Skip to main content
Log in

Cytoskeleton responses in wound repair

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Wound repair on the cellular and multicellular levels is essential to the survival of complex organisms. In order to avoid further damage, prevent infection, and restore normal function, cells and tissues must rapidly seal and remodel the wounded area. The cytoskeleton is an important component of wound repair in that it is needed for actomyosin contraction, recruitment of repair machineries, and cell migration. Recent use of model systems and high-resolution microscopy has provided new insight into molecular aspects of the cytoskeletal response during wound repair. Here we discuss the role of the cytoskeleton in single-cell, embryonic, and adult repair, as well as the striking resemblance of these processes to normal developmental events and many diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ERM:

Ezrin-radixin-moesin

SBMS:

Spectrin-based membrane skeleton

ECM:

Extracellular matrix

αSMA:

Alpha smooth muscle actin

References

  1. Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76(6):927–934

    Article  PubMed  CAS  Google Scholar 

  2. McNeil PL, Ito S (1989) Gastrointestinal cell plasma membrane wounding and resealing in vivo. Gastroenterology 96(5 Pt 1):1238–1248 (pii:S0016508589001551)

    PubMed  CAS  Google Scholar 

  3. McNeil PL, Ito S (1990) Molecular traffic through plasma membrane disruptions of cells in vivo. J Cell Sci 96(Pt 3):549–556

    PubMed  CAS  Google Scholar 

  4. McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19:697–731. doi:10.1146/annurev.cellbio.19.111301.140101

    Article  PubMed  CAS  Google Scholar 

  5. Bement WM, Yu HY, Burkel BM, Vaughan EM, Clark AG (2007) Rehabilitation and the single cell. Curr Opin Cell Biol 19(1):95–100. doi:10.1016/j.ceb.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  6. Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11(12):4339–4346

    PubMed  CAS  Google Scholar 

  7. Miyake K, McNeil PL, Suzuki K, Tsunoda R, Sugai N (2001) An actin barrier to resealing. J Cell Sci 114(Pt 19):3487–3494

    PubMed  CAS  Google Scholar 

  8. Mellgren RL, Zhang W, Miyake K, McNeil PL (2007) Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282(4):2567–2575. doi:10.1074/jbc.M604560200

    Article  PubMed  CAS  Google Scholar 

  9. Mellgren RL (2010) A plasma membrane wound proteome: reversible externalization of intracellular proteins following reparable mechanical damage. J Biol Chem 285(47):36597–36607. doi:10.1074/jbc.M110.110015

    Article  PubMed  CAS  Google Scholar 

  10. Bi GQ, Morris RL, Liao G, Alderton JM, Scholey JM, Steinhardt RA (1997) Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+ -regulated exocytosis. J Cell Biol 138(5):999–1008

    Article  PubMed  CAS  Google Scholar 

  11. Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263(5145):390–393

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609. doi:10.1038/ncb0703-599

    Article  PubMed  CAS  Google Scholar 

  13. Abreu-Blanco MT, Verboon JM, Parkhurst SM (2011) Cell wound repair in Drosophila occurs through three distinct phases of membrane and cytoskeletal remodeling. J Cell Biol 193(3):455–464. doi:10.1083/jcb.201011018

    Article  PubMed  CAS  Google Scholar 

  14. Togo T (2006) Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J Cell Sci 119(Pt 13):2780–2786. doi:10.1242/jcs.03006

    Article  PubMed  CAS  Google Scholar 

  15. McNeil PL, Vogel SS, Miyake K, Terasaki M (2000) Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 113(Pt 11):1891–1902

    PubMed  CAS  Google Scholar 

  16. Godin LM, Vergen J, Prakash YS, Pagano RE, Hubmayr RD (2011) Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing. Am J Physiol Lung Cell Mol Physiol 300(4):L615–L623. doi:10.1152/ajplung.00265.2010

    Article  PubMed  CAS  Google Scholar 

  17. Bement WM, Mandato CA, Kirsch MN (1999) Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr Biol 9(11):579–587 (pii:S0960-9822(99)80261-9)

