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Abstract. More than a decade ago it was established
that intact nef genes are critical for efficient viral
persistence and greatly accelerate disease progression
in SIVmac-infected rhesus macaques and in HIV-1-
infected humans. Subsequent studies established a
striking number of Nef functions that evidently
contribute to the maintenance of high viral loads
associated with the development of immunodeficien-
cy in the �evolutionary-recent� human and the exper-
imental macaque hosts. Recent data show that many

Nef activities are conserved across different lineages
of HIVand SIV. However, some differences also exist.
For example, Nef alleles from most SIVs that do not
cause disease in their natural monkey hosts, but not
those of HIV-1 and its simian precursors, down-
modulate TCR-CD3 to suppress T cell activation and
programmed death. This evolutionary loss of a specific
Nef function may contribute to the high virulence of
HIV-1 in humans.
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Introduction

The accessory nef gene is unique to human and simian
immunodeficiency viruses (HIV and SIV, respective-
ly). It encodes a protein of 27 – 35-kDa that is
abundantly expressed early during the viral life
cycle. Based on NMR structure analyses Nef can be
dissected into four major regions: a flexible myristoy-
lated N-terminal anchor domain, a loop containing a
proline-rich region, a conserved well-ordered globular
core structure and a C-terminal flexible loop [1]. N-
terminal myristoylation of Nef is critical for mem-
brane association and essentially for all of its func-
tions. The high amount of flexible surface might
contribute to the ability of Nef to interact with a large
number of cellular partners [1]. Early studies with an

SIVmac molecular clone showed that a large deletion
in nef greatly attenuates viral replication and patho-
genicity in infected macaques [2]. Subsequently,
grossly defective nef genes were detected in several
long-term slow/non-progressors (LTNPs) of HIV-1
infection [3 – 5]. All these individuals showed low viral
loads and usually maintained stable CD4+ T cell
counts for more than 10 years after infection. How-
ever, some of them developed signs of immunodefi-
ciency after long asymptomatic periods [6, 7]. More-
over, a minority of adult and the majority of infant
macaques also progressed to simian AIDS after
infection with nef-defective SIV mutants [8]. Thus,
Nef is not absolutely required for the development of
disease but strongly accelerates progression to immu-
nodeficiency.
The evidence that Nef is a major determinant of
disease progression, at least in the evolutionary-recent
human and experimental macaque hosts of HIV-1 and
SIV, respectively, has stimulated intensive research on
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Nef function. The results revealed that the HIV-1 Nef
performs a striking variety of activities, including
down-modulation of CD4, MHC class I and MHC
class II, up-regulation of Ii, and enhancement of viral
infectivity and replication (partly summarized in
Fig. 1) [9 – 14]. Nevertheless, recent data demonstrate
that HIV-1 Nef function is “crippled” in comparison to
HIV-2 and most SIV Nefs, which in addition to these
activities also efficiently down-modulate CD3 and
CD28 cell surface expression [15 –19]. The aim of this
review is to summarize some of our knowledge on the
role of specific Nef functions for viral persistence and
pathogenesis in the SIV/macaque model, in HIV-1-
infected humans and in monkeys naturally infected
with SIV. Moreover, we recapitulate recent findings
showing that various lineages of primate lentiviruses
show major differences in Nef function and discuss the
possible consequences for the outcome of viral
infection. Other interesting model systems and further
aspects of Nef function as well as detailed presenta-
tions of the underlying mechanisms and interactions
have been summarized in recent reviews [1, 20 – 25].

Importance of specific Nef functions for viral
pathogenicity
It has been established that a variety of Nef functions,
such as down-modulation of CD4, CD28 and MHC
class I (MHC-I) and enhancement of viral replication
and infectivity, are conserved between HIV-1 and
SIVmac239 [26 –30]. SIVmac239 is a well-character-
ized molecular clone [31] that has frequently been

used to study determinants of AIDS because it is
highly pathogenic in experimentally infected Asian
rhesus macaques [32], although it does not cause
disease in its original host, the African sooty man-
gabey (SM) [33]. More recently, it has been shown that
HIV-1 and SIVmac Nefs also down-modulate mature
MHC class II (MHC-II) and up-regulate surface
expression of Ii (CD74) associated with immature
MHC-II molecules [11, 34]. Structure-function anal-
yses revealed that these Nef functions usually require
distinct elements and are often genetically separable
[17, 28, 35 – 39]. This knowledge allowed the gener-
ation of SIVmac Nef mutants selectively impaired in
some functions. As outlined below, the results ob-
tained in the SIV/macaque model (see Table 1) and
data derived from HIV-1-infected individuals imply
that together with host factors a combination of
genetically separable Nef activities contributes to the
maintenance of high viral loads and development of
disease in experimental and evolutionary recent
primate lentiviral infections.

Down-modulation of CD4
The importance of CD4 down-modulation is already
evident from the fact that HIV-1 utilizes three of its
gene products, Vpu, Env and Nef, to down-regulate its
primary receptor (reviewed in [40]). Nef is expressed
early during HIV-1 infection. It removes CD4 from
the cell surface by enhancing its endocytosis via
recruitment to AP-2 adapter complexes and directing
the receptor to lysosomes for degradation [36, 41 – 45].

