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Abstract The alpha-kinase family represents a class of

atypical protein kinases that display little sequence simi-

larity to conventional protein kinases. Early studies on

myosin heavy chain kinases in Dictyostelium discoideum

revealed their unusual propensity to phosphorylate serine

and threonine residues in the context of an alpha-helix.

Although recent studies show that some members of this

family can also phosphorylate residues in non-helical

regions, the name alpha-kinase has remained. During

evolution, the alpha-kinase domains combined with many

different functional subdomains such as von Willebrand

factor-like motifs (vWKa) and even cation channels

(TRPM6 and TRPM7). As a result, these kinases are

implicated in a large variety of cellular processes such as

protein translation, Mg2? homeostasis, intracellular trans-

port, cell migration, adhesion, and proliferation. Here, we

review the current state of knowledge on different mem-

bers of this kinase family and discuss the potential use of

alpha-kinases as drug targets in diseases such as cancer.
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Introduction

The reversible phosphorylation of proteins catalyzed by

protein kinases and phosphatases is one of the principal

regulatory mechanisms of signal transduction. Kinase

regulated signaling cascades control a large variety of

cellular functions and physiological processes such as

transcription, protein translation, DNA replication and

repair, cell adhesion, and cell migration as well as cell

growth and proliferation. As a consequence, defects in

protein phosphorylation are frequently associated with the

pathogenesis of human diseases including cancer, diabetes,

and inflammatory disorders. Owing to their well-defined

catalytic properties, kinases represent one of the most

favored groups of drug targets of the pharmaceutical

industry. To identify novel specific kinase inhibitors and

facilitate translational research into the use of such drugs, a

detailed understanding of the regulation and function of

kinases and their substrates is essential.

The protein kinase-like superfamily consists of a large

collection of proteins sharing functional properties that

allow them to catalyze the transfer of phosphate from ATP

to a variety of substrates including proteins and lipids [1].

The majority (90%) of protein serine/threonine and tyro-

sine kinases are classified as conventional protein kinases

(CPKs) since they possess a common architecture within

the catalytic domain. The remaining protein kinases (about

10%), which display little sequence similarity to CPKs, are

referred to as atypical protein kinases (APKs) and include

protein kinases related to histidine kinases from bacteria,
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phosphoinositide 3-kinase related kinases, and alpha-

kinases. Phylogenic studies point out that both CPKs and

APKs are broadly distributed in prokaryotes and eukary-

otes [2]. In addition, the ancient origin of both groups of

kinases suggest that APKs developed in parallel with CPKs

and do not simply represent modified CPKs. However, a

specific subfamily of APKs known as alpha-kinases is

exceptional in that it appeared recently in evolution and

therefore displays a distribution limited to eukaryotes [2,

3]. Scheeff and Bourne hypothesized that alpha-kinases

developed to provide a novel signaling capacity within

more complex eukaryotic organisms [2]. Here, we high-

light the research performed on alpha-kinases to date and

their potential involvement in human disease.

Alpha-kinases, a novel class of protein kinases

Alpha-kinases were first recognized as a novel class within

the protein kinase superfamily by Ryazanov and colleagues

[4] after earlier publications on the identification and

characterization of the Dictyostelium myosin heavy chain

kinase A (MHCK-A), B (MHCK-B), and C (MHCK-C) [5–

7]. Following the cloning of human, mouse, rat and Cae-

norhabditis elegans eukaryotic elongation factor-2 kinase

(eEF2K, previously known as CaMKIII) [8], sequence

analysis revealed a surprising lack of sequence similarity to

known protein kinases [4]. However, its catalytic domain

was found to be strikingly similar to that of the Dictyos-

telium MHCKs, suggesting the existence of a new class of

protein kinases with a novel catalytic domain structure [8].

The cloning of several alpha-kinases allowed for the rapid

identification of other members of this kinase family in

various genomes [1, 4] (Fig. 1).

The alpha-kinase family was named after the unique

mode of substrate recognition by its initial members, the

Dictyostelium heavy chain kinases. In contrast to the target

sites of CPKs, which are usually located within loops,

b-turns, or irregular structures [9], the substrate residues

targeted by MHCKs were found to be located within pro-

tein sequences that adopt an alpha-helical conformation

[10, 11]. However, recent in vitro data suggest that this is

not the consensus as multiple alpha-kinases were found to

also target residues in non-helical regions [12, 13]. Cur-

rently, alpha-kinases represent a family of atypical protein

kinase with a unique catalytic domain architecture

homologous to the Dictyostelium discoideum MHCKs.

Determinants for substrate recognition remain largely

unknown, although the necessity of a basic residue fol-

lowing the phosphoacceptor aminoacid has been shown

previously [14].

To date six human alpha-kinases have been identified. In

addition to eEF2K, the human genome encodes alpha-

kinase 1 (lymphocyte alpha-kinase, LAK or ALPK1),

alpha-kinase 2 (heart alpha-kinase, HAK or ALPK2), and

alpha-kinase 3 (muscle alpha-kinase, MAK or ALPK3),

initially named after the tissue in which they were identi-

fied [4]. The remaining two mammalian alpha-kinases,

TRPM6 and TRPM7, represent cation channels belonging

to the TRP ion channel family.