    Article  PubMed  CAS  Google Scholar 

  18. Mandato CA, Bement WM (2001) Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J Cell Biol 154(4):785–797. doi:10.1083/jcb.200103105

    Article  PubMed  CAS  Google Scholar 

  19. Mandato CA, Bement WM (2003) Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing. Curr Biol 13(13):1096–1105 (pii:S0960982203004202)

    Article  PubMed  CAS  Google Scholar 

  20. Benink HA, Bement WM (2005) Concentric zones of active RhoA and Cdc42 around single cell wounds. J Cell Biol 168(3):429–439. doi:10.1083/jcb.200411109

    Article  PubMed  CAS  Google Scholar 

  21. Vaughan EM, Miller AL, Yu HY, Bement WM (2011) Control of local Rho GTPase crosstalk by Abr. Curr Biol 21(4):270–277. doi:10.1016/j.cub.2011.01.014

    Article  PubMed  CAS  Google Scholar 

  22. Bennett V (1982) The molecular basis for membrane—cytoskeleton association in human erythrocytes. J Cell Biochem 18(1):49–65. doi:10.1002/jcb.1982.240180106

    Article  PubMed  CAS  Google Scholar 

  23. Fievet B, Louvard D, Arpin M (2007) ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta 1773(5):653–660. doi:10.1016/j.bbamcr.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  24. Clark AG, Miller AL, Vaughan E, Yu HY, Penkert R, Bement WM (2009) Integration of single and multicellular wound responses. Curr Biol 19(16):1389–1395. doi:10.1016/j.cub.2009.06.044

    Article  PubMed  CAS  Google Scholar 

  25. Covian-Nares JF, Koushik SV, Puhl HL 3rd, Vogel SS (2010) Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling. J Cell Sci 123(Pt 11):1884–1893. doi:10.1242/jcs.066084

    Article  PubMed  CAS  Google Scholar 

  26. Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 11(23):1847–1857 (pii:S0960-9822(01)00587-5)

    Article  PubMed  CAS  Google Scholar 

  27. Bement WM, Forscher P, Mooseker MS (1993) A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 121(3):565–578

    Article  PubMed  CAS  Google Scholar 

  28. Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3(5):E117–E123. doi:10.1038/35074643

    Article  PubMed  CAS  Google Scholar 

  29. Martin P, Lewis J (1992) Actin cables and epidermal movement in embryonic wound healing. Nature 360(6400):179–183. doi:10.1038/360179a0

    Article  PubMed  CAS  Google Scholar 

  30. McCluskey J, Martin P (1995) Analysis of the tissue movements of embryonic wound healing—DiI studies in the limb bud stage mouse embryo. Dev Biol 170(1):102–114. doi:10.1006/dbio.1995.1199

    Article  PubMed  CAS  Google Scholar 

  31. Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4(11):907–912. doi:10.1038/ncb875

    Article  PubMed  CAS  Google Scholar 

  32. Brock J, McCluskey J, Baribault H, Martin P (1996) Perfect wound healing in the keratin 8 deficient mouse embryo. Cell Motil Cytoskelet 35(4):358–366. doi:10.1002/(SICI)1097-0169(1996)35:4<358:AID-CM7>3.0.CO;2-2

    Article  CAS  Google Scholar 

  33. Campos I, Geiger JA, Santos AC, Carlos V, Jacinto A (2010) Genetic screen in Drosophila melanogaster uncovers a novel set of genes required for embryonic epithelial repair. Genetics 184(1):129–140. doi:10.1534/genetics.109.110288

    Article  PubMed  CAS  Google Scholar 

  34. Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM (2010) Formins in development: orchestrating body plan origami. Biochim Biophys Acta 1803 2:207–225. doi:10.1016/j.bbamcr.2008.09.016

    Article  Google Scholar 

  35. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271(34):20246–20249

    Article  PubMed  CAS  Google Scholar 

  36. Magie CR, Pinto-Santini D, Parkhurst SM (2002) Rho1 interacts with p120ctn and alpha-catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 129(16):3771–3782