Figure 1. Overview on selected Nef functions in infected T cells. As outlined in the text, Nef performs a variety of functions in virally
infected CD4+ T cells, e.g., it impairs MHC class I (MHC-I) antigen presentation to reduce cytotoxic T lymphocyte (CTL) lysis; affects the
formation of the immunological synapse and TCR signaling by down-regulating CD28 and often also CD3 from the cell surface; induces
downstream signaling events most likely by interacting with cellular kinases; down-modulates CD4 to promote virus release and to prevent
superinfection; and enhances virus replication and virion infectivity to directly promote virus spread. Note that not all primate lentiviral
Nefs perform all indicated functions.
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In contrast, Vpu and Env are expressed late during the
viral life cycle and interfere with the transport of
newly synthesized CD4 to the cell surface [47 – 49].
Importantly, only Nef acts on CD4 molecules that
were already at the cell surface prior to HIV-1
infection and plays the most prominent role in CD4
down-modulation from HIV-1-infected T cells [50,
51].
A number of findings support that Nef-mediated CD4
down-modulation plays a relevant role in the patho-
genesis of AIDS (reviewed in [40]). Point mutations in
SIVmac Nef disrupting CD4 down-modulation but
not most of its other functions (Table 1) attenuate
viral replication in acutely infected macaques and
eventually revert [52]. An SIVmac239 Nef mutant
containing a difficult-to-revert deletion of amino acids
64 – 67 disrupting the ability of Nef to down-regulate
CD4 and CD28 and to stimulate viral replication, but
not down-modulation of CD3 and MHC-I, up-regu-
lation of Ii and enhancement of virion infectivity,
showed a phenotype intermediate between grossly nef
deleted and wild-type SIVmac239 [53]. Thus, both the
disrupted Nef functions and those that were not
impaired by this deletion contribute to the pathoge-
nicity of SIVmac in infected rhesus macaques. Nota-
bly, nef alleles from some LTNPs of HIV-1 infection
are unable to down-modulate CD4 but are fully
capable of performing other functions [54 – 57]. In
further support of a relevant role in the pathogenesis
of AIDS, it has been shown that nef alleles derived
from AIDS patients and from SIV-infected macaques
after the development of disease show increased
activity in CD4 down-modulation [58, 59].
While it is accepted that CD4 down-modulation is a
key function of Nef, it remains largely elusive which
consequences of diminished CD4 cell surface expres-

sion are critical for HIV-1 and SIVmac pathogenesis.
For example, CD4 down-modulation might weaken
the antiviral immune response because CD4 interacts
with MHC-II on antigen-presenting cells (APCs) and
is an important costimulatory factor of T cell receptor
(TCR)-mediated T cell activation [60]. Furthermore,
it has been reported that CD4 down-modulation
enhances the release and infectivity of HIV-1 particles
[61 – 66]. This might explain why the efficiency of Nef-
mediated CD4 down-modulation correlates with its
ability to enhance HIV-1 replication in primary T cells
and in ex vivo-infected human lymphoid tissues [67,
68]. However, Nef also enhances viral infectivity of
HIV-1 particles produced in CD4– cells [69, 70]. Some
effects on viral particle production and infectivity
were only observed under artificially high Nef ex-
pression levels. Another reason why it might be
advantageous for HIV-1 to down-modulate its pri-
mary receptor is to avoid superinfection [26, 51, 71,
72]. Dissecting which consequences of CD4 down-
modulation are critical for efficient viral spread and
persistence will be a very challenging task and most
likely several aspects contribute to the importance of
this Nef function in vivo.

Down-regulation of MHC-I molecules
Besides the effect on CD4, down-modulation of
MHC-I is one of the best-defined Nef activities [10,
35, 39, 73]. Multiple studies have analyzed the
mechanism(s) of this Nef function (reviewed in
[21]). Altogether, they show that Nef interacts with
the cytoplasmic tail of MHC-I [74] and utilizes at least
two pathways to reduce its expression on the cell
surface: (i) recruitment of AP-1 to the MHC-I
cytoplasmic tail to re-route MHC-I from the trans-
Golgi network (TGN) to lysosomes, and (ii) endocy-

Table 1. Overview on selected SIVmac239 Nef mutants analyzed in rhesus macaquesa.

SIVmac239 Nef allele Modulation of Enhancement of In vivo References

CD4 CD28 CD3 MHC-I Ii Infectivity Replication

Wild type +++ +++ +++ +++ ++ +++ +++ Virulent [2]

nef defective � � � � � � � attenuated [2]

R17Y,Q18E +++ +++ +++ ++ ++ +++ +++ acute pathogenicity [125]

R16Y +++ +++ +++ ++ ++ +++ +++ rapid disease [98, 160]

EDR � � +++ +++ ++ � � early att./rev./rest. [98, 52]

D64–67 � � +++ +++ +++ ++ (+) moderately attenuated [53]

Y223F +++ +++ +++ (+) ++ +++ +++ rapid reversion [98, 90]

G238*/fs/fs +++ +++ +++ � ++ +++ +++ strong CTL rev./rest. [91]