The alpha-kinases found in man are widely distributed

among vertebrates. In contrast to the other human alpha-

kinase containing proteins, eEF2K can also be found in

invertebrates such as the metazoan Trichoplax adhaerens

and in the diatom Thalassiosira pseudonana, indicating

that eEF2K represents the oldest alpha-kinase within the

vertebrates. According to the phylogenetic tree, eEF2K

appears to be most closely related to the Dictyostelium

discoideum MHCKs, especially to MHCK-B and MHCK-C,

consistent with the unique N-terminal localization of their

alpha-kinase domains (Fig. 1; Table 1). The four Dicty-

ostelium MHCKs share many structural and functional

features which is supported by their isolated position in

the phylogeny [7, 15–19]. The closely related Dictyoste-

lium alpha-kinase 1 (AK1) contains an N-terminal Arf-

GAP domain [19] and is, like the MHCKs, specifically

expressed by Dictyostelium discoideum, indicating taxon

specific gene duplications and recombination. As AK1 has

not been functionally characterized, it will not be dis-

cussed in depth. In the ciliate Tetrahymena thermophila,

gene amplification of alpha-kinases is evident as its gen-

ome encodes eight very similar alpha-kinases with an

N-terminal von Willebrand factor A motif. Another

striking example is the collection of alpha-kinases enco-

ded by the genome of Entamoeba histolytica which

includes many different domain architectures, including

proteins with SH3 and p53-like domains [20]. This phy-

logenetic tree contains a number of alpha-kinases which

are neither highlighted (Fig. 1) nor discussed in Table 1 as

they have no typical subdomain organization and have yet

to be characterized. Overall, we postulate that the diver-

gent family of alpha-kinases arose by independent taxon

specific gene duplications and recombination with a

variety of subdomains.

Elucidation of the crystal structure of the TRPM7 kinase

domain by Yamaguchi and colleagues led to the striking

observation that, despite a lack of sequence similarity, the

alpha-kinase catalytic core has an architecture related to

that of CPKs [21]. CPKs and alpha-kinases share a

remarkably similar N-terminal lobe that predominantly

folds into a curved b-sheet and contains the phosphate

binding loop (P-loop). The C-terminal lobe, however,

might appear to be more divergent although in both cases it

largely consists of alpha-helices and the activation loop can

easily be distinguished (Fig 2a). The interlobe cleft serves

as binding pocket for ATP and contains well-conserved key
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catalytic residues, such as invariant lysine- (K1648 in

TRPM7) and aspartate- (D1767, D1777 in TRPM7), that

are located in similar positions to position the ATP and

coordinate Mg2? ions (Figs. 2b and 3).

Although the ATP binding pockets of CPKs and alpha-

kinases are structurally very alike, the nature of inter-

actions between the kinase and base and sugar moieties of

ATP differ significantly and may also differ within the

alpha-kinase family itself [21]. One striking difference is

the localization of the conserved GXGXXG motif which,

in CPKs, is positioned within the catalytic P-loop and

serves to bind phosphates. Although alpha-kinases do

contain a similar glycine rich motif, it is not located

within the P-loop but in another loop proximal to the

C-terminus (Fig. 3). This loop structurally resembles the

activation loop in CPKs which is involved in peptide

substrate recognition, suggesting a similar function for the

glycine rich motif in alpha-kinases [21]. The different

modes of substrate recognition between alpha-kinases and

CPKs may explain the distinct set of alpha-kinase

substrates.

Another major distinction between alpha-kinases and

CPKs is the presence of a zinc-finger motif within the

C-terminus of alpha-kinases (Figs. 2c and 3). This motif

coordinates a zinc ion and is thought to play an important

role in stabilizing the tertiary structure of the catalytic core.

Indeed, mutation of the conserved cysteine residues

(C1812, C1816 in TRPM7) abrogates kinase activity [22,

23]. For an in-depth comparison between the structures of

alpha-kinases and CPKs, see review in [3].
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Fig. 1 Phylogenetic analysis of the alpha-kinase family. A PSI-Blast

[152] search was done, starting with the TRPM7 alpha-kinase domain

and using three iterations, to detect all sequenced alpha-kinases. For

those sequences that were detected with PSI-Blast, but that were not

detected as having an alpha-kinase domain by SMART [151],

reciprocal PSI-Blast searches were performed to ensure that they were

indeed homologous alpha-kinases. From the results, species were

included so that the major eukaryotic taxa with alpha-kinases would

be represented in the tree. Selected sequences were then aligned using

ClustalW2 [153]. A phylogenetic tree was generated using PHYML

[154] as implemented in Seaview [155]. Bootstrap values of the major

branches are indicated. The dashed line separates vertebrate from

invertebrate alpha-kinases. Red branches indicate N-terminal alpha-

kinases. Alpha-kinases with a typical subdomain architecture are

indicated in the colors that refer to the schematic representations in

Table 1
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Members of the alpha-kinase family

Myosin heavy chain kinases in Dictyostelium

Tight regulation of myosin II induced contractility is

essential for processes like cytokinesis and cell migration.

Myosin II regulation by light chain phosphorylation has

been described in many eukaryotic systems and is well

known to regulate activity of the myosin motor domain

[24]. A role for myosin II heavy chain phosphorylation in

regulating myosin II activity and function was initially

established in lower eukaryotes such as Dictyostelium and

Acanthamoeba [25–28]. The incorporation of phosphate

into the Dictyostelium myosin heavy chain, residues

Thr1823 [11], Thr1833 and Thr2029 [10], inhibits its ability

to self-assemble into bi-polar filaments, which is required

for the generation of contractile forces [26]. Mutagenesis of

these residues into non-phosphorylatable alanines (3*Ala)

induces overassembly of myosin II proteins, severely

affecting polarization, chemotaxis, and cytokinesis [28, 29].