    PubMed  CAS  Google Scholar 

  37. Estes JM, Vande Berg JS, Adzick NS, MacGillivray TE, Desmouliere A, Gabbiani G (1994) Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation 56(3):173–181

    Article  PubMed  CAS  Google Scholar 

  38. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Natl Rev Mol Cell Biol 3(5):349–363. doi:10.1038/nrm809

    Article  CAS  Google Scholar 

  39. Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113(Pt 13):2455–2462

    PubMed  CAS  Google Scholar 

  40. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  PubMed  CAS  Google Scholar 

  41. Jahoda CA, Reynolds AJ (2001) Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 358(9291):1445–1448. doi:10.1016/S0140-6736(01)06532-1

    Article  PubMed  CAS  Google Scholar 

  42. Margadant C, Frijns E, Wilhelmsen K, Sonnenberg A (2008) Regulation of hemidesmosome disassembly by growth factor receptors. Curr Opin Cell Biol 20(5):589–596. doi:10.1016/j.ceb.2008.05.001

    Article  PubMed  CAS  Google Scholar 

  43. Juhasz I, Murphy GF, Yan HC, Herlyn M, Albelda SM (1993) Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol 143(5):1458–1469

    PubMed  CAS  Google Scholar 

  44. Raja SivamaniK, Garcia MS, Isseroff RR (2007) Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci 12:2849–2868 (pii:2277)

    Article  PubMed  CAS  Google Scholar 

  45. Litjens SH, de Pereda JM, Sonnenberg A (2006) Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 16(7):376–383. doi:10.1016/j.tcb.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  46. Margadant C, Raymond K, Kreft M, Sachs N, Janssen H, Sonnenberg A (2009) Integrin alpha3beta1 inhibits directional migration and wound re-epithelialization in the skin. J Cell Sci 122(Pt 2):278–288. doi:10.1242/jcs.029108

    Article  PubMed  CAS  Google Scholar 

  47. Grinnell F, Petroll WM (2010) Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 26:335–361. doi:10.1146/annurev.cellbio.042308.113318

    Article  PubMed  CAS  Google Scholar 

  48. Kopecki Z, Arkell R, Powell BC, Cowin AJ (2009) Flightless I regulates hemidesmosome formation and integrin-mediated cellular adhesion and migration during wound repair. J Invest Dermatol 129(8):2031–2045. doi:10.1038/jid.2008.461

    Article  PubMed  CAS  Google Scholar 

  49. Serrels B, Serrels A, Brunton VG, Holt M, McLean GW, Gray CH, Jones GE, Frame MC (2007) Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nat Cell Biol 9(9):1046–1056. doi:10.1038/ncb1626

    Article  PubMed  CAS  Google Scholar 

  50. Tang DD, Turner CE, Gunst SJ (2003) Expression of non-phosphorylatable paxillin mutants in canine tracheal smooth muscle inhibits tension development. J Physiol 553(Pt 1):21–35. doi:10.1113/jphysiol.2003.045047

    Article  PubMed  CAS  Google Scholar 

  51. Small JV, Resch GP (2005) The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr Opin Cell Biol 17(5):517–523. doi:10.1016/j.ceb.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  52. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867. doi:10.1038/ncb0807-858

    Article  PubMed  CAS  Google Scholar 

  53. Satish L, Kathju S (2010) Cellular and molecular characteristics of scarless versus fibrotic wound healing. Dermatol Res Pract 2010:790234. doi:10.1155/2010/790234

    PubMed  Google Scholar 

  54. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127(3):526–537. doi:10.1038/sj.jid.5700613

    Article  PubMed  CAS  Google Scholar 

  55. Parizi M, Howard EW, Tomasek JJ (2000) Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp Cell Res 254(2):210–220. doi:10.1006/excr.1999.4754

    Article  PubMed  CAS  Google Scholar 

  56. Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63(1):21–29

    PubMed  CAS  Google Scholar 

  57. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741

    PubMed  CAS  Google Scholar 

  58. Ronnov-Jessen L, Petersen OW (1996) A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 134(1):67–80

    Article  PubMed  CAS  Google Scholar 

  59. Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157(4):657–663. doi:10.1083/jcb.200201049

