of both siRNA-mediated down-regulation and

genetic NOX1 and NOX4 KO models depends on the

quality of the antibodies used for the characterization.

Furthermore, as long as the tissue distribution of NOX1

and NOX4 remains unclear, it is very difficult to predict or

estimate specific versus off-target effects of potential

therapeutic interventions. Several groups and companies

have attempted to generate polyclonal antibodies directed

against different NOX1 and NOX4 peptides or recombi-

nant proteins (Table 2). As these are polyclonal rabbit

antibodies, the access and the amount were always limited.

Also, several different protein sizes have been detected for

NOX4 by different antibodies in the same tissues. This may

be due to unspecificity of some antibodies, but also caused

by the high sensitivity of the NOX4 protein to lysis

conditions that may result in degradation and dephospho-

rylation [50]. So far, the polyclonal NOX4 antibodies by

the Lambeth and Shah groups are the most frequently used.

Of those antibodies which we have tested for isoform

specificity, we recommend to use the NOX4 antibody from

the Shah laboratory [51] and our NOX1 antibody [52]. In

2010, the successful generation of the first monoclonal

mouse antibodies against human NOX4 was reported [50];

they were used to analyze the tissue distribution, subcel-

lular localization, and structural features of NOX4 [17, 50].

Two of these antibodies (6B11 and 5F9) moderately block

constitutive NOX4 activity in cell-free activity assays [50].

Another monoclonal antibody derived from rabbit is

already commercially available, but no data have been

published using this antibody in tissues and cells other than

monocytes and macrophages [53]. These new antibodies

may be promising and freely available tools for the vali-

dation of NOX1 and NOX4 as a therapeutic target. For

NOX2, the commercially available antibody from Upstate

Technologies (now Millipore, USA) is reliable in our

hands.

Fig. 3 VAS2870 inhibits assembly of NADPH oxidases. NOX1
whole cell homogenates of CaCo-2 cells (native) were prepared and

ROS measured as described in presence or absence of VAS3947

(30 lM) [59]. Columns represent means ± SEM of n = 3 experi-

ments normalized to untreated controls. NOX2 membranes of human

neutrophils, Rac-2-enriched cytosol fraction as well as recombinant

p47phox and p67phox were treated with SDS to induce assembly of

these subunits as described [71]. VAS2870 (55 lM) or a solvent

control were added before (pre-) or after (post-) assembly of NOX2

with its subunits, and NADPH oxidase activity was measured using

the cytochome c reduction assay as described [71]. Columns represent

means ± SEM of n = 3 experiments normalized to untreated

controls. NOX4 whole-cell homogenates of A7r5 cells (native),

mainly expressing NOX4 compared to other NOX isoforms, were

prepared and ROS measured as described in presence or absence of

VAS3947 (30 lM) [59]. Columns represent means ± SEM of n C 5

experiments normalized to solvent treated controls. Untransfected

HEK293 cells (not shown) or HEK293 cells stably transfected with

human NOX4 (overexpr.) were treated with VAS2870 or solvent

control, and H2O2 release was measured using Amplex Red. Briefly,

Amplex Red (20 lM) and horseradish peroxidase (100 mU/ml) in a

phosphate buffer containing VAS2870 (10 lM) or equal volumes of

solvent as control were incubated for 10 min at 37 �C in the dark in a

96-well plate. Then, 105 native or human NOX4 overexpressing

HEK293 cells were added to the wells, and fluorescence was recorded

for 60 min in a Wallac Victor V (Perkin Elmer Life Sciences,

Waltham, MA, USA) or Spectramax M2 (Molecular Devices,

Sunnyvale, CA, USA) plate reader using 540/590 nm excitation/

emission wavelength filters. Columns represent means ± SEM of the

AUC of time-dependent fluorescence curves in quadruplicates of

n = 4 experiments normalized to non-VAS treated HEK293-NOX4

cells. NOX5 L012 (100 lM) was used to measure NOX5 activity in

HEK293 cells stably transfected with human NOX5 beta. VAS2870

(10 lM) or a solvent control was added to the cells in a 96-well plate,

and basal chemiluminescence was recorded in a Victor V plate reader

with 10 readings per well. Then, NOX5 was stimulated with phorbol

myristate acetate (PMA, 1 lM) and the calcium ionophore ionomycin

(1 lM), or HBSS as control was added (not shown), and chemilu-

minescence was measured for 20 readings per well for 60 min.