In search of protein kinases responsible for heavy chain

phosphorylation in Dictyostelium, MHCK-A was identified

in actomyosin precipitations and shown to specifically

incorporate phosphate into the alpha-helical myosin heavy

chain [15]. Thereby, MHCK-A reduced the filament form-

ing properties of myosin II and inhibited overall myosin II

function [15, 26, 28, 30]. Cloning of MHCK-A revealed

three separate domains (Table 1). A coiled-coil N-terminal

region (*500aa) is involved in the heteromerization of the

kinase [31] and required for MHCK-A translocation to

actin-rich cell regions such as the cortex. Moreover, it

directly interacts with actin filaments in vitro which

increases its kinase activity *40-fold [32, 33]. More

recently, actin crosslinking was shown to be an additional

feature of this domain [34]. This suggests that, in addition to

driving myosin II disassembly, MHKC-A may also affect

the actin-myosin cytoskeleton by crosslinking actin fila-

ments. The second domain represents the catalytic domain

(*aa550–800), which showed no homology to known

eukaryotic protein kinases [5, 6]. Finally, the C-terminus

contains a stretch of seven WD-repeats that generally

coordinate multi-protein complex assemblies [35]. Steimle

and colleagues showed that the MHCK-A WD-repeat

domain binds directly to the myosin heavy chain and

thereby targets the kinase towards its substrate [36]. Neither

Fig. 2 Alpha-kinases: structure and conservation. a Crystal structure

of TRPM7 as determined by Yamaguchi et.al. [21]. N-terminus (N)

refers to residue G1579 in the human TRPM7 amino acid sequence.

Please note that this residue corresponds to G1577 in the mouse

sequence. Indicated are domains that resemble the N-terminal lobe

(containing P-loop), C-terminal lobe (containing activation loop) and

interlobe cleft of CPKs. Conserved residues within the alpha-kinase

family (Fig. 3) are indicated in red. b The well-conserved interlobe

cleft functions as ATP binding pocket. The ATP molecule (yellow) is

positioned within the binding pocket by multiple residues that are

well conserved within the alpha-kinase family (red). The indicated

residue identities refer to the human TRPM7 amino acid sequence

(Fig. 3). c Typical zinc-finger domain within the C-terminal lobe of

alpha-kinases. Residues that bind the zinc molecule (green) are well

conserved between the alpha-kinase family members (red). The

indicated residue identities refer to the human TRPM7 amino acid

sequence (Fig. 3)

b

The alpha-kinase family 879



the N-terminal coiled-coil domain nor the WD-repeats are

required for catalytic activity [6]. However, these domains

are essential in substrate phosphorylation which is strongly

enhanced by autophosphorylation of the region that links

the coiled-coil region to the catalytic core (aa500–550)

[6, 37].

Apart from MHKC-A, the Dictyostelium genome

encodes three additional myosin heavy chain kinases,

MHCK-B, MHCK-C, and MHCK-D [7, 16, 38], with a

catalytic domain very similar to that of MHCK-A. Each of

these MHCK isoforms contains a C-terminal WD domain,

but in contrast to MHCK-A, MHCK-B, and MHCK-C lack

the large N-terminal coiled-coil region (Table 1). Although

MHCK-D remains functionally uncharacterized to date, it

does contain this coiled-coil region and, according to

sequence similarity, it appears to be the closest relative of

MHCK-A (Fig. 1). MHCKA, B, and C share many bio-

chemical features. Kinase activity is regulated by

autophosphorylation [17, 37, 39] and all three specifically

target threonine residues within the myosin heavy chain in

<40%

>40%

>60%

>80%

Conservation

Beta-sheet

Alpha-helix

Fig. 3 Sequence alignment of Dictyostelium and human alpha-

kinases. Dictyostelium and human alpha-kinase amino acids

sequences corresponding to the human TRPM7 alpha-kinase domain

(G1579-T1830) were aligned using ClustalW2 sequence alignment

software [153]. Names and species, Dictyostelium discoideum (Dd),

Homo sapiens (Hs) are indicated on the left. Conservation of specific

residues within this group of alpha-kinases, corrected for missing

sequences, is indicated by shadings of blue and a barchart supporting

the alignement (0 not conserved, 100 fully conserved). Red bars
represent fully conserved residues and are indicated red in Fig. 2.

Sequences representing the P-loop and GXGXXG motif are indicated

on top. The indicated residue identities refer to the human TRPM7

amino acid sequence
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vitro, which results in myosin II filament disassembly [7,

16–19]. MHCK-A, B, and C triple gene knockouts induce

myosin II overassembly and severely affect cytokinesis,

resembling the phenotypes observed when MHC phos-

phorylation was inhibited by substituting the targeted

residues with alanine (3*Ala) [19, 28]. Overexpression of

MHCK-A, B, and C, on the other hand, also results in

impaired cytokinesis by hyperphosphorylation of myosin II

inducing myosin II filament disassembly [30, 39, 40].

In spite of these similarities, the spatial regulation of the

MHCK isoforms differs significantly, indicating specific

functions for each isoform. Both MHCK-A localization

and activity appear to be actin dependent [32, 41, 42]. In

response to stimulation by chemoattractants such as cAMP,

MHCK-A is enriched in the actin-rich leading edge of the

cell where it disassembles myosin II filaments [41].

MHCK-A might thus provide a mechanism by which

myosin II is locally inactivated, allowing actin based cel-

lular protrusions such as lamellipodia and phagocytic cups

to be formed. Hence, MHCK-A plays an important role in

maintaining cell polarity, chemotaxis and cell migration

[29]. Both MHCK-B and C are enriched in the contractile

ring during late cytokinesis, driving myosin II disassembly

for efficient cell division. In addition, MHCK-C is enriched

in the posterior region of moving cells where it could play a

role in the disassembly of the actomyosin cytoskeleton and

myosin II recycling required for proper cell body translo-

cation [16, 17, 19, 38]. Notably, in contrast to MHCK-A,

MHCK-C distribution fully depends on myosin II [16, 17].

