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Abstract. The highly conserved AAA ATPase Cdc48/
p97 acts on ubiquitylated substrate proteins in cellular
processes as diverse as the fusion of homotypic
membranes and the degradation of misfolded pro-
teins. The ‘Ubiquitin regulatory X’ (UBX) domain-
containing proteins constitute the so far largest family
of Cdc48/p97 cofactors. UBX proteins are involved in
substrate recruitment to Cdc48/p97 and in the tem-

poral and spatial regulation of its activity. In combi-
nation with UBX-like proteins and other cofactors,
they can assemble into a large variety of Cdc48/p97-
cofactor complexes possessing distinct cellular func-
tions. This review gives an overview of the different
subfamilies of UBX proteins and their functions, and
discusses general principles of Cdc48/p97 regulation
by these cofactors.

Keywords. AAA ATPase, valosin-containing protein (VCP), ubiquitin/proteasome system, protein degrada-
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Introduction

More than 10 years ago, a protein domain displaying
weak amino acid sequence homology to the small
protein modifier ubiquitin was identified in a number
of eukaryotic proteins and named ‘Ubiquitin regula-
tory X’ (UBX) domain [1]. In a first structural study,
the UBX domain was found to adopt the same three-
dimensional fold as ubiquitin and was used to define a
new and largely uncharacterized protein family [2].
While the UBX domain-containing protein p47 had
already been described to bind to the AAA ATPase
Cdc48/p97 [3-5], it became clear only recently that

* Corresponding authors.

UBX proteins in general are cofactors for Cdc48/p97
[6-9].

Cdc48 (also known as p97 or VCP in mammals')
belongs to the family of AAA ATPases (ATPases
associated with various cellular activities) [10]. It is a
highly conserved, essential, chaperone-related pro-
tein involved in a large variety of cellular processes,
including ubiquitin-dependent protein degradation
and processing, fusion of homotypic membranes,
nuclear envelope reassembly, cell cycle progression
and others [11-13]. The underlying molecular mech-
anism of Cdc48/p97 action in all these processes is
believed to be its “segregase” activity (term coined by

' The term ‘Cdc48/p97° will be generally used throughout the text,
while ‘Cdc48 and ‘p97’ are used to indicate aspects or studies
specific for the yeast and mammalian orthologue, respectively.
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Jentsch and co-workers [5, 14]): Cdc48/p97 uses the
energy provided by ATP hydrolysis to extract sub-
strate proteins from protein complexes or lipid
membranes. Although Cdc48/p97 is able to bind to
non-ubiquitylated proteins [15-17], it appears to act
primarily on ubiquitylated substrates in vivo. In the
process of endoplasmic reticulum (ER) associated
protein degradation (ERAD), Cdc48/p97 dislocates
substrate proteins from the ER through a retro-
translocation pore back into the cytosol, where they
are subsequently degraded by the 26S proteasome
[18]. Similarly, the tetrameric ubiquitin-proline-f3-
galactosidase model substrate of the ubiquitin fusion
degradation (UFD) pathway is believed to be pro-
cessed by Cdc48 prior to its degradation [19, 20]. On
the other hand, proteolysis-independent functions of
Cdc48/p97 have been described. During the homo-
typic fusion of Golgi and ER membranes, Cdc48/p97
appears to act on elusive mono-ubiquitylated sub-
strates during the remodelling of SNARE complexes
and/or their regulators [16, 21]. In the yeast OLE
(oleic acid desaturase Olel) signal transduction path-
way, the segregase activity of Cdc48 is needed to
solubilize the active, processed p90 form of the
transcription factor Spt23 from complexes with the
unprocessed p120 precursor, which is anchored in the
ER membrane [14, 22]. A similar mode of action has
been described very recently in the context of nuclear
envelope reformation, where p97 was found to extract
Aurora B kinase from chromatin [23].

Cdc48/p97 forms a ring-shaped complex of six iden-
tical subunits that consist of two ATPase domains
called D1 and D2, and an amino-terminal N domain,
which is mainly responsible for cofactor and substrate
binding. The ATPase domains and the N domain
move relative to each other during ATP binding and
hydrolysis, thereby probably providing the mechan-
ical forces to exert the segregase function [24]. In
order to provide specificity for its various cellular
functions, Cdc48/p97 activity in the cell is tightly
regulated in space and time by numerous different
cofactors, of which UBX proteins constitute the
largest known subgroup.