D239–240 +++ +++ +++ � ++ +++ +++ strong CTL rev./rest. [91]

tNef � � +++ � ++ � � attenuated [98, 161]

a Functional activity was measured by FACS or in in vitro assays for viral infectivity and replication as described [11, 98, 122]. The in vivo
phenotype was examined in rhesus macaques. +++, high; ++, moderate; +, weak; (+), marginal activity;�, no activity; att., attenuated;
rev., reversion; rest., restoration of function.
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tosis of MHC-I from the plasma membrane to the
TGN in a PACS-1, AP-1 and clathrin-dependent
manner [75 –83]. However, the exact mechanisms
are controversial [21]. Furthermore, the magnitude of
the effects may be cell-type dependent, possibly
because Nef inhibits export and increases turnover
of MHC-I in HIV-1-infected T cells but mainly affects
endocytosis in other cell types commonly used to
study Nef function, such as HeLa-derived cell lines
[76, 77].
Elegant in vitro experiments demonstrated that Nef-
mediated removal of MHC-I from the cell surface
protects HIV-1-infected cells against killing by cyto-
toxic T lymphocytes (CTLs) [84, 85], and is highly
selective, i.e. , Nef specifically down-modulates HLA-
A and –B but not HLA-C or -E alleles from the cell
surface [86]. This selectivity is conserved between
different groups of primate lentiviruses [87, 88]. The
reason is most likely that reduced cell surface levels of
MHC-I may increase the susceptibility of virally
infected cells to lysis by natural killer (NK) cells.
Thus, selective down-modulation of specific MHC
types most likely allows HIV and SIV to balance
escape from CTL lysis with protection from NK
attack. The inability of HIV-1 to down-modulate
HLA-C may explain why overexpression of HLA-C is
protective in infected humans [89].
A major obstacle for conclusive studies on the
relevance of specific Nef functions in the SIV/mac-
aque model is that many mutations have pleiotropic
effects. Mutations in the C-terminal domain of
SIVmac239 Nef, however, selectively disrupt MHC-I
down-regulation but no other known Nef function
[28]. Experiments with such highly specific SIV Nef
mutants clearly demonstrated that efficient MHC-I
down-modulation is associated with a strong selective
advantage and reduces CD8+ T cell responses in
infected rhesus macaques [90, 91]. MHC-I down-
modulation by Nef seems to be of similar importance
for viral immune evasion in HIV-1-infected individu-
als. For example, it has been shown that nef alleles
obtained during chronic HIV-1 infection are frequent-
ly more active in down-modulating MHC-I than those
from late stage AIDS patients [58], suggesting a strong
selective pressure for this specific Nef function in
immunocompetent hosts. In further support of this
assumption it has been shown that a 36-bp deletion in
nef alleles that impaired overall Nef function in an
LTNP of HIV-1 was partially “repaired” by an
adjacent duplication that restored the ability of Nef
to down-modulate MHC-I and to enhance virus
infectivity but not to down-regulate CD4 [54]. Finally,
particularly strong HIV-specific CTL activity has been
detected in individuals infected with nef defective
HIV-1 strains [92]. Altogether, these studies clearly

show that down-modulation of specific MHC alleles
by Nef is an important immune evasion mechanism of
primate lentiviruses.

Modulation of other receptors on T cells
Besides CD4 and MHC-I some Nef alleles are capable
to modulate the surface expression of a substantial
number of additional receptors on T cells, such as
CD28 [93, 94], CXCR4 [95] and perhaps other
chemokine receptors [72, 96]. Notably, many HIV-2
and SIVmac Nef alleles down-modulate CD28 and
CXCR4 more efficiently than those of HIV-1 [51, 95]
and also remove CD3 from the cell surface [19]. The
possible relevance of these differences in Nef function
for primate lentiviral pathogenesis is discussed below.
CD28 is a major costimulatory factor of T cell
activation and critical for normal antigen-specific T
cell responses. Thus, its removal from the surface of
infected T cells may suppress the immune response
and cause anergy. Studies of the Skowronski lab have
shown that both HIV-1 and SIVmac Nef proteins
interact directly with CD28 and use a similar mech-
anism to down-regulate this receptor as that estab-
lished for CD4, which involves accelerated endocyto-
sis via the AP-2 clathrin adaptor pathway [93]. In
support of a selective advantage in vivo, it has been
shown that an H196Q substitution in SIVmac Nef,
which selectively disrupts its effect on CD28 [94],
reverts in infected rhesus monkeys [97, 98]. However,
these reversions occurred more slowly than those of
other inactivating point mutations in nef. Thus, the
selective advantage of CD28 modulation is only
moderate, possibly because other Nef functions also
affect TCR signaling.
Some SIV Nef alleles are highly effective in down-
modulating the chemokine receptor CXCR4 from the
cell surface and strongly inhibit lymphocyte migration
to the CXCR4 ligand, the chemokine stromal cell-
derived factor 1 (SDF-1a) [95]. In comparison, HIV-1
Nef proteins do generally not efficiently down-regu-
late CXCR4 [51, 95]. Nonetheless, they also inhibit
lymphocyte migration to SDF-1a, albeit less efficient-
ly than those of SIV, by activation of Rac2 and/or Rac1
via the DOCK2-ELMO1 guanine exchange factor [95,
99]. Thus, primate lentiviruses use at least two differ-
ent mechanisms to inhibit trafficking of infected
leukocytes, possibly to facilitate their dissemination
or to impair the antiviral immune response [95]. It has
also been suggested that Nef down-modulates
CXCR4 from the surface of target cells to enhance
their resistance to superinfection [100]. HIV-1 strains
that utilize CXCR4 as entry cofactor emerge in
approximately 50 % of late stage AIDS patients
(reviewed in [101]). However, Nef alleles from
primate lentiviruses using CCR5 but not CXCR4 for
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entry into target cells down-modulate CXCR4 with
much higher efficiency than those of HIV-1 [51, 95]
arguing against a role of this Nef function in prevent-
ing superinfection. It has also been reported that Nef
down-modulates CCR5 and other chemokine recep-
tors in stably transfected Chinese hamster ovary cells
overexpressing various chemokine receptors [72, 96].
However, only marginal effects were observed in
HIV-1-infected human indicator cell lines or in PBMC
[51, 72, 96, 100]. Thus, the significance and specificity
of these findings remains elusive.