    Article  PubMed  CAS  Google Scholar 

  60. Danjo Y, Gipson IK (1998) Actin ‘purse string’ filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. J Cell Sci 111(Pt 22):3323–3332

    PubMed  CAS  Google Scholar 

  61. Grootjans J, Thuijls G, Derikx JP, van Dam RM, Dejong CH, Buurman WA (2011) Rapid lamina propria retraction and zipper-like constriction of the epithelium preserves the epithelial lining in human small intestine exposed to ischaemia-reperfusion. J Pathol 224(3):411–419. doi:10.1002/path.2882

    Article  PubMed  CAS  Google Scholar 

  62. Russo JM, Florian P, Shen L, Graham WV, Tretiakova MS, Gitter AH, Mrsny RJ, Turner JR (2005) Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology 128(4):987–1001 (pii:S0016508505000247)

    Article  PubMed  CAS  Google Scholar 

  63. Cowin AJ, Hatzirodos N, Teusner JT, Belford DA (2003) Differential effect of wounding on actin and its associated proteins, paxillin and gelsolin, in fetal skin explants. J Invest Dermatol 120(6):1118–1129. doi:10.1046/j.1523-1747.2003.12231.x

    Article  PubMed  CAS  Google Scholar 

  64. Lin CH, Waters JM, Powell BC, Arkell RM, Cowin AJ (2011) Decreased expression of Flightless I, a gelsolin family member and developmental regulator, in early-gestation fetal wounds improves healing. Mamm Genome 22(5–6):341–352. doi:10.1007/s00335-011-9320-z

    Article  PubMed  CAS  Google Scholar 

  65. Jang SI, Kalinin A, Takahashi K, Marekov LN, Steinert PM (2005) Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. J Cell Sci 118(Pt 4):781–793. doi:10.1242/jcs.01647

    Article  PubMed  CAS  Google Scholar 

  66. Wong P, Coulombe PA (2003) Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol 163(2):327–337. doi:10.1083/jcb.200305032

    Article  PubMed  CAS  Google Scholar 

  67. Woolley K, Martin P (2000) Conserved mechanisms of repair: from damaged single cells to wounds in multicellular tissues. Bioessays 22(10):911–919. doi:10.1002/1521-1878(200010)22:10<911:AID-BIES6>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  68. Wu X, Kodama A, Fuchs E (2008) ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 135(1):137–148. doi:10.1016/j.cell.2008.07.045

    Article  PubMed  CAS  Google Scholar 

  69. Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2(8):E239. doi:10.1371/journal.pbio.0020239

    Article  PubMed  Google Scholar 

  70. Kwon YC, Baek SH, Lee H, Choe KM (2010) Nonmuscle myosin II localization is regulated by JNK during Drosophila larval wound healing. Biochem Biophys Res Commun 393(4):656–661. doi:10.1016/j.bbrc.2010.02.047

    Article  PubMed  CAS  Google Scholar 

  71. Lesch C, Jo J, Wu Y, Fish GS, Galko MJ (2010) A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes. Genetics. doi:10.1534/genetics.110.121822

    PubMed  Google Scholar 

  72. Field C, Li R, Oegema K (1999) Cytokinesis in eukaryotes: a mechanistic comparison. Curr Opin Cell Biol 11(1):68–80 (pii:S0955-0674(99)80009-X)

    Article  PubMed  CAS  Google Scholar 

  73. Pollard TD (2010) Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22(1):50–56. doi:10.1016/j.ceb.2009.11.010

    Article  PubMed  CAS  Google Scholar 

  74. Pollard TD, Wu JQ (2010) Understanding cytokinesis: lessons from fission yeast. Natl Rev Mol Cell Biol 11(2):149–155. doi:10.1038/nrm2834

    Article  CAS  Google Scholar 

  75. Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, Kiehart DP, Edwards GS (2003) Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300(5616):145–149. doi:10.1126/science.1079552

    Article  PubMed  CAS  Google Scholar 

  76. Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA (2000) Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 149(2):471–490

    Article  PubMed  CAS  Google Scholar 

  77. Williams-Masson EM, Malik AN, Hardin J (1997) An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124(15):2889–2901