The UBX protein family

UBX domain structure and prevalence

The UBX domain comprises about 80 amino acid
residues and was first described in the hypothetical
human protein Y33K (now known as SAKS1), based
on a profile in the PROSITE data base (entry 50033)
[1]. While the presence of a ubiquitin-associated
(UBA) domain in Y33K/SAKSI1 suggested a link to
the ubiquitin-proteasome system (UPS), the function
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of the UBX domain itself initially remained unclear.
Subsequently, the structure determination of the UBX
domain of human Fas-associated factor 1 (FAF1)
revealed a further, unexpected link to the UPS,
because the UBX domain turned out to be a close
structural homologue of ubiquitin itself (Fig. 1) [2].
The absence of a carboxy-terminal di-glycine motif,
however, indicated that UBX domains are not cova-
lently attached to target proteins in a ubiquitin-like
manner. Rather, they are distinct structural units
defining a large family of proteins that often exhibit a
modular domain architecture [2].

UBX domain of FAF1

ubiquitin

Figure 1. The UBX domain has a ubiquitin fold. Ribbon repre-
sentations of the three-dimensional structures of the UBX domain
from human FAF1 (right; PDB entry 1 h8c) and ubiquitin (left;
PDB entry 1UBI) are shown in similar orientation. For the UBX
domain, the side chains of the conserved R...FPR motif constitut-
ing the Cdc48/p97 binding site are depicted as ball-and-stick model.
Ubiquitin lacks the corresponding side chains and has a shorter
loop connecting strands 3 and 4.

A structure-based sequence alignment of UBX do-
mains led to the identification of UBX domain-
containing proteins in all eukaryotic species, which
can readily be grouped into evolutionarily conserved
subfamilies based on sequence similarities outside the
UBX domain [2]. These include the widespread p47,
FAF1,SAKS1, TUG and UBXD1 subfamilies, as well
as the relatively small groups of Rep-8 and UBXD3
proteins (Table 1, Fig. 2). The p47 subfamily is defined
by a central SEP (Shpl, eyes-closed, p47) domain
involved in trimerization of p47 [25,26] and a carboxy-
terminal UBX domain. The subfamily contains bona
fide p47 orthologues, which possess an amino-terminal
UBA domain [8, 25, 27-29] and are found in most
eukaryotes. Interestingly, this subfamily has diversi-
fied in vertebrates (Table 1, Fig. 2) and also comprises
the close homologues p37 [30] and UBXD4, which
both lack the UBA domain. In addition, the more
distantly related Socius protein shares homology with
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UBX domain proteins

Table 1. Members of UBX domain protein subfamilies in various model organisms.

UBX subfamily H. sapiens C. elegans S. pombe S. cerevisiae
p47 p47 (NSFL1C) UBXN-2?* Ubx3 (SPAC343.09) Shpl
p37 (LOC137886) UBXN-2?* - -
UBXD4 UBXN-2?? - -
Socius (UBXD5) - - -
FAF1 FAF1 UBXN-3 - -
ETEA (UBXD8, KIAA0887) HA40L08.1 Ucpl0 (SPCC285.11)? ° Ubx2
- - Ucpl0 (SPCC285.11)2 ° Ubx3
UBXD7 (KIAA0794) - Ubx2 (Ucp13, SPAC2C4.15¢) Ubx5
SAKS1 SAKS1 (Y33K; LOC51035) UBXN-1 YDFB (SPAC17C9.11¢) -
Erasin (UBXD2, KIAA0242) UBXN-4 - Ubx7
- - - Ubx6
TUG TUG (ASPL) B0024.10 Ubx4 (YOSB, SPBC21C3.11) Ubx4
UBXD1 UBXD1 UBXN-6 - -
Rep-8 Rep-8 (UBXD6) - - -
UBXD3 UBXD3 - - -
? - UBXN-5°¢ - -

—, no homologue identified.

* UBXN-2 has highest homology to p47, but lacks an amino-terminal UBA domain.
® Ucp10 has clear homology to human ETEA, but lacks, like S. cerevisiae Ubx3, an amino-terminal UBA domain.