Altogether, these spatial differences indicate specific roles

for MHCK isoforms in fine tuning the Dictyostelium

actomyosin cytoskeleton.

vWFa-kinase

vWFa-kinase (vWKa) is one of the more recently identi-

fied alpha-kinases in Dictyostelium, carrying a kinase

catalytic domain (aa398–592 in Dictyostelium) similar to

the MHCKs. In contrast to MHCKs, however, it is broadly

expressed among invertebrates (Fig. 1), it phosphorylates

both threonine and serine residues [14], and has a distinct

domain organization (Table 1). It lacks the C-terminal

WD repeat domain and, consequently, the kinase domain

is located at the extreme C-terminus (Table 1). Further-

more, the protein contains an N-terminal vWFa motif

(aa121–233 in Dictyostelium) [40]. This domain is named

after its homology to von Willebrand factor A, a plasma

glycoprotein essential for proper blood clotting. The vWFa

domain mediates receptor-ligand binding, protein–protein

interactions, and multiprotein complex formation. Proteins

containing a vWFa domain are involved in cell adhesion

such as integrin–collagen interactions, but also in DNA

repair and transcription (reviewed in [43]). Like for the

heavy chain kinases in Dictyostelium, overexpression of

vWKa leads to multinucleation, indicative of defects in

cytokinesis due to disregulation of myosin II function [40].

Significant myosin II overassembly was observed after

vWKA gene disruption, resembling the effect of MHCK

gene disruption and introducing non-phosphorylatable

threonine–alanine mutations into the myosin heavy chain

(3*Ala) [19]. This is consistent with the notion that vWKa

could be an additional myosin heavy chain kinase. How-

ever, several observations are in conflict with this

hypothesis. First, overexpression of vWKa increased

myosin II assembly [40]. Second, vWKa is unable to

phosphorylate the myosin II heavy chain in vitro, although

it autophosphorylates and has intrinsic catalytic activity

[40]. Surprisingly, both overexpression and gene disrup-

tion of vWKa increased the myosin II protein levels by

means of an unknown mechanism [40]. Altogether, these

results do indicate a role for vWKa in the regulation of

myosin II but not by direct phosphorylation of its heavy

chain. vWKa localizes to contractile vacuoles, organelles

involved in osmoregulation, and to the perinuclear golgi

apparatus [40]. Hence, it is highly unlikely that, although

varying vWKa expression levels affects growth kinetics,

cell division, and development, its function is restricted to

the dedicated functions of the previously identified

MHCKs.

eEF2-kinase

Eukaryotic elongation factor-2 kinase (eEF2K) is a regu-

lator of global protein synthesis. It phosphorylates

eukaryotic elongation factor-2 (eEF2), a ribosome binding

protein that catalyzes the movement of ribosomes along the

mRNA during translation in most eukaryotic cells [44].

Phosphorylation of eEF2 on threonine residues Thr56 and

Thr58 decreases its affinity for ribosomes and inhibits the

global rate of protein synthesis [45–49]. As eEF2K activity

is Ca2? and calmodulin dependent, it was initially classi-

fied as a member of the Ca2?/calmodulin-dependent

protein kinase family [48, 50]. However, sequence analysis

revealed no homology to the other Ca2?/calmodulin kina-

ses. Instead, its sequence showed remarkable homology to

the previously described Dictyostelium MHCKs [8].

Additionally, eEF2K phosphorylates threonines whereas

the other members of the CaM-kinase family predomi-

nantly target serine residues [48]. Of note is a publication

by Jorgensen and colleagues showing that the targeted

threonine residues are not located within an alpha-helix, as

was determined by crystallography on the yeast eEF2 [12].

eEF2K comprises three functional domains (Table 1).

The catalytic domain (aa100–350) is flanked at its N-ter-

minus by a calmodulin binding domain (aa51–96), while its

C-terminus contains the eEF2 binding domain (aa521–725)
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required for substrate targeting [23, 51]. Importantly, cat-

alytic activity of eEF2K requires the binding of calmodulin

to the calmodulin binding domain.

Since protein translation consumes a large amount of

energy, the cell must carefully balance the activity of

eEF2K with its need for protein translation. Therefore,

eEF2K activity is modulated through multisite phosphor-

ylation by kinases downstream of mTOR and AMPK, the

central sensors of cellular nutrients and energy levels [52–

56]. In the presence of sufficient nutrients, its kinase

activity towards eEF2 is suppressed. Upon nutrient depri-

vation and hypoxia, the suppression of eEF2K is relieved

which results in the phosphorylation of eEF2 and, conse-

quently, inhibition of protein synthesis (reviewed in [55]).

eEF2K appears to be a major regulator of autophagy

downstream from mTOR, which, besides the common

degradation of organelles, serves as a cellular coping

strategy to deal with long-term nutrient deprivation [57,

58]. When cells are deprived of nutrients, they will con-

sume their own cytoplasmic content to obtain the energy

needed to survive [59, 60]. During this state of metabolic

stress, protein synthesis is inhibited by increased phos-

phorylation of eEF2 which terminates protein elongation

[58, 61]. This may be further enhanced by a decrease in pH

due to hypoxia which dramatically increases eEF2K

activity [62]. As a consequence, a cell becomes more

resistant to metabolic stress. An increased eEF2K activity

has been observed in many cancers and may promote

cancer cell survival, tumor growth and metastasis, pro-

cesses that require the cell to cope with hypoxia and

nutrient deprivation [57, 58, 63]. Moreover, silencing of

eEF2K was shown to sensitize tumor cells to treatments

that induce energy stress and cytotoxicity [64].