Manipulation of antigen presenting cells by Nef
Recent data show that Nef not only reduces MHC-I
cell surface expression but also affects MHC-II
antigen presentation by two distinct mechanisms: (i)
down-regulation of surface expression of mature
MHC-II and (ii) up-regulation of the MHC-II-asso-
ciated invariant chain (Ii, CD74) [11, 34]. APCs such
as dendritic cells and macrophages, but also activated
CD4+ T cells, express MHC-II and are permissive to
HIV-1 infection. Antigen-specific activation of T
helper cells orchestrates the humoral and cellular
immune responses and is crucial for an efficient anti-
HIV immune response [102, 103]. It is well established
that stable surface expression of Ii prevents antigen
peptide presentation [104, 105] and might contribute
to the impaired helper T cell responses observed in
AIDS patients [106]. In HeLa CIITA cells and in the
human monocytic THP-1 cell line, Ii surface expres-
sion is already efficiently up-regulated at low levels of
HIV-1 Nef expression [11, 34]. Notably, marked Nef-
mediated up-regulation of Ii could also be demon-
strated in HIV-1-infected macrophages, whereas the
effects on mature MHC-II expression were marginal
[107].
In support of a relevant role in vivo it has been
suggested that Ii up-regulation provides an advantage
for viral replication in SIVmac-infected macaques
[98]. Moreover, nef genes derived from some adult
HIV-1-infected LTNPs do not up-regulate Ii [34].
However, Nef alleles derived from HIV-1-infected
children with nonprogressive infection were signifi-
cantly more active in up-regulation of Ii than those
derived from rapid progressors [107]. It will be
necessary to analyze larger sample numbers to
challenge the possibility that effective Ii up-modula-
tion may have a different impact on the clinical course
of adults and perinatal HIV-1 infection. For example,
strongly impaired MHC-II function might primarily
contribute to lower levels of immune activation and
decelerated loss of CD4+ T cells in the context of an
immature host immune system. Such studies seem
highly warranted because of the fact that Ii up-
modulation is conserved between different groups of

primate lentiviruses and already observed at very low
levels of Nef expression, suggesting an important role
in vivo in HIV-1-infected individuals.
Notably, Nef also affects the function of macrophages,
i.e. , it induces the production of two CC-chemokines,
macrophage inflammatory proteins 1a and 1b, possi-
bly to recruit and activate CD4+ T cells at sites of virus
replication [108]. Furthermore, it has been reported
that Nef induces the release of soluble factors
(sICAM-1 and sCD23) from macrophages that stim-
ulate B cells to render resting T lymphocytes more
permissive to HIV-1 infection [109] (Fig. 2). These
findings suggest that Nef not only affects the activa-
tion status of the infected cells to generate a suitable
environment for virus production [110] but also
increases the susceptibility of the surrounding cellular
reservoir to infection.

Nef-mediated enhancement of viral infectivity and
replication
In addition of being a master manipulator of the
function of T cells and APCs, Nef also directly
enhances virion infectivity and stimulates viral repli-
cation [12 – 14, 29, 69, 70, 111]. The exact mechanisms
of both effects are still not well understood and the
overall effect of Nef on virus spread in vivo may
depend on a large number of cellular properties and
interactions (some of which are shown in Fig. 2).
Enhancement of virion infectivity requires expression
of Nef in the virus-producing cell [112] and involves an
early step of the viral replication cycle [12, 70].
Furthermore, it seems to be dependent on the route of
virus entry because Nef does not enhance the infec-
tivity of HIV virions pseudotyped with envelopes
mediating virus entry through an endocytic compart-
ment rather than fusion at the plasma membrane [113,
114]. Nef is associated with cellular membranes and
small quantities of Nef are present in virions [112,
115]. However, particle association of Nef seems
dispensable for efficient HIV-1 infectivity [116].
Enhancement of cytoplasmic delivery by increased
HIV-1 entry [117] (perhaps due to enhanced choles-
terol content of progeny virions [118]), reduced
susceptibility of virions to proteasomal degradation
in the target cells [119], as well as facilitated transport
of the viral genome through the cortical actin network
[120], were all proposed to play a role in Nef-mediated
HIV-1 infectivity enhancement. Recent data suggest
that dynamin 2, a regulator of vesicular trafficking, is a
binding partner of Nef that is required for its ability to
increase viral infectivity [121]. Further studies are
required to elucidate how Nef modifies progeny
virions to enhance their infectivity. In agreement
with a relevant role in vivo Nef-mediated infectivity
enhancement is conserved between different groups
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of primate lentiviruses [12, 18, 122] and apparently
contributes to efficient spread of SIVmac in infected
rhesus macaques [53]. However, usage of HeLa-
derived cell indicator lines is a caveat of most studies
on Nef-mediated infectivity enhancement and recent
data suggest that the effects may be less pronounced in
primary CD4+ T cells [123]. To avoid possible artifacts
it will be important to further define the effects of Nef
on virion infectivity in producer and target cells
relevant for viral spread in vivo in the infected host.
Nef efficiently enhances HIV-1 replication in pri-
mary T cell cultures, particularly if these are exposed
to HIV-1 prior to stimulation [13, 14], and in ex vivo-
infected human lymphoid tissue (HLT) [111], but
hardly in transformed T cell lines [14]. As mentioned
above, the potency of CD4 down-modulation and not
of infectivity enhancement by Nef correlates with the
efficiency of viral replication in primary lymphocyte