¢ No UBXN-5 homologue could be identified in any organism.

other members of the p47 subfamily within the SEP
and UBX domains. An interesting feature of the p47
subfamily is the presence of a second p97-binding site
at the carboxy-terminal end of the SEP domain [9, 31].
This linear motif is variably called ‘FxGzGQxb motif’
[32], ‘binding site 1’ (BS1) [31] or ‘SHP box’ [33] and is
also found in other Cdc48/p97-interacting proteins,
among them the Ufd1 subunit of the heterodimeric
Ufd1-Npl4 cofactor and members of the Derlin
membrane protein family implicated in ER-associat-
ed protein degradation [31-35]. Intriguingly, the
binding site of BS1 has been reported to overlap
with the UBX domain-binding site at the N domain of
Cdc48/p97 [36], even though the implications for the
binding of a p47 trimer to a p97 hexamer have not yet
been addressed in molecular detail.

The FAF1 subfamily is characterized by a domain
architecture consisting of an amino-terminal UBA
domain, a carboxy-terminal UBX domain, and a
central UAS domain of unknown function exhibiting a
thioredoxin-like fold (PDB entries 2ec4, 2dlx;
SMART database entry sm00594). This subfamily
can be further subdivided into three groups (Table 1,
Fig. 2): true FAF1 homologues, which are exclusively
found in insects and vertebrates, and ETEA and
UBXD7 homologues, which are conserved from yeast
to human. True FAF1 homologues contain two
ubiquitin-like domains of unknown function in the
amino-terminal third of the protein, while ETEA

homologues are characterized by one or two trans-
membrane regions near the amino terminus. UBXD7
homologues are more distantly related to the FAF1
and ETEA subgroups. They possess neither ubiquitin-
like nor transmembrane domains, but contain a
ubiquitin-binding UIM (ubiquitin interaction motif)
between the UAS and UBX domains (Fig. 2) [7].
The SAKS1 subfamily comprises two groups of
proteins, true SAKS1 homologues and Erasin-like
proteins, which are conserved from yeast to human
and share a central region of homology that is not
found in other UBX subfamilies. SAKS1 homologues
typically contain an amino-terminal UBA domain and
a carboxy-terminal UBX domain, even though some
fungal homologues lack the UBA domain (Fig. 2).
Erasin-like proteins exhibit a differing domain archi-
tecture: the UBX domain is not located at the extreme
carboxy terminus but is followed by a membrane
insertion domain [37], and the amino-terminal UBA
domain is replaced by a thioredoxin-like domain
weakly homologous to UAS domains of the FAF1
subfamily. While both the unique shared central
region of homology as well as the overall homology
to true SAKSI1 proteins support the classification of
Erasin-like proteins into the SAKS1 subfamily, the
presence of a divergent UAS domain suggests some
evolutionary relationship to the FAF1 subfamily. The
analysis of UAS domain function(s) may help to
clarify this point in the future.
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Figure 2. The UBX protein family. Subfamilies and subgroups
were classified based on sequence homologies outside the UBX
domain as identified by systematic PSI-BLAST searches. Shown
are representative members of the subfamilies indicated at the left.
Defined domains are labelled, and sequence homology outside
defined domains is indicated by similar colours. In addition to the
true UBX proteins, some proteins containing UBX-like domains
are depicted at the bottom. Human VCIP135 possesses a recog-
nizable UBX domain which, however, also shows significant
homology to UBX-like and ubiquitin-like domains (see text).
UBX and UBX-like domains are in red. The ‘binding site 1’ (BS1)
Cdc48/p97-binding motif found in members of the p47 subfamily is
indicated by a small red bar at the carboxyl-terminal end of the SEP
domain. Ubiquitin-binding domains including the UBA and UIM
domains and the catalytic Otubain-like ubiquitin hydrolase domain
(OTU) are in yellow. Other domains discussed in the text are in
grey, including SEP, ubiquitin-like (UbL), UAS and PUB domains.
Transmembrane and membrane insertion regions are indicated by
black, unlabelled bars. Hs, Homo sapiens; At, Arabidopsis
thaliana; Sp, Schizosaccharomyces pombe; Sc, Saccharomyces
cerevisiae.

The TUG subfamily is relatively heterogeneous, with
members in all eukaryotes and a UBX domain that is
localized towards the centre of the protein. Interest-
ingly, some members of this subfamily contain a
ubiquitin-like domain at their amino terminus [38].
Members of the UBXD1 subfamily, which are found
in all eukaryotes except fungi, show a high degree of
sequence conservation [39] and possess a central PUB
domain in addition to the carboxy-terminal UBX
domain [40-42]. The small vertebrate Rep8 subfam-
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ily is characterized by amino-terminal transmembrane
spans and a carboxy-terminal UBX domain. Finally,
UBXD3 homologues are exclusively found in mam-
mals.