Another link between eEF2K and cancer is the close

relationship between eEF2/eEF2K activity during cell-

cycle progression (reviewed in [65]); during G1-phase, the

stage in which cell growth takes place, eEF2K is inactivated

and, consequently, eEF2 becomes active permitting protein

synthesis. During DNA replication in the S-phase, eEF2K

slowly dephosphorylates to fully inhibit eEF2 at the start of

the G2 and M phase, where proofreading and mitosis take

place. The common explanation for this decline in protein

synthesis is that cellular energy sources are to be redirected

from protein synthesis to proofreading and the actual cell

division. Various reports describe delayed cell cycle pro-

gression or a complete arrest by deregulation of eEF2 or

eEF2K [63, 66–68], which makes the eEF2/eEF2K pathway

an attractive drug target for cancer treatment.

Alpha-kinase 1, 2 and 3

The vertebrate alpha-kinase 1, 2, and 3 were initially

named after the tissues in which they were identified by

Ryazanov and colleagues [4, 69]; lymphocyte alpha-

kinase, heart alpha-kinase, and muscle alpha-kinase,

respectively. All three carry an alpha-kinase domain at

their extreme C-terminus that is particularly well conserved

between ALPK2 and ALPK3 (Table 1 and Fig. 1).

ALPK1 has been implicated in epithelial cell polarity

and exocytic vesicular transport towards the apical plasma

membrane [70]. ALPK1 resides on golgi-derived vesicles

where it phosphorylates myosin IA, an apical vesicle

transport motor protein that regulates the delivery of ves-

icles to the plasma-membrane [70]. To our knowledge, no

functional studies have been performed on ALPK2.

Expression of ALPK3, also known as myocytic induction/

differentiation originator (Midori), is restricted to fetal and

adult heart and adult skeletal muscle. Overexpression of

ALPK3 enhances differentiation of murine embryonic

carcinoma cells into cardiomyocytes. As ALPK3 localizes

to the nucleus, it is thought to act as a transcriptional

regulator implicated in early cardiac development [71].

TRPM6 and TRPM7

Transient receptor potential (TRP) cation channels make up

a large protein superfamily. Members of this family func-

tion as cellular sensors responding to stimuli such as

temperature, taste, touch, pain, osmolarity, and mechanical

stress [72–74]. TRPM6 and TRPM7 belong to the

melastatin-related subfamily of TRP (TRPM) channels,

which represents a group of eight proteins displaying a wide

range of structural features, expression patterns, ion selec-

tivity, gating properties, and functions [75]. Both TRPM6

and TRPM7 are unique in the sense that they encode

divalent cation channels fused to an alpha-kinase domain.

As these unusual channel-kinases have caught the attention

of electrophysiologists worldwide, their channel properties

have been studied in great detail. However, involvement of

the alpha-kinase domain in regulating channel function

remains subject to controversy. Before going into the pro-

posed functions of the alpha-kinase domain within these

channel-kinases, we will first discuss the regulation and

function of their channel domains in cellular physiology.

Like other TRP channels, TRPM6 and TRPM7 possess

six transmembrane domains flanked by large N- and

C-terminal tails that reside in the cytosol. Within the

N-terminal tail, four stretches of amino acids are present

which are conserved between the different members of the

TRPM subfamily but whose function is poorly understood

[75]. Proximal to the last transmembrane domain in the

C-terminal tail, there is the so-called TRP box, a conserved

stretch of amino acids present in all TRP ion channels. In

addition, there is a coiled-coil domain and, at the extreme

C-terminus, the alpha-kinase domain [3] (Table 1). The

transmembrane domains organize within the plasma
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membrane to form the channel with the pore formed by a

short stretch of amino acids between the fifth and sixth

transmembrane domains [76]. Functional channels are

most likely organized as either homo- or heterotetramers

which have their unique electrophysical properties and

functions [77–79]. The exact mechanism of tetramerization

is unknown. However, it has been demonstrated that sev-

eral TRP channels including TRPM2 and TRPM8 require

the presence of the coiled-coil domain for the assembly of

active channels [80, 81].

TRPM7 is highly similar to TRPM6 displaying 50%

identity at the amino acid level. Moreover, the kinase

domains share 75% of their aminoacid sequence. Both

channels are highly permeable to Mg2? and Ca2? [82, 83].

In spite of these similarities, these proteins appear to be

functionally non-redundant. While TRPM7 is ubiquitously

expressed, TRPM6 expression is mostly limited to brain,

intestine, and kidneys [84]. Knockout studies have shown

that both TRPM6 and TRPM7 are essential in development

as the loss of these channels is embryonic lethal [85, 86].

Moreover, overexpression of TRPM6 cannot rescue cell

growth arrest due to the ablation of TRPM7 [79]. Finally,

mutations in TRPM6 cause familial hypomagnesemia with

secondary hypocalcemia, a disease characterized by defects

in renal and intestinal Ca2? and Mg2? absorption which

progresses despite the expression of TRPM7 in both the

kidney and intestine [87, 88].

The importance for TRPM6 in maintaining whole body

Mg2? levels, e.g. by renal Mg2? reabsorbtion, is widely

accepted [82, 84, 89]. The role of TRPM7 in Mg2?

homeostasis, however, remains controversial. Various

publications have implicated TRPM7 in the regulation of

cellular Mg2? levels [83, 90, 91]. However, there is now

increasing evidence that, in contrast to TRPM6, the

TRPM7 channel might primarily be implicated in Ca2?

signaling [86, 92, 93]. Initially, TRPM7 was thought to

mediate cellular Mg2? homeostasis based on the growth

arrest in TRPM7-deficient DT-40 B cells, which could be

restored by culturing these cells in media supplemented

with high Mg2? [79, 83, 91]. However, in other cell types

such as retinoblastoma cells, defects in cell growth due to

loss of TRPM7 expression could not be reverted by the

addition of Mg2? [92]. Several investigations implicate

TRPM7 in a number of other cellular functions including

anoxic cell death, exocytosis, mechanotransduction, cell

proliferation, cell adhesion, and cell migration [93–100],

processes that depend on TRPM7-mediated Ca2? influx

rather than involving Mg2?. Importantly, it was recently

shown that TRPM7 was not essential for maintaining Mg2?

levels in mice TRPM7 knockout thymocytes [86]. The

current opinion is that TRPM7 regulates local intracellular

Ca2? concentrations and thereby affects the functioning of

Ca2? sensitive proteins in its close proximity [94, 98, 101].