culture and ex vivo-infected HLT [67, 68]. In support
of a relevant role in viral pathogenesis is has been
shown that Nef alleles from AIDS patients are
particularly active in promoting HIV-1 replication
[58, 124]. Studies in the SIV/macaque model showed
that effects of Nef on T cell activation also affect the
clinical course of infection. For example, an SIVmac
Nef variant containing an additional SH2 domain
(YE-Nef) is highly active in causing T cell activation,
replicates in unstimulated PBMC cultures and is
acutely pathogenic in rhesus macaques [125]. Nota-
bly, introduction of the ITAM motif in Nefs also
enhanced the virulence but not the levels of viral
replication of SIVagm from African green monkeys
and SIVsmm from SMs in experimentally infected
pigtail macaques [126]. These results are evidence
that enhanced activity of Nef in causing T cell
activation is associated with increased virulence in

Figure 2. Complex role of Nef in HIV-1 replication. Nef manipulates various features of HIV-1-infected cells (1) to increase virus
production (2) and enhance virion infectivity (3). The magnitude of the effects of Nef on virus infectivity and replication also depends on
the properties of the target cells (4). Furthermore, Nef affects the activation status and life span of virally infected cells by modulating the
interaction with antigen-presenting cells (APCs) (5) and reducing CTL lysis (6). Finally, it has been proposed that Nef induces soluble
CD23 and ICAM in macrophages that up-regulate expression of costimulatory molecules on B cells, which interact with resting T cells to
render them susceptible to HIV-1 infection (7) [109].
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the SIV/macaque model. However, no HIV-1 Nef
allele with a YE-Nef-like phenotype has been
described and usually Nef does not directly activate
T cells but rather sensitizes them for activation to
allow effective viral spread. It is beyond the scope of
the present review to discuss the complex effects of
Nef on the transcriptional responses of host T cells
but it is important to note that HIV-1 Nef may even
be transcribed and modulate the transcriptional
activity of resting T cells prior to integration [127].
Further studies are required to unravel the under-
lying mechanisms but it seems that at least three
HIV-1 Nef activities, i.e. , CD4 down-modulation,
alteration of T cell activation and enhancement of
virion infection, contribute to efficient viral replica-
tion. Obviously, the relative importance of these Nef
functions may depend on the initial cellular activa-
tion status and CD4 expression levels. In vivo in the
SIV/macaque model the effect of Nef on virus
replication is more pronounced during the chronic
phase of infection [2] . Possible reasons are that Nef
may be less important for virus replication in an
inflammatory environment or that its immune eva-
sion mechanisms are not critical for virus spread
during acute infection prior to the onset of the
adaptive immune response.

Lineage-specific differences of primate lentiviral Nef
functions
Since it is the major causative agent of AIDS, most
studies on Nef function have focused on HIV-1 and to
a much lesser extent on HIV-2 that also causes disease
in humans, as well as on SIVmac because infection of
macaques is commonly used as an animal model for
AIDS in humans. However, these viruses represent
only a small fraction of primate lentiviruses. To date
SIVs have been detected in about 40 African non-
human primate species [128, 129]. Although all of
them contain nef genes our current knowledge
suggests that they do not usually induce disease in
their natural monkey hosts [130, 131]. The recent
analysis of HIV and SIV strains from 14 different
primate species showed that several Nef activities, i.e. ,
the ability to down-modulate CD4, CD28 and MHC-I
[19] but also to enhance virion infectivity and to
stimulate virus replication [122], are conserved across
most or all primate lentiviral lineages (summarized in
Table 2). This was unexpected since many SIV Nef
alleles show only about 30 % amino acid identity to
those of HIV-1 [132]. Thus, although primate lenti-
viral Nef proteins are highly variable some functional
interactions are obviously well conserved. It is note-
worthy, however, that in some cases the same activities
are mediated by different domains in Nef proteins
from different groups of HIV and SIV [28, 133 – 135],