Columns represent means ± SEM of AUC of time-dependent

chemiluminescence in quadruplicates normalized to VAS2870 sol-

vent control. (***p \ 0.001, **p \ 0.01 are significantly different

from control values; n.s. p [ 0.05 not significantly different from

control values; 1-way ANOVA calculated with GraphPad Prism5 for

each individual experiment)
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Pharmacological NOX inhibitors

An important tool for the validation of potential therapeutic

targets and proof of principle studies is the pharmacolog-

ical inhibition by small chemical compounds. Several

compounds have been used for many years, including

apocynin, diphenylene iodonium (DPI), and 4-(2-amino-

ethyl)-benzensulfonylfluorid (AEBSF). However, it has

become apparent that these inhibitors are not specific for

NOX [1]. Apocynin cannot be used as selective NADPH

oxidase inhibitor due to its direct antioxidant and several

off-target effects [54–57]. DPI is a general flavoprotein

inhibitor, also inhibiting, for example, xanthine oxidase

and eNOS [54, 58, 59], as well as cholinesterases and a

calcium pump [60]. AEBSF is primarily a serine protease

inhibitor [61]. An ideal NOX-inhibitor would have to fulfil

several criteria: it should be active in cell-free conditions,

have no intrinsic antioxidant activity, not inhibit other

sources of ROS, and ideally be NOX isoform selective. To

be applied as a tool for target validation, it should be

effective in cells and tissues. For the development into a

therapeutic drug, ADME must permit in vivo application

and toxicity at an acceptable risk-to-benefit ratio. Recently,

several NADPH oxidase-specific and even isoform-specific

NOX inhibitors [62–66] have been published; we focus

here on the first NADPH oxidase, but not isoform selective

inhibitor, VAS2870 and its analogue VAS3947. For a

detailed overview of the other interesting compounds,

including the highly promising GKT136901, we refer to

other publications [1, 64, 67, 68].

The NADPH oxidase inhibitors VAS2870 and VAS3947

The first published inhibitors that resulted from a system-

atic screening effort for selective NADPH oxidase

inhibitors were the triazolo pyrimidines, represented by the

commercially available VAS2870 and its derivatives, such

as VAS3947 [69]. VAS3947 shows an improved solubility

but does not differ in its inhibition profile (unpublished

data). In contrast to formerly used NADPH oxidase

inhibitors, the VAS compounds do not show intrinsic anti-

oxidant activity nor do they inhibit other flavoproteins such

as eNOS and xanthine oxidase [59].

Validation of the VAS compounds

NADPH oxidase inhibition by VAS2870 and VAS3947

was observed in different cell-free assays including whole

cell homogenates of A7r5 (mainly expressing NOX4,

VAS3947 IC50 of 13 lM) and CaCo-2 (mainly expressing

NOX1, VAS3947 IC50 of 12 lM) cell lines [59]. The

ability to inhibit NOX2 can be concluded from experiments

using either intact HL-60 cells (VAS2870 IC50 of 1–2 lM)