The UBX domain: a general Cdc48/p97-binding
module

A structure-based sequence alignment of UBX do-
mains revealed a highly conserved surface patch
consisting of an arginine residue in strand 1 and an
FPR motif in the loop connecting strands 3 and 4
(Fig. 1) [2]. This R...FPR surface patch is absent from
ubiquitin and other ubiquitin-like proteins and was
suggested to constitute a conserved binding site for an
elusive interactor [2]. In a subsequent study present-
ing the solution structure of the p47 UBX domain, it
was shown that this interactor is in fact the Cdc48/p97
AAA ATPase, and that the UBX domain binds to the
amino-terminal N domain of p97 [3]. Molecular
details of the interaction were revealed by the
structure determination of a complex between the
p47 UBX domain and a p97 fragment comprising the
N and D1 domains [9]. The UBX domain binds to a
hydrophobic pocket between the two subdomains of
the p97 N domain. Intriguingly, the conserved
R...FPR surface patch was found to be the major
binding site of the UBX domain, and mutation of this
motif greatly reduced p97 binding [9].

Mapping of the p47-p97 binding interface led to two
important conclusions. First, the absence of the
R...FPR motif in ubiquitin itself suggests that ubig-
uitin binds with significantly lower affinity to Cdc48/
p97 than do UBX proteins. Even though this pre-
diction has not been verified yet, Cdc48/p97 appears
to bind more efficiently to UBX domains [8] than to
ubiquitin [14, 28] in pulldown experiments in vitro.
Second, the high conservation of the R...FPR motif
within UBX domains indicates that most, if not all,
UBX proteins should be able to bind Cdc48/p97 [9,
29]. Indeed, work from several laboratories studying
UBX proteins in baker’s and fission yeast demon-
strated convincingly that the UBX domain is a general
Cdc48/p97-binding module [6-8]. Subsequently, p97
binding has also been demonstrated for all UBX
proteins from higher eukaryotes tested (FAF1 [43];
Erasin [37]; SAKSI1 [44, 45]; AtPUX1 [46]). Together,
these findings spurred the idea that UBX proteins are
adaptors for Cdc48/p97 that regulate its interactions
with ubiquitylated substrates [29].

In summary, proteins containing a UBX- or UBX-like
(see below) domain constitute by far the largest group
of bona fide Cdc48/p97 cofactors to date. Even though
the precise cellular function of most of these proteins
is still unknown, current knowledge supports the view
that they form a large and diverse family of predom-
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inantly adaptor proteins that recruit Cdc48/p97 to
specific substrates and/or cellular locations.

Origin of the UBX domain

The close structural similarity and the functional
relationship between the UBX domain and ubiquitin
provokes the interesting question about the evolu-
tionary origin of the UBX domain. Homologous
recombination involving the polyubiquitin gene
locus is believed to be a relatively frequent event in
evolution that gave rise to, and perhaps actively
maintains, ubiquitin fusions with ribosomal subunits
L40 and S27 (and some other proteins) [reviewed in
ref. 47]. These ubiquitin fusions appear to be advanta-
geous for ribosomal subunit folding and/or assembly
[48], and are subsequently cleaved by cellular ubiqui-
tin hydrolases, resulting in free ubiquitin and mature
ribosomal proteins. Because the free ubiquitin gen-
erated from ribosomal fusion proteins has to maintain
its essential cellular functions, there has been strong
selective pressure during evolution to conserve the
precise wild-type ubiquitin sequence within the ribo-
somal fusion proteins. Interestingly, this selection
pressure was apparently lost for non-cleavable ubiqui-
tin fusions found in certain protists, leading to the
evolution of divergent sequences, but not structures
[49].

In addition to ribosomal ubiquitin fusion proteins,
there is a large group of proteins containing ubiquitin-
like domains that are more closely related to ubiquitin
than to UBX domains at the sequence level [29, 50,
51]. Among them are soluble proteasomal receptor
proteins like Rad23 and Dsk2/PLIC, which recruit
ubiquitylated substrate proteins to the 26S protea-
some, further proteasome-interacting proteins like
Ubp6/USP14 and Parkin, but also proteins without
detectable affinity for the 26S proteasome [51]. If
these proteins containing ubiquitin-like domains also
evolved by (a) recombination event(s) with the
polyubiquitin gene locus, there must have been
selective pressure to maintain some ubiquitin func-
tion(s) other than conjugate formation, for example
recognition by ubiquitin-binding proteins at the
proteasome or at other cellular locations.