suggesting that they may have evolved independently
during primate lentiviral evolution.
Analyses of Nef function from a wide variety of
primate lentiviruses revealed that many activities are
conserved but also identified lineage-dependent
differences in the ability to modulate receptors
involved in the interaction and communication
between T cells and APCs (Table 2; Fig. 3). The
most striking finding was that Nef alleles from the
great majority of SIVs and HIV-2 down-modulate
TCR-CD3 with high efficiency, whereas those of
HIV-1 and its closest simian relatives from chimpan-
zees and some Cercopithecus monkeys generally
failed to perform this function [19]. Interestingly,
phylogenetic analyses revealed that Nef-mediated
down-modulation of TCR-CD3 was lost twice during
primate lentiviral evolution. Firstly, after a vpu gene
was acquired by an ancestor of SIVgsn/mus/mon now
found in Cercopithecus monkeys (Table 2) and sec-
ondly, when SIVrcm recombined with a vpu contain-
ing precursor of SIVgsn/mus/mon in chimpanzees to
become SIVcpz [19, 136]. It will be interesting to
clarify why Vpu reduces the selective pressure for
Nef-mediated down-modulation of CD3. Recently, it
has been shown that Vpu suppresses an IFN-a-
induced host restriction factor, named tetherin (also
called BST2 or HM1.24), to facilitate virion release
[137]. Thus, while many alternative explanations
exist, it is tempting to speculate that viruses carrying
a vpu gene could afford to loose the ability to down-
modulate CD3 and hence to cause higher levels of
immune activation because they are able to counter-
act the host restriction induced by high levels of
inflammatory IFN-a.
Efficient T cell activation by APCs requires the
interaction of the antigen/MHC-II complex and a
costimulatory signal mediated by the interaction of
CD28 with B7 [138, 139] (Fig. 3A). HIV-1 Nefs
interfere with this process by modulating CD4 surface
expression and impairing MHC-II antigen presenta-
tion (Table 2, Fig. 3B). In comparison, nef alleles from
most SIVs and HIV-2 Nefs impair the function of T
cells and their interaction with APCs more severely
because they also efficiently down-regulate CD3,
CD28 and CXCR4 (Table 2, Fig. 3C), most likely to
suppress T cell activation, migration and apoptosis. In
agreement with its role as the key ligand of the TCR,
Nef-mediated CD3 down-modulation was required
and sufficient to prevent activation and programmed
death in virally infected T cells [19]. Notably, nef
alleles from different groups of primate lentiviruses
differed fundamentally in their effect on the respon-
siveness of infected T cells to activation: those from
HIV-2 and most SIVs blocked cellular activation and
suppressed activation-induced cell death (AICD),
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whereas nef alleles derived from HIV-1 and its simian
counterparts usually increased the responsiveness of
virally infected T cells to stimulation and did not
prevent cell death [19]. The latter result is consistent
with previous studies suggesting that the HIV-1 Nef
contributes to the high levels of immune activation
and apoptosis associated with progression to AIDS in
infected humans by enhancing the responsiveness of
virally infected T cells to activation [19, 140 – 146].
Based on the observation that Nef affects several
aspects of the functional interaction between T cells
and APCs, it has been suggested that Nef may
uncouple T cell activation from the antigen-specific
interactions of T cells with APCs to facilitate virus
replication [17]. In agreement with this hypothesis it
has been shown that the HIV-1 Nef protein impairs
the formation of the immunological synapse [147] and
triggers a transcriptional program in Jurkat T cells that
is highly similar to anti-CD3 T cell activation [110].
Whether or not HIV-2 and SIV Nefs trigger similar
signaling pathways in T cells derived from the
respective host species remains to be determined.
However, the result that primary T cells infected with
viruses expressing nef alleles that down-modulate
CD3 show substantially lower expression levels of
activation markers and apoptosis compared to those
infected with otherwise isogenic viruses containing nef
alleles unable to perform this function suggests that

overall HIV-2 and most SIV Nefs suppress rather than
enhance T cell activation [19].

Possible implications of differences in Nef function for
HIV and SIV pathogenesis
Nef is commonly considered a “virulence” factor
because disrupted nef genes are associated with an
attenuated clinical course in HIV-1 and SIVmac
infection [2 – 4]. Studies in transgenic mice [148] and
the finding that Nef may render HIV-1-infected T cells
hyperresponsive to activation [142] support a direct
role in the pathogenesis of AIDS. Other lines of
evidence suggest, however, that Nef may only accel-
erate the development of disease in HIV-1-infected
individuals and in SIVmac-infected macaques be-
cause it drastically enhances the viral loads and
numbers of virally infected cells and not because it
directly increases the virulence of these primate
lentiviruses. Primary T cells infected with nef deleted
HIV-1 constructs show high levels of activation and
apoptosis upon stimulation [19]. Moreover, some
humans and rhesus macaques infected with grossly nef
deleted forms of HIV-1 and SIVmac developed signs
of immunodeficiency in the absence of detectable
virus loads [6, 7, 149]. Finally, nef deleted SIV is
pathogenic in neonatal macaques [8], possibly be-
cause Nef is less critical for effective replication in the
absence of a functional mature immune system. Thus,

Table 2. Preliminary overview on the activity of primate lentiviral Nef proteins in selected assaysa.