Channel opening is regulated via multiple mechanisms.

A unique feature of TRPM6 and TRPM7 channels is their

inhibition by intracellular Mg2? [82, 83]. Furthermore,

cation conductance is regulated through signaling by

G-protein coupled receptors such as the bradykinin recep-

tor [102]. Additionally, TRP channels are well-known

mechanosensors. Their conducting properties are modu-

lated upon application of mechanical force which result in

a variety of cellular responses [103–105]. Consistently,

TRPM7 channel opening is regulated by mechanical force

[94, 96, 106].

The role of the TRPM6 and TRPM7 alpha-kinase

domain in mediating the influx of cations is still under

debate. Both alpha-kinase domains have been suggested to

function as intracellular Mg2? sensors that mediate channel

permeability [91, 107–110]. Additionally, the RACK1

scaffold protein inhibits Mg2? conductance in a autopho-

sphorylation-dependent manner through binding of the

TRPM6 kinase domain [111]. Furthermore, the repressor of

estrogen receptor activity (REA) inhibits TRPM6 channel

opening in a similar manner. Of interest is the fact that the

interaction between REA and the alpha-kinase domain can

be abolished by estrogens, suggesting involvement of

estrogens in Mg2? homeostasis [112]. In contrast, phos-

photransferase activity appears to be unrelated to channel

opening in the case of TRPM7. For instance, TRPM7

channels where the entire kinase domain has been deleted,

remain sensitive to inhibition by Mg2?- and Mg2?-nucle-

otide complexes [91, 110]. Furthermore, point mutations in

the TRPM7 kinase domain that abolish phosphotransferase

activity do not appear to affect TRPM7 channel gating [93]

and have only a minor effect on the inhibition of TRPM7

channel activity by Mg2?- and Mg2?-nucleotides [113].

Hence, the consensus in the field is that the kinase activity

is not essential for opening of TRPM7 channels [114].

Instead, our work and that of others points towards an

alternative model where the opening of TRPM7 channels

affects kinase function. Since Ca2? does not directly

influence kinase activity [115], we propose that a local

increase in Ca2? concentration regulates the recruitment/

targeting of TRPM7 substrates [116].

Rather than modulating channel opening, the TRPM7

kinase domain transmits intracellular signals via the

phosphorylation of downstream targets such as annexin 1

in a Ca2?-dependent manner. Annexin 1, a member of the

annexin phospholipid binding family, binds Ca2? which

leads to a conformation change exposing the target residue

to the TRPM7 kinase domain [117]. Although annexins are

known to be involved in Ca2?-dependent actin dynamics

and membrane subdomain organization [118], the physio-

logical relevance of the TRPM7-annexin 1 interaction

remains to be elucidated. TRPM7 function has been linked

to vascular remodeling. Stimulation of vascular smooth
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muscle cells (VSMC) by the vasoactive, G-protein coupled

receptor agonist bradykinin increases TRPM7 expression,

autophosphorylation (indicative of kinase activity [116]),

channel opening, annexin 1 activity, and cell migration

[119, 120]. These findings appear to connect TRPM7

channel opening (Mg2? and Ca2? influx), kinase activity,

and substrate targeting with cytoskeletal remodeling.

We recently reported the Ca2?- and kinase dependent

interaction between TRPM7 and the actomyosin cytoskel-

eton [93]. Very similar to the Dictyostelium myosin II

heavy chain kinases, TRPM6 and TRPM7 are capable of

phosphorylating the three mammalian alpha-helical

assembly domains of the myosin II heavy chain isoforms,

MHC-A, B, and C, at least in vitro [13]. Consequently,

kinase activity may induce myosin II filament disassembly,

affecting stress fiber formation and reducing actomyosin

contractility [121, 122]. Apparently, this property of alpha-

kinases has been preserved during evolution. However,

unlike the Dictyostelium MHCKs, we have shown that

TRPM6 and TRPM7 can also phosphorylate the non-heli-

cal C-terminus of MHC-B and MHC-C, which suggests

that residues phosphorylated by these mammalian alpha-

kinases are not exclusively positioned within an alpha-

helix [13].

Actomyosin contractility plays a central role in regu-

lating the assembly and disassembly of adhesive contacts,

such as focal adhesion, and invasive adhesions, such as

podosomes [123–125]. The formation of podosomes

requires a local inhibition of contractility [126]. Accord-

ingly, activation of TRPM7 in neuroblastoma cells results

in Ca2?- and kinase-dependent podosome formation sug-

gesting a close link between TRPM7, cytoskeletal

dynamics, and cell adhesion [93]. Wei and colleagues

consistently showed that TRPM7 contributes to local Ca2?

flickers in response to mechanical stimulation, which

mediate cell polarization and steer migration [94]. In

conclusion, TRPM7 appears to act as a mechanosensor that

conducts Ca2? upon exposure to mechanical stress which

elevates local Ca2? levels allowing Ca2?- and kinase-

dependent cytoskeletal rearrangements to take place [93,

101].