or isolated membranes of human neutrophils containing

NADPH oxidase complexes formed from recombinant

cytosolic subunits and NOX2 in the presence of SDS

(VAS2870 IC50 of 10.6 lM) [70, 71]. Furthermore,

NADPH oxidase inhibition by VAS inhibitors could be

detected in various native, i.e. non-overexpressing, cells

expressing different NOX isoforms, including PMA-stim-

ulated human granulocytes (expressing NOX2) [72] and

DMSO-differentiated HL60 cells (mainly expressing

NOX2) [59], several liver carcinoma cell lines [73], ox-

LDL-treated human umbilical vein endothelial cells

(HUVEC) [74], and PDGF-stimulated primary murine

vascular smooth muscle cells [70]. In tissue samples,

VAS2870 inhibits ROS release from aortas of aged spon-

taneous hypertensive rats (SHR) [59]. Also in endothelium-

denuded rat tail arteries [75] and in hypoxic mouse brain

Fig. 4 The role of NOX1, NOX2, and NOX4 in disease models. NO,

generated by NO-synthases (NOS), activates soluble guanylate

cyclase (sGC) by binding to its reduced (Fe2?) heme moiety leading

to the formation of cGMP from GTP. cGMP mediates protective

effects, e.g. vasodilation and anti-inflammation. This signaling

pathway is most likely disturbed by NOX1-derived superoxide

(O2
-) as shown in Angiotensin II-induced hypertension and sponta-

neous hypertensive rats (SHR). Superoxide can either directly interact

with NO to form peroxynitrite or oxidize the essential NOS cofactor

tetrahydrobioapterin (BH4) and thus uncouple NOS. Uncoupled NOS

forms superoxide itself (not shown). Further, superoxide can oxidize

the Fe2? heme of sGC. Thereby, sGC becomes insensitive to NO.

These mechanisms most likely account, at least in part, for the acute

effects of increased NOX1 activity mediating endothelial dysfunction

and the chronic effects that are discussed to cause hypertension.

NOX2-derived superoxide is a major signaling molecule in innate

immunity mediating host defense. NOX4 is unlikely to directly

interfere with the NO/cGMP-signaling pathway as it releases

hydrogen peroxide (H2O2) and not superoxide. However, in high

concentrations, H2O2 causes acute cytotoxicity. This mechanism is

suggested to be involved in NOX4-mediated effects after acute

ischemic stroke, acute effects of pressure overload in heart, and

bleomycin-induced cytotoxicity. The lower chronic activity of NOX4

seems to be involved in angiogenesis and wound healing, and thus

rather protective
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slices [33], a significant decrease in ROS production was

observed after VAS2870 treatment. In a mouse brain

ischemia reperfusion model, NADPH oxidase activity was

inhibited by in vivo treatment with VAS2870 [33], and in a

zebrafish model of wound healing, DUOX was inhibited by

VAS2870 [76]. In summary, VAS2870 is a well-validated

NADPH oxidase inhibitor, as it shows no intrinsic anti-

oxidant activity, does not inhibit other flavoproteins,

inhibits NADPH oxidase-mediated ROS production in cell

free systems, cells, tissues and in vivo, but it is not NOX

isoform-specific. Very recently thioalkylation of cysteine

residues of the ryanodine receptor Ca2? channel (RyR1)

was discovered as a potential off-target effect of VAS2870

in sarcoplasmic reticulum vesicles isolated in glutathione

(GSH) free buffer [193]. The authors also show binding of

VAS2870 to low concentrations of GSH in vitro (10 lM).

It will be interesting to know to which extent thioalkylation

contributes in vivo to the mechanism of action of VAS2870

in the presence of physiological (mM) concentrations of

GSH. However, for further development of the compound

into a drug more extended off-target effects, ADME and

safety data are required, including acute and chronic tox-

icity determination. So far, it has only been shown that

VAS2870 does not inhibit ligand-induced platelet-derived-

growth factor receptor (PDGFR)-tyrosine phosphorylation

or PDGF-dependent phosphorylation of Erk1/2 or Akt [70].

Mechanism of action

In a cell-free system (membranes plus cytosol) VAS2870

only inhibited NOX2 activity when added prior to stimula-

tion of the active complex formation between NOX2 and its

cytosolic partners [71], whereas it showed no effect on

NOX2 activity when added after stimulation of the complex

formation with SDS (Fig. 3). This suggests that VAS2870

inhibits NADPH oxidase complex formation and can inter-

fere with the association of NOX and its binding proteins.