Clone(s) Species/subspecies CD4 MHC-I CD3 CD28 Replication Infectivity

HIV-1 M Human (Homo sapiens) +++ ++ � (+) ++ ++

HIV-1 O Human (Homo sapiens) +++ ++ � (+) ++ ++

HIV-1 N Human (Homo sapiens) +++ ++ � (+) ++ ++

SIVcpz Centrl West. Chimp. (Pan t. troglodytes) +++ ++ � + ++ ++

SIVcpz Eastern Chimp. (Pan t. schweinfurthii) +++ ++ � + ++ ++

SIVgsn Greater spot-nosed monkey (C. nictitans) +++ ++ � + ++ +++

SIVmus Mustached monkey (C. cephus) +++ ++ � (+) ++ ++

SIVmon Mona monkey (Cercopithecus mona) +++ ++ � + ++ +++

SIVrcm Red-capped mangabey (C. torquatus) +++ (+) + � ++ ++

HIV-2 Human (Homo sapiens) +++ ++ ++ ++ + ++

SIVsmm Sooty mangabey (Cercocebus atys) +++ ++ ++ ++ ++ +++

SIVmac Rhesus macaque (Maccaca mulatta) +++ ++ ++ ++ ++ +++

SIVdeb De Brazza monkey (C. neglectus) ++ + +++ ++ +++ +++

SIVsyk Sykes� monkey (C. albogularis) +++ + ++ ++ ++ ++

SIVblu Blue monkey (Cercopithecus mitis) +++ ++ +++ +++ ++ ++

SIVsun Sun-tailed monkey (C. solatus) ++ + +++ + ++ ++

SIVagm Tantalus monkey (Chlorocebus tantalus) +++ ++ +++ +++ ++ ++

SIVagm Green monkey (Chlorocebus sabaeus) ++ ++ +++ +++ ++ ++

a The properties of most primate lentiviral Nef proteins shown have recently been described [19, 122]. Note that the data are preliminary
because for some species only a very limited number of nef alleles has been analyzed and most data were generated in human-derived cells.
Abbreviations and symbols: see Table 1.
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even highly attenuated HIV-1 and SIV strains with nef
deletions are ultimately pathogenic in humans and
macaques, respectively, if they replicate to significant
levels.
Importantly, the high viral loads associated with
infection by primate lentiviruses expressing functional
Nef only lead to the development of immunodefi-
ciency in poorly adapted hosts, like humans, who
acquired HIV-1 and HIV-2 very recently in the first
half of the last century [128, 129, 150 –152], or Asian
macaques, which are not a natural host of SIV [153]. In
contrast, SIVs seem to replicate to high levels and
persist efficiently in their natural monkey hosts with-
out causing disease [130– 132]. Further work is
required to fully elucidate the reasons for the different
clinical outcome of natural and recent or experimental
primate lentiviral infections. However, an increasing
number of studies suggests that deregulation of T cell
function and high levels of chronic immune activation
and programmed cell death drive the development of
AIDS [130, 131, 154 – 156]. Low levels of chronic T cell

activation resulting in reduced proliferation and
apoptosis might allow SIV-infected mangabeys or
African green monkeys to maintain functional helper
T cell responses [130 – 132]. As outlined above,
SIVsmm and SIVagm Nefs affect the function of T
cells to activation much more severely than those of
HIV-1 because they efficiently down-regulate CD3
and CD28 (Table 2). These functions should reduce
the stimulation of virally infected CD4+ helper T cells
by APCs and might be advantageous for both the virus
and its host. Inefficient CD4+ helper T cell activation
would weaken the antiviral immune response and
might allow the virus to persist at high levels. How-
ever, reduced T cell activation, proliferation and
apoptosis might also allow the host to maintain a
functional immune system. In agreement with this
hypothesis, inefficient down-modulation of TCR-CD3
correlates with low CD4+ T cell counts in SIVsmm-
infected SMs [19]. In other words, a more “HIV-1-
like” Nef phenotype of SIVsmm, correlates with
declining CD4+ T cell counts and hence a course of
infection more reminiscent of pathogenic HIV-1
infection in natural SIV infection. At first, it may
seem strange that down-modulation of CD3, which is
critical for the function of T cells, protects against the
loss of CD4+ T cells. Thus, the functionality of the
small fraction of CD4+ T cells is presumably not
critical for the overall immune competence of the
infected host. However, the rate at which these virally
infected T cells die and must be replaced, might
exhaust the regenerative capacity of the host immune
system. Furthermore, hyperactivated helper CD4+ T
cells likely contribute to high levels of immune
activation by sequestering cytokines that induce the
migration, inflammatory response and death of unin-
fected bystander cells. Thus, while Nef may act to
uncouple T cell activation from interaction with
APCs, it obviously also helps to prevent the escalation
of immune activation to harmfully high levels at least
in natural SIV infection. It is conceivable that Nef
alleles that down-modulate the key ligand CD3 and
the major costimulatory molecule CD28 of T cell
activation are particularly well suited to exert protec-
tive effects.
Altogether, our current knowledge suggests that Nef
limits the damaging effects of high levels of SIV
replication in the majority of natural primate lentiviral
infections by suppressing the activation and program-
med death of infected CD4+ T cells [19]. However, it is
obvious that a large number of host factors also play
an important role in AIDS progression (reviewed in
[157]). For example, SIV from SMs is usually non-
pathogenic in its natural host, moderately pathogenic
in humans and highly virulent in macaques [131, 158].
Thus, even nef alleles that down-regulate TCR-CD3