Regulation of (alpha-) kinase activity

Over the years, many different mechanisms have been pro-

posed to regulate the activity of CPKs. In general, kinases

adopt different conformations in their inactive and active

states [127]. For several kinases, the inactive state is stabi-

lized by intramolecular interactions with regulatory domains

[128, 129]. Transition to the active state can occur by

association with regulatory proteins, lipids, or second mes-

sengers such as cAMP [128, 130, 131], (de)phosphorylation

by upstream phosphatases and kinases [129, 132], or auto-

phosphorylation [133]. In addition to directly influencing the

catalytic activity of the kinase, regulatory domains may also

serve as a docking site to recruit substrates, which are

subsequently phosphorylated by the kinase [134].

Initial studies in understanding the molecular mecha-

nisms controlling the catalytic activity of alpha-kinases

have revealed that members of this kinase family are reg-

ulated by mechanisms analogous to CPKs. The regulation

of eEF2K has been the most extensively studied [52–56].

Depending on nutrient availability, eEF2K phosphorylates

eEF2 leading to an inhibition of protein synthesis. This

system is controlled by several protein kinase cascades that

lead to the phosphorylation of eEF2K which can either

inhibit or activate its catalytic activity. Two major kinases

involved in the control of metabolic processes are mTOR

and AMPK, both of which control eEF2K activity [53–56,

135]. Under conditions of nutrient deprivation, eEF2K

activity remains high to suppress protein translation, and

this occurs through the phosphorylation of Ser398 by

AMPK, a kinase whose activity is induced by high AMP/

ATP ratios in the cell [54]. Elevation of cAMP in cells also

inhibits protein translation but this pathway involves the

phosphorylation of eEF2K by PKA [136]. In contrast to

AMPK, PKA phosphorylates Ser499 of eEF2K leading to

increased enzymatic activity [137].

Other stimuli such as stress, growth factors, and mito-

gens must ensure the inhibition of eEF2K to promote

protein translation. Growth factors activate a rapamycin-

sensitive pathway involving the activation of p70S6K by

mTOR and a rapamycin-resistant pathway where ERK1/2

activate p90RSK [138]. Both p70S6K and p90RSK phos-

phorylate Ser366 which correlates with a decrease in

eEF2K activity and eEF2 phosphorylation in cell lysates.

Cellular stress induces a set of protein kinase cascades

including ones involving members of the p38 MAPK

family. These signaling pathways target eEF2K leading to

its phosphorylation on Ser359 and Ser377 [139, 140].

During mitosis, CDC2 phosphorylates Ser359 of eEF2K

[52]. The phosphorylation of these residues correlates with

dephosphorylation of eEF2 and protein translation in cells.

Thus, eEF2K is a target of multiple protein kinase cascades

to control protein synthesis under various cellular condi-

tions. It remains unknown to what extent other alpha-

kinases are also phosphorylated by protein kinases to

regulate their activity.

In addition to phosphorylation, eEF2K is activated

allosterically by Ca2?/calmodulin which binds a region

directly N-terminal of the catalytic domain. The dependence

of eEF2K on Ca2?/calmodulin for optimal catalytic activity

led scientists to originally call this protein CaMKIII. Phos-

phorylation of activating residues by autophosphorylation

or ‘upstream’ protein kinases generates an eEF2K activity
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that is less dependent on Ca2?/calmodulin [141]. However,

other signaling cascades modulate the binding of Ca2?/

calmodulin to eEF2K to regulate protein synthesis. Insulin

activates a rapamycin-sensitive mTOR pathway leading to

the phosphorylation of Ser78 nearby the calmodulin binding

domain [53]. Phosphorylation of this residue inhibits the

binding of Ca2?/calmodulin to eEF2K preventing its acti-

vation [53]. Finally, Ryazanov and colleagues postulated

that eEF2K is activated at pH \7.4, also occurring during

hypoxia and ischemia, and might thus represent another

route in which metabolic stress inhibits protein synthesis

[62].

Two regulatory mechanisms appear common to several

members of the alpha-kinase family: (1) autophosphory-

lation, and (2) a requirement of additional domains beyond

the catalytic core for efficient substrate phosphorylation.

All alpha-kinases studied to date including MHCKs,

eEF2K, TRPM6, and TRPM7 undergo autophosphoryla-

tion. Intriguingly, the level of autophosphorylation displays

a wide dynamic range with stoichiometry of phosphoryla-

tion ranging from 6 to 30 mol Pi/mol kinase [17, 36, 37].

Complete autophosphorylation does not appear to be

required for activation of MHC kinases since autophos-

phorylation of three sites (out of ten) is sufficient to

activate MHCK-A [37], and myosin II phosphorylation

proceeds in parallel to MHCK-C autophosphorylation [17].

In contrast, TRPM6 and TRPM7 only phosphorylate

myosin II under conditions allowing complete autophos-

phorylation of the kinases [116]. TRPM6 and TRPM7

autophosphorylate a Ser/Thr-rich domain flanking the

N-terminus of the catalytic domain. Autophosphorylation

is not required for catalytic activity per se but provides a

means for the kinase to recognize protein substrates such as

myosin II. Notably, MHCKs and eEF2K also require

additional domains for substrate recognition. The C-ter-

minus of eEF2K [51] and MHCK [36] bind directly to their

respective substrates. Deletion of these regions decreases

the rate of protein phosphorylation without affecting

the kinetics of phosphorylation of a synthetic peptide

[23, 31, 36, 51].