Surprisingly, the activities of NOX4 and NOX5, that are

believed to be independent of cytosolic binding proteins,

were also inhibited by VAS2870 when tested in native,

mainly NOX4-expressing, A7r5 cells and NOX4 or NOX5

overexpressing HEK-293 cells, respectively (Fig. 3). Also, in

vivo data suggest that VAS2870 does inhibit NOX4 in native

systems: in a mouse ischemic stroke model, we observed the

same protective effect of VAS2870 in the wild-type as by

deletion of NOX4. VAS2870 exerted no additional protec-

tive effect in NOX4 KO mice [33]. Additionally, in

endothelial cells from wild-type mice, pharmacological

inhibition with VAS2870 or siRNA against NOX4 inhibited

laminar shear stress-induced p38 MAPK activation mediated

by hydrogen peroxide [77], and the effect was the same in

endothelial cells from NOX4 KO mice (Santiago Lamas,

personal communication). Recent data suggest an

intramolecular interaction between unique motifs in C-ter-

minus and cytosolic B-loop of NOX4 that forms a tertiary

structure and activates H2O2 production [78, 79]. An intra-

molecular conformational change may also mediate the

calcium-induced activation of NOX5 [31]. Thus, for all NOX

isoforms, it is possible that inhibition of inter- or intramo-

lecular conformational changes is a common mechanism of

action of VAS2870. Thioalkylation of critical cysteine resi-

dues of NOX enzymes by VAS2870 was recently, e.g. the

cytosolic B-loop, suggested [193], but the molecular details

and binding sites of this remain to be elucidated.

Applying the tools: validated targets and possible

indications

It is still early days in NOX research, and certainly with

respect to translation. Nevertheless, what can already be said

about validated roles of NOX and NADPH oxidase in dis-

ease? And which of these roles may be translated into

therapeutic indications? Different NOX subunits have been

suggested to be implicated in cancer, hypertension, lung

fibrosis, stroke, heart failure, diabetes, and neurodegenerative

diseases [18]. Several principal ways may be differentiated

by which an excess of ROS leads to pathology: spatially

confined levels of ROS (e.g., in caveolae) that interfere with

nitric oxide’s (NO) vasoprotective signaling, and high levels

(local or systemic) that act, at least in part, independently of

NO and are directly cytotoxic, cause apoptosis (Fig. 4), or

disturb redox-sensitive signaling pathways.

Roles of NOX1, NOX2, and NOX4

NOX2 appears to be relevant in almost every disease

model tested. This may be connected to the role of NOX2

in the innate immune response [80], including to fungal

infections [81, 82] and adaptive immune response at the

level of both T cells and antigen-presenting cells [83, 84].

Thus, in any animal model involving a significant inflam-

matory response, NOX2 inhibition may lead to an

improvement. Whether this can be exploited in light of the

essential immune functions of NOX2 is an important

question. Importantly, even a small residual NOX2 activity

in X-linked chronic granulomatous disease (CGD) is suf-

ficient for a functional innate immune system [85].

However, it is unknown whether a partial pharmacological

inhibition of NOX2 will sufficiently suppress NOX2’s non-

CGD disease-related activity. In addition, chronic NOX2

inhibition might lead to paradoxical autoimmune responses

[86]. Rather, one may want to optimize any NOX inhibi-

tion approach by leaving NOX2 unaffected.

With respect to low and spatially confined ROS over-

production, NOX1 is a good candidate to migrate into
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caveolae and there cause eNOS uncoupling and endothelial

dysfunction, which is often associated with increased blood

pressure and enhanced platelet aggregation. Moreover, it

may be an early step in the development of atherosclerosis.

Indeed, basal blood pressure [39], angiotensin-induced

hypertension [39, 40], and endothelium-dependent relaxa-

tion in spontaneously hypertensive rats [87] depends—to

some degree—on NOX1. However, whether such chronic

disease indications would ever become realistic for NOX

inhibition is highly questionable unless sophisticated

patient stratification biomarkers would become available.