    PubMed  CAS  Google Scholar 

  78. Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y (1993) Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 120(5):1187–1195

    Article  PubMed  CAS  Google Scholar 

  79. Woolner S, Jacinto A, Martin P (2005) The small GTPase Rac plays multiple roles in epithelial sheet fusion–dynamic studies of Drosophila dorsal closure. Dev Biol 282(1):163–173. doi:10.1016/j.ydbio.2005.03.005

    Article  PubMed  CAS  Google Scholar 

  80. Bement WM, Benink HA, von Dassow G (2005) A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 170(1):91–101. doi:10.1083/jcb.200501131

    Article  PubMed  CAS  Google Scholar 

  81. Kamijo K, Ohara N, Abe M, Uchimura T, Hosoya H, Lee JS, Miki T (2006) Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol Biol Cell 17(1):43–55. doi:10.1091/mbc.E05-06-0569

    Article  PubMed  CAS  Google Scholar 

  82. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162(2):223–232. doi:10.1083/jcb.200212049

    Article  PubMed  CAS  Google Scholar 

  83. Yuce O, Piekny A, Glotzer M (2005) An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 170(4):571–582. doi:10.1083/jcb.200501097

    Article  PubMed  Google Scholar 

  84. Crawford JM, Harden N, Leung T, Lim L, Kiehart DP (1998) Cellularization in Drosophila melanogaster is disrupted by the inhibition of rho activity and the activation of Cdc42 function. Dev Biol 204(1):151–164. doi:10.1006/dbio.1998.9061

    Article  PubMed  CAS  Google Scholar 

  85. D’Avino PP, Savoian MS, Glover DM (2004) Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J Cell Biol 166(1):61–71. doi:10.1083/jcb.200402157

    Article  PubMed  Google Scholar 

  86. Neisch AL, Fehon RG (2011) Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Curr Opin Cell Biol 23(4):377–382. doi:10.1016/j.ceb.2011.04.011

    Article  PubMed  CAS  Google Scholar 

  87. Thomas GH (2001) Spectrin: the ghost in the machine. Bioessays 23(2):152–160. doi:10.1002/1521-1878(200102)23:2<152:AID-BIES1022>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  88. Mutha S, Langston A, Bonifas JM, Epstein EH Jr (1991) Biochemical identification of alpha-fodrin and protein 4.1 in human keratinocytes. J Invest Dermatol 97(3):383–388

    Article  PubMed  CAS  Google Scholar 

  89. Baines AJ (2010) The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244(1–4):99–131. doi:10.1007/s00709-010-0181-1

    Article  PubMed  CAS  Google Scholar 

  90. Jacinto A, Wood W, Woolner S, Hiley C, Turner L, Wilson C, Martinez-Arias A, Martin P (2002) Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr Biol 12(14):1245–1250 (pii:S0960982202009557)

    Article  PubMed  CAS  Google Scholar 

  91. Nodder S, Martin P (1997) Wound healing in embryos: a review. Anat Embryol (Berl) 195(3):215–228

    Article  CAS  Google Scholar 

  92. Modarressi A, Pietramaggiori G, Godbout C, Vigato E, Pittet B, Hinz B (2010) Hypoxia impairs skin myofibroblast differentiation and function. J Invest Dermatol 130(12):2818–2827. doi:10.1038/jid.2010.224

    Article  PubMed  CAS  Google Scholar 

  93. Abreu-Blanco MT, Verboon JM, Parkhurst SM (2011) Single cell wound repair: dealing with life’s little traumas. Bioarchitecture 1(3):114–121. doi:10.4161/bioa.1.3.17091

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Parkhurst lab members for their interest, advice, and comments on the manuscript. This work was supported by NIH Grant GM092731 to SMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Parkhurst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu-Blanco, M.T., Watts, J.J., Verboon, J.M. et al. Cytoskeleton responses in wound repair. Cell. Mol. Life Sci. 69, 2469–2483 (2012). https://doi.org/10.1007/s00018-012-0928-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0928-2

Keywords

Navigation