It is tempting to speculate that UBX domain-contain-
ing proteins also evolved following fusion of a
ubiquitin moiety to preexisting proteins, which might
already have functioned as substrate receptors for an
ancient Cdc48/p97-like AAA ATPase turning over
ubiquitylated substrates. Subsequently, there must
have been positive selection for UBX domains to bind
specifically to the N domain of Cdc48/p97, and
negative selection against binding to other AAA
ATPases and to ubiquitin-binding domains. In support
of this speculation, key residues within the Cdc48/p97

UBX domain proteins

N domain for the interaction with UBX domains are
not conserved in the highly homologous AAA ATP-
ase VAT from Thermoplasma acidophilum [9], an
archaeon lacking both ubiquitin and UBX proteins.
Perhaps UBX proteins and Cdc48/p97 coevolved in
order to allow eukaryotic cells to deal efficiently with
specific substrates requiring segregase activity for
turnover, while bulk degradation of ubiquitylated
proteins occurs in a Cdc48/p97-independent manner.
Of note, some Cdc48/p97 cofactors, including the Npl4
subunit of the Ufd1-Npl4 heterodimer and the deubi-
quitylating enzyme Otul (Fig.2), possess amino-
terminal domains that interact with the N domain of
Cdc48/p97 [31, 36, 52] in a manner resembling that of
UBX domains [36]. Like UBX domains, these do-
mains exhibit the -grasp fold of the ubiquitin super-
family, and even though they lack the R...FPR motif
found in true UBX domains, mutational and structural
analyses demonstrated that residues at or close to the
corresponding positions make equivalent contacts to
Cdc48/p97 [31, 36]. As these domains show higher
sequence similarity to each other than to UBX
domains, ubiquitin-like domains, or ubiquitin itself,
we suggest to classify them as ‘UBX-like’. It is unclear
whether UBX-like domains diverged from true UBX
domains, or whether a second, independent ubiquitin
fusion event may have given rise to this relatively
small group of Cdc48/p97 cofactors. In favour of the
first possibility, the human deubiquitylating enzyme
VCIP135 harbours a domain with clear homology to
UBX domains that may represent a ‘missing link’
between UBX, UBX-like and ubiquitin-like domains.
PSI-BLAST homology searches using residues 770 to
860 of human VCIP135 as query sequence generate
hits with representatives from all three domain
families (data not shown). In contrast to ubiquitin-
like domains, however, the UBX(-like) domain of
VCIP135 possesses a true R...FPR motif, consistent
with its ability to interact with p97 [53].

Regulation of Cdc48/p97 function by UBX proteins
and other cofactors

A regulation system based on combinatorial cofactor
interactions

The large number and diversity of Cdc48/p97 func-
tions in the cell requires the precise regulation of its
activity not only to keep the right balance between
different simultaneous tasks, but also to turn on or off
specific functions during the cell cycle. This spatial and
temporal regulation is mediated by different cofac-
tors, which assemble in certain combinations into
distinct Cdc48/p97 complexes possessing specific
functions. Cofactors can occupy two partially over-
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Table 2. Classification of Cdc48/p97 cofactors.
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Type of Cofactor Identified Proteins®

Features

Functions

Substrate-recruiting
major

Ufd1-Npl4, p47/Shpl1, p37,
UBXD4” 9, Socius” ©

Mutually exclusive binding to
Cdc48/p97

UBX(-like) domain OR BS1 motif

Ubx2(/ETEA?), Ubx5 9,
Erasin®?, VIMP, Derlins,
SAKS1°?, FAF1° 9

Substrate-recruiting
additional

UBX(-like) domain AND BS1 motif

Binding to Cdc48/p97 is not mutually
exclusive

Decision between major
cellular pathways: membrane
fusion versus protein
degradation (and others)

Co-adaptors for specific
pathways: improve substrate
binding and/or provide
additional spatial regulation

Join major substrate-recruiting

cofactor

Substrate-processing VCIP135, Otul, Ufd3,

Ufd2, PNGase?, Ataxin3¥

Combinatorial binding within one
Cdc48/p97 complex possible

Any Cdc48/p97 interaction motif

Additional enzymatic activities

Regulation of substrate fate:
stabilization versus degradation

Join distinct substrate-recruiting
complexes

Miscellaneous AtPUX1, SVIP

Any Cdc48/p97 interaction motif

Regulation of oligomeric
state or localization

No cross-talk with other cofactors?