As mentioned earlier, the crystal structure of the

TRPM7 alpha-kinase domain has been solved [142]. Both

in solution and in crystals the kinase forms a dimer which

is essential for kinase activity [115, 142, 143]. Also, the

TRPM6 and TRPM7 kinase domain can heteromerize to

form a functional kinase [143]. The alpha-kinase domains

of TRPM6 and TRPM7 dimerize where a short stretch of

amino acids (aa1,553–1,562) at the N-terminus interacts

with key catalytic residues in the opposite monomer [143].

Interestingly, a monomeric TRPM7 kinase domain can be

fully activated by incubating it with a peptide corre-

sponding to the activation sequence spanning amino acids

1,548–1,576. Thus, the activation sequence aa1,553–1,562

plays a key role in controlling TRPM6 and TRPM7 cata-

lytic activity, and changes in conformation within this

region of the kinase by posttranslational modifications or

binding to a regulatory protein or lipid could provide an

important regulatory mechanism to control enzymatic

activity.

Alpha-kinases in health and disease

Protein kinases are important drug targets for the treatment

of human diseases such as cancer as they are often the

result of deregulated kinase-dependent signaling pathways

(reviewed in [144–146]). The majority of protein kinase

inhibitors bind to the ATP-binding pocket abolishing the

access of ATP to the protein kinase. This strategy poses a

major challenge in designing effective compounds with

suitable specificity to prevent potential side-effects due to

the blockade of other protein kinases. Since alpha-kinases

bind to the sugar and base moieties of ATP using a dif-

ferent molecular interface than CPKs [21], it may be

possible to take advantage of this feature to develop spe-

cific protein kinase inhibitors.

Among alpha-kinases, eEF2K, TRPM6, and TRPM7

have been linked to the pathogenesis of human disease. As

we previously described, eEF2K dysfunction has been

linked to cancer progression via its effect on eEF2 activity.

Several clinically applied anti-cancer drugs, such as

Doxorubicin and Ontak, inactivate eEF2 directly and

thereby inhibit protein synthesis and cell cycling, leading

to tumor cell death [65]. A few compounds have been

reported to cause cell cycle arrest by inhibition of eEF2K

of which NH125 is the most potent and specific in vitro

[147]. However, its clinical value in cancer treatment has

yet to be revealed.

TRPM6 has been identified as the gene mutated in

patients suffering from familial hypomagnesemia with

secondary hypocalcemia [87, 88]. Unfortunately, the

majority of genetic lesions are frameshift mutations which

lead to a premature arrest of the polypeptide chain and

disrupt both the channel and kinase activities. Furthermore,

Mg2? conductance by the TRPM6 channel, rather than

kinase activity, appears related to familial hypomagnese-

mia. Hence, modulation of TRPM6 protein kinase activity

by pharmacological agents is unlikely to provide an

effective treatment of this disease.

TRPM7 has been linked to ischemic brain damage [95,

148, 149]. Oxygen and glucose deprivation in neuronal

cells is reported to mediate TRPM7 channel opening via a

ROS-dependent mechanism, and the resulting Ca2? influx

induces cell death. Whether this is due to intracellular Ca2?

overload or a positive feedback loop in which Ca2? influx

triggers further ROS production is not known. A role for
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the alpha-kinase domain in anoxic cell death, if any, has

not been established. As we described previously, kinase

activity of TRPM7 is not required for channel activation.

The opposite, however, is a possibility that cannot be

excluded. The Ca2? influx activates downstream signaling

pathways that might implicate the TRPM7 alpha-kinase

domain as well. Hence, specific TRPM7 kinase inhibitors

are required to test this hypothesis. Although clinical

application of TRPM7 kinase inhibitors is unlikely to be

beneficial in cases of ischemic brain damage, TRPM7 may

be a candidate drug target for the treatment of cancer. As

was described before, and reported in recent publications

[100, 150], changing TRPM7 expression levels affects

cancer cell proliferation. But again, the role of its kinase

domain therein remains to be established. Of current

interest is the role of TRPM7 in cell migration and inva-

sion. We have previously shown that the TRPM7 alpha-

kinase associates with the cytoskeleton at sites of cell-ECM

adhesion where it regulates the level of cytoskeletal ten-

sion, e.g. by myosin heavy chain phosphorylation, and the

formation of adhesive structures called podosomes that

permit cell invasion [93]. Knowing that TRPM7 responds

to mechanical force, and steers cell polarity by initiating

Ca2? sparks [94], indicates that TRPM7 serves as mecha-

nosensor that senses matrix properties and locally steers

cytoskeletal remodeling to facilitate cell invasion. As the

latter appears to be kinase dependent, it is tempting to

speculate that inhibitors of the TRPM7 kinase may inter-

fere with metastasis formation.

The development of relatively specific, small cell-per-

meable inhibitors of alpha-kinases could also provide

important research tools to identify the physiological

substrates and functions of these enzymes. These com-

pounds can be used simply and rapidly and provide a

complementary approach of genetic methods. An imme-

diate question these inhibitors could help resolve is the

role of the alpha-kinase domain in controlling the channel

activity of TRPM6 and TRPM7, a debate that has been

raging since the discovery of these channels at the turn of

the century.

Conclusions and future perspectives

Alpha-kinases form a distinct family of protein kinases

with a unique domain organization and specific substrate

preference. A comprehensive search for alpha-kinase

domains encoded by eukaryotic genomes has revealed a

large number of novel alpha-kinases, many of which

remain uncharacterized. Alpha-kinases show a remarkable

functional diversity, which most likely arose by taxon

specific gene duplications and recombination with other

protein domains. To date, two members of this kinase

family, eEF2K and TRPM7, have been linked to cancer

growth and progression, while a loss of TRPM6 function

contributes to familial hypomagnesia with secondary

hypocalcemia. As the large majority of the alpha-kinase

family remain to be characterized, additional roles for this

intriguing set of proteins will undoubtedly be discovered.
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