Figure 3. Manipulation of T cell/APC interaction by primate
lentiviral Nef proteins. Schematic presentation of (A) the inter-
action between uninfected APCs and CD4+ T cells and the effect of
(B) HIV-1 and (C) SIVsmm or SIVagm infection on specific
receptors expressed by these cell types. Receptors down-modu-
lated by the nef alleles of the respective viruses are crossed out and
erased if the effects are highly effective. Note that this outline is
preliminary because some effects remain to be demonstrated in
primary cells from the respective primate species.
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and inhibit the responsiveness of infected T cells to
activation are unable to prevent the escalation of
immune activation to harmfully high levels in non-
adapted hosts that are highly susceptible to disease.
For example, the fact that the SIVmac239 molecular
clone frequently causes fatal disease in rhesus mac-
aque within 1 year after infection [32] seemingly
argues against a protective role of Nef-mediated
down-modulation of CD3 in vivo. However, SIV-
mac239 does not cause disease when reintroduced in
its original host, the SM [33, 159]. Thus, the terms
“pathogenic or virulent” and “non-pathogenic or
apathogenic” should be used with the understanding
that they represent relative and not absolute terms
because the clinical and virological outcome of
infection depends on a complex interplay between
many viral and host factors. Notably, mutations in Nef
that increase its ability to cause T cell activation result
in acute pathogenicity in SIV-infected macaques [125,
126, 160], whereas a virus strain expressing a Nef allele
that down-modulates CD3 but is otherwise defective
was even more attenuated than an entirely nef
defective SIVmac strain [161]. Thus, increased levels
of T cell activation obviously accelerate disease
progression also in the experimental macaque host.
Furthermore, it is also well established that HIV-2,
which is closely related to SIVmac and also originates
from SIVsmm-infected mangabeys [151], is less
virulent than HIV-1 in the human host [162, 163].
Thus, when compared in the same human host the
SIVsmm/mac/HIV-2 group seems to be less virulent
than the SIVcpz/HIV-1 group. Notably, SIVsmm
usually expresses functional Nef proteins and the
infection in its natural simian host is asymptomatic
despite high levels of viral replication [19, 131, 164]. In
contrast, high frequencies of defective nef alleles and
low viral loads are frequently found in HIV-2-infected
individuals with nonprogressive infection [165 – 169].
Thus, the reasons for asymptomatic infection may
usually be different in the natural SM and the evolu-
tionary recent human host.
It has been proposed that chimpanzees may not
develop high levels of chronic immune activation in
response to infection because their T cells are less
responsive to TCR stimulation than those of humans
[170]. This is an interesting hypothesis and differences
in the responsiveness of different primate species may
play a relevant role in the pathogenesis of AIDS [33,
159, 171]. It is also important to consider, however,
that although it is commonly assumed that SIVs do not
usually cause disease in their natural hosts, convincing
experimental evidence has only been presented for
SIVsmm and SIVagm, which both efficiently down-
modulate TCR-CD3 as well as CD28 (Table 2).
However, even natural SIVsmm infection is not

always asymptomatic [172], and it is currently unclear
whether SIVgsn, SIVmus and SIVmon that do not
down-modulate CD3 nor inhibit cellular activation
and AICD may cause disease in their respective hosts.
Interestingly, SIVgsn and SIVmon are only found in
up to 5 % of animals of their respective primate host
species [173]. This is very low compared to the
prevalence of SIVsmm and SIVagm in SMs and
AGMs, respectively, which frequently exceeds 50 %
[174]. Clearly, a lot more remains to be done to clarify
the basis for this different distribution of the different
groups of SIV. Nonetheless, the finding that SIVagm,
SIVsm, SIVdeb and SIVsyk, all expressing nef alleles
that down-regulate CD3, show a much higher sero-
prevalence in their host species than SIVgsn, SIVmon
and SIVcpz, which are all unable to modulate this
receptor, supports the hypothesis that this function
might be beneficial for both the host and the virus. It
will be of high interest to further challenge the dogma
that SIV does not cause disease in its natural simian
hosts.
A well-balanced virus-host relationship is obviously
common in well-adapted natural but not in experi-
mental or recent primate lentiviral infections. For
example, infection of rhesus macaques with SIV-
mac239 constructs expressing HIV-1 nef alleles (called
Nef-SHIVs) from a different genomic location and at
markedly reduced levels resulted in rapid disease in
about half of infected macaques, whereas the remain-
ing usually controlled Nef-SHIV replication very
efficiently and remained asymptomatic [175 – 177].
This “all or nothing” phenotype – elimination of either
the virus or the host – is essentially the opposite from
natural SIV infection where both parties coexist.
Notably, these observations were made after infection
of rhesus macaques with isogenic molecular Nef-
SHIV clones. Thus, subtle differences in the properties
of the non-adapted host can result in a totally different
clinical and virological outcome of viral infection. The
observation that Nef-SHIVs that are unable to down-
modulate CD3 usually show an “all or nothing”
phenotype is in agreement with a role of this Nef
function in “balanced” virus-host relationships.

Summary and perspectives
Primate lentiviral Nef proteins generally perform a
large number of functions, such as modulation of CD4,
MHC-I and Ii surface expression as well as enhance-
ment of virion infectivity and replication. The combi-
nation of these activities obviously helps the virus to
persist efficiently in the infected host by facilitating
evasion of the immune system and by increasing virus
spread in a direct manner. The resulting high viral
loads are associated with disease in poorly adapted
hosts but not in natural SIV infection. Hence Nef
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should be considered a “persistence” rather than a
“virulence” factor. It is obvious that a large number of
inherent host and viral properties determine the
different clinical outcome of primate lentiviral infec-
tions [89, 157, 178, 179]. Nef performs a number of
functions that should dampen the antiviral immune
response and most likely prevent the escalation of
immune activation to levels that are harmful to the
host in natural SIV infection. The evolutionary loss of
the most effective Nef function in suppressing the
responsiveness of virally infected T cells to activation,
i.e. , down-modulation of TCR-CD3, may contribute
to the high levels of chronic immune activation and
loss of CD4+ T cells associated with HIV-1 infection
[19]. Further studies in appropriate SIV/monkey
models, such as SIV-infected SMs or AGMs, may
teach us how the destruction of the host immune
system can be prevented and hence offer new
prospects for the therapy of AIDS. Moreover, it is
conceivable that primate lentiviruses have “learned”
to manipulate exactly those immune functions that are
most relevant for the control of virus replication. Lack
of Nef-dependent immune evasion functions may also
explain why infection with attenuated nef-deleted
strains of SIV exerts strong protective immune
responses [180]. Further studies aiming to elucidate
how HIV and SIV evade the host immune system
should help to learn how better immune control can be
achieved and may help to design vaccines with
improved efficacy.
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