¥ UBX and UBX-like proteins are depicted in bold;

" assignment to the major substrate-recruiting category is solely based on homology to p47/Shp1 and p37 and thus speculative;

° adaptor function inferred;
9 involvement of a major substrate-recruiting cofactor inferred.

lapping binding sites in the Cdc48/p97 N domain [9,
36] and at least one additional interaction site in the
D2 domain [42, 52, 54]. As the Cdc48/p97 homohex-
amer offers six times these binding sites, the potential
to interact with different cofactor combinations is
enormous. However, not all combinations are possible
because cofactors apparently bind in a hierarchical
manner. From the current state of knowledge, four
groups of Cdc48/p97 cofactors can be distinguished:
major versus additional substrate-recruiting cofactors,
substrate-processing cofactors and miscellaneous in-
teractors (Table 2). The major and additional sub-
strate-recruiting cofactors connect Cdc48/p97 to spe-
cific cellular pathways. Cofactors of the substrate-
processing class, in contrast, accelerate and/or regu-
late the fate of substrates after recruitment, often by
exerting additional enzymatic activities downstream
of substrate turnover by Cdc48/p97. The last category
contains cofactors that are believed to regulate Cdc48/
p97 activity by various other mechanisms. Notably,
UBX and UBX-like proteins occupy the most central
positions in this regulation system.

Substrate-recruiting cofactors

Although Cdc48/p97 can directly interact with un-
folded proteins [15, 55] and with ubiquitin [14] in vitro,
it is believed that Cdc48/p97 requires cofactors of the
major substrate-recruiting subgroup to exert its func-
tions in vivo. Substrate-recruiting cofactors act as
adaptor proteins for Cdc48/p97, allowing a stable

association of the Cdc48/p97 complex with typically
ubiquitylated substrate proteins [14, 16, 28, 29, 56].
The recruitment function is often highlighted by the
presence of ubiquitin-binding domains (Fig.2). For
example, proteins with a UBA/UBX domain archi-
tecture like Shp1/p47, yeast Ubx2 and UbxS5 and the
mammalian proteins FAF1 and SAKS1 (Y33K), are
able to bind to ubiquitylated substrates with their
amino-terminal UBA domain while interacting with
Cdc48/p97 via their carboxy-terminal UBX domain [8,
28, 43, 45].

Substrate-recruiting cofactors can be subdivided into
major substrate-recruiting cofactors like p47/Shpl or
the heterodimer Ufd1-Npl4, and proteins acting as
coadaptors like Ubx2 or VIMP (Table 2). The impor-
tance of the major substrate-recruiting cofactors lies in
the separation of fundamentally distinct cellular func-
tions of Cdc48/p97. The Cdcd8/p97°™'™ and p97°
complexes control the fusion of homotypic membranes
[4, 30], while ubiquitin-dependent protein degradation
pathways require the Cdc48/p97"" ' ™" complex [5, 14,
19, 56-61]. The crucial role of major substrate-recruit-
ing cofactors in these processes is reflected by the
strong phenotypes of mutants in the corresponding
genes in yeast: UFD] and NPL4 are essential, and null
mutants of the yeast p47 homologue SHPI display a
severe growth phenotype [7, 8,59, 62, 63]. Surprisingly,
however, shpl mutants have also been found to exhibit
defects in certain ubiquitin-dependent degradation
pathways [7, 8]. Conversely, the p97"""'™P complex is
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also involved in the reformation of the nuclear
envelope double-membrane structure after mitosis
[64, 65]. Even though the mechanism underlying the
latter process has recently been shown to be the p97V !
NPM_mediated extraction of Aurora B from chromatin
[23], an activity resembling the mobilization function of
the Cdc48/p97"" ™™ complex in the ERAD and OLE
pathways, the possibility exists that even the major
substrate-recruiting cofactors possess partially over-
lapping functions. Clarification of this important point
has, however, to await the identification of additional
cellular pathways and substrates involving Cdc48/
p97VIINE yeopsus Cded8/p975™! P and a more detailed
understanding of the differences between both com-
plexes at the molecular level.