Phosphorylation of vasodilator-stimulated phosphoprotein

(P-VASP) could become such a marker [88].

With respect to higher levels of ROS that act, at least in

part, independently of NO and are directly cytotoxic or

cause apoptosis, NOX4 is well validated. NOX4 is induced

in ischemic stroke, in pressure overload of the heart, and in

a bleomycin model of lung epithelial toxicity resulting in

lung fibrosis. Whilst the interpretation of the stroke data

obtained with NOX4 KO mice is straightforward and was

recently confirmed in a tgNOX4 model of brain ischemia

showing larger infarct sizes [194], the pressure overload

and lung data are less so. In pressure overload, two models

have been applied, proximal aortic or thoracic aortic con-

striction (TAC), and abdominal aortic banding. Both

models differ in the time course by which they affect the

heart. The latter, less acute model allows for angiogenesis

to occur. NOX4 appears to play a double role by contrib-

uting to the cardiomyocyte damage (particularly in the

acute TAC model [32]) and by facilitating subacute angi-

ogenesis and promoting cardiac function (only observable

in the subacute abdominal aortic banding). This may

explain why opposing phenotypes were observed in both

NOX4 KO mouse models and different disease models. In

particular, the TAC model was tested in a cardiomyocyte-

specific KO and therefore leaves vascular cell-dependent

angiogenesis by definition unaffected. Thus, NOX4 might

both acutely damage the cardiomyocyte and subacutely

protect the heart by promoting angiogenesis. NOX4 also

promotes angiogenesis in vitro as shown using HUVEC

[89, 90] and ovarian cancer cells [91]. Whether these

effects may be exploited by defining an optimal time

window for NOX4 inhibition in situations of acute heart

failure or by interfering with tumor angiogenesis remains

to be seen, and it needs to be tested by TAC or cancer

models in a global KO animal and by applying NOX

inhibitors. The situation in the lung is similarly compli-

cated. Here, a role of NOX4 in the pathogenesis of hypoxic

pulmonary hypertension was suggested [92], but not con-

firmed in NOX4 KO mice [33]. Recent data showed that

NOX4 deficiency mediated either by NOX4 siRNA [93],

NOX4 inhibition, or NOX4 deletion [35] prevents lung

fibrosis. However, this observation may be model-

dependent as no protection from lung fibrosis was observed

in another NOX4 KO mouse using the same model

(Weissmann N. and Schmidt H.H.H.W., unpublished

observation). Bleomycin induces apoptosis and inflamma-

tion in mouse lung epithelial cells [35]. Thus, NOX4 may

be relevant in the bleomycin model, but this model may not

reflect the wide spectrum of human lung fibrosis (idio-

pathic, radiation, silicosis, systemic lupus erythematosus,

dermatomyositis, sclerodermia, rheumatoid arthritis,

pneumoconiosis, acute respiratory distress syndrome,

chronic heart failure, drug-induced). Thus, a model-inde-

pendent role of NOX4 in lung fibrosis needs to be tested in

different models of the disease. Even then, the clinical chal-

lenge of a life-long therapy with a NOX4 inhibitor would

remain. Importantly, all published NOX4 KO models lack a

basal phenotype. This is an important observation for the

characterization of NOX4 as a therapeutic target, as it indi-

cates that NOX4 inhibition would probably not cause severe

complications. The situation may be different when co-mor-

bidities occur and protective roles of NOX4 may well cause

side effects. From the current state of knowledge, such

potential side effects of sub-chronic and chronic NOX4

inhibition could arise from decreased angiogenesis.

In conclusion, according to the current knowledge, acute

ischemic stroke appears to be one of the most promising

and safest targets for NOX inhibition. It evades the risk of

chronic therapy and the rather double-edged role of NOX4

in heart failure and angiogenesis. Nevertheless, specific,

isoform-selective NOX inhibitors and reliable, freely

available antibodies will be key in elucidating the full

therapeutic potential of NOX in species other than mouse

and in different disease models.
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