In contrast to UFDI1, NPL4 and SHPI, deletions of
other yeast UBX genes give rise to mild, if any,
phenotypes [6-8]. Together with the unexpected
finding that the yeast Ubx2 protein acts as coadaptor
for the Cdcd8V'™NP" complex in ERAD [66, 67], the
classification of these UBX proteins in a separate
category of additional substrate-recruiting cofactors
appears appropriate (Table 2). It is likely that several
mammalian UBX proteins with demonstrated or
assumed substrate-recruiting function also belong to
this latter category. SAKS1 (Y33K) and Erasin are
both involved in ERAD [37, 44, 45], while FAF1
appears to possess a role in the degradation of a
mammalian UFD model substrate [43]. The role of
these UBX proteins in well-characterized Ufd1-Npl4-
dependent pathways suggests that they, like Ubx2,
also function as additional substrate-recruiting cofac-
tors of the p97Y™!™NP* complex, even though this has
not yet been addressed experimentally. In a more
general sense, non-UBX cofactors like the mamma-
lian VIMP protein and members of the Derlin family
also fit into this group. Even though they do not
appear to bind ERAD substrates directly, they recruit
Cdc48/p97 to sites of ERAD at the ER membrane [68,
69], thereby probably improving the efficiency of
substrate turnover.

Mechanism of separating different Cdc48/p97
Junctions

Specific discrimination between different basic
Cdc48/p97 functions in the cell is achieved by the
mutually exclusive binding of the major substrate-
recruiting cofactors to Cdc48/p97, resulting in the
formation of distinct Cdc48/p97Y™ NP Cdc48/p97P*
and Cdc48/p97"*" complexes [30, 56, 70]. While the
molecular basis underlying this exclusivity is not
entirely clear, it appears to rely on the simultaneous
presence of a UBX(-like) domain and the BSI-
binding motif in Ufd1-Npl4, p47/Shpl and p37.
Because the binding sites for UBX(-like) domain
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and BS1 on the N domain of Cdc48/p97 overlap [9, 31,
36], it is unlikely that both binding modules interact
with the same N domain of the Cdc48/p97 hexamer. If
binding to two adjacent N domains is assumed, then
the stable p47/Shpl trimer (and probably also the
bona fide trimers p37, UBXD4 and Socius) would
occupy all six N domains of the Cdc48/p97 hexamer,
thus precluding any Ufd1-Npl4 interaction. Converse-
ly, stable binding of Ufd1-Npl4 to any two N domains
would leave no space for the binding of a symmetric
p47/Shpl trimer. In addition to the steric hindrance,
Ufd1-Npl4 and p47/Shpl seem to induce different
conformational changes in the Cdc48/p97 hexamer
[26, 36, 71] that might prevent binding of the
respective other major substrate-recruiting cofactor.
In contrast, Cdc48/p97 cofactors harbouring only a
single UBX(-like) or a BS1-binding module, e.g.
Ubx2, the mammalian Derlins and VCIP135, are
apparently still able to dock onto unoccupied N do-
mains of Cdcd8/p97V ' ™1 or Cdcd8/p97°*” complexes
(see below).

Shpl/p47 regulates Cdc48/p97 activity in time and
space

The UBX protein p47 was the first cofactor of
mammalian p97 to be identified [4]. p977* is required
for the fusion of homotypic membranes of the nuclear
envelope, the ER and the Golgi apparatus [4, 53, 64].
The reassembly of the Golgi complex and the
reformation of the nuclear envelope are membrane
fusion events that occur only once during the cell
cycle, at the end of mitosis. Thus, an additional layer of
regulation for the p97°*’ complex is required, which is
achieved by the temporal and spatial regulation of the
adaptor itself. During interphase, p97°*-mediated
Golgi membrane fusion is prevented by the strictly
nuclear localization of p47 mediated by its nuclear
localization signal [72]. In addition, p47 is phosphory-
lated by Cdk1 and thereby kept inactive after nuclear
envelope breakdown in order to prevent an immedi-
ate reversion of Golgi fragmentation prior to and
during mitosis [72]. At the end of mitosis, the
inhibitory phosphorylation is removed and the active
p97**" complex can act on its substrates until p47 is
sequestered again in the newly formed nucleus. This
strict spatial and temporal regulation of p47 poses the
question how other homotypic fusion processes are
mediated during interphase. Recently, the p47 pa-
ralogue p37 was identified and shown to regulate p97
in the maintenance of ER and Golgi during interphase
[30]. Interestingly, the activity of the p97*” complex
during interphase appears to be independent of
substrate ubiquitylation, in contrast to p97** activity
[30]. Whether the other p47 subfamily members,
UBXD#4 and Socius, are also involved in homotypic
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membrane fusion events, perhaps in a cell cycle- or
tissue-specific manner, remains to be addressed.

The Cdc48/p97"" "™ complex is fine-tuned by Ubx2
in space

The notion that major substrate-recruiting cofactors
are necessary, but not always sufficient to direct
Cdc48/p97 to specific cellular pathways was supported
by the unexpected finding that the yeast Ubx2 protein
further regulates the function of Cdc48/p97V ! ™! [66,
67]. Cdcd8/p97V" '™ has been found to be involved in
several different ubiquitin-dependent protein degra-
dation pathways [5, 14, 57-61], in the mobilization of
the Spt23 transcription factor [14] and in nuclear
envelope reformation after mitosis [23, 64, 65]. In
addition, p97Y"“' ™! has been linked to mitotic spindle
disassembly and chromosome segregation [73, 74],
although this has been disputed recently [75]. These
diverse functions raise the question how substrate
specificity of the Cdcd8/p97Y" 4™ complex is ach-
ieved.

At least as part of an answer, additional substrate-
recruiting cofactors for Cdcd8/p97V" '™ have been
identified in the ERAD pathway. Among them, Ubx2
was the first UBX protein shown to be able to form a
stable complex with Cdc48Y' '™ [67]. As an integral
ER membrane protein, Ubx2 provides a means of
spatial regulation of Cdc48Y'"™! by recruiting the
complex to the ER [67, 76]. In the ERAD process
itself, Ubx2 plays a central role as a coadaptor for
Cdc48YMI™NPH that is required for the stable binding of
Cdc48Y4™NPM t5 ERAD substrates and ubiquitin
ligases [66, 67]. Ubx2 thus improves the efficiency of
ERAD by coordinating the ubiquitylation and retro-
translocation activities necessary for substrate turn-
over [66, 67, 76].

In the mammalian system, the regulation of p9
in ERAD appears to be even more complex. Besides
the putative Ubx2 orthologue ETEA (Fig.2), the
UBX proteins Erasin and SAKS1 (Y33K) and the
non-UBX p97 cofactor VIMP may act as additional
recruitment factors [34, 37, 44, 45]. On top of this,
mammalian members of the Derlin family, which
possess Cdc48/p97-binding sites of the BS1 type, also
contribute to the recruitment of Cdc48/p97 to the ER
membrane in ERAD [34, 35]. The direct interaction
of p97 with the mammalian ERAD ubiquitin ligases
Hrdl and gp78 provides yet another means of
coupling p97 to the ERAD process [68, 69, 77, 78].
The molecular interplay between all these cofactors
and Ufd1-Npl4 in regulating p97 activity in ERAD
remains an interesting topic for future studies.

7del-Npl4

Review Article 2367

Turnover of recruited substrates: substrate-processing
cofactors

In contrast to the substrate-recruiting cofactors, sub-
strate-processing factors of Cdc48/p97 are a hetero-
geneous group of proteins that often possess enzy-
matic activity themselves (Table 2). They are thought
to act downstream of the substrate-recruiting cofac-
tors and to expedite, and sometimes control, the fate
of substrates after their recruitment to Cdc48/p97.
Only few known substrate-processing cofactors pos-
sess UBX(-like) domains, including VCIP135 and
Otul (see below). The best-characterized non-UBX
substrate-processing factors are Ufd2 and Ufd3 from
budding yeast. Ufd2 and Ufd3 compete for binding to
the D1/D2 domains of Cdc48 [52] and are thereby able
to determine the fate of substrate proteins [reviewed
in ref. 79]. Ufd2 promotes degradation of oligo-
ubiquitylated Cdc48V™'"™NP* substrates by catalyzing
ubiquitin chain elongation [20], thus marking them for
recognition by the 26S proteasome. In addition, Ufd2
also provides a physical link to the 26S proteasome via
the proteasomal receptors Rad23 and Dsk2 [80].
Ufd3, in contrast, stabilizes substrates due to its
antagonistic binding to Cdc48 [52]. In higher eukar-
yotes, Ufd2 controls myosin assembly and myofibril
organization by catalyzing the degradation of the
myosin-specific chaperone, UNC-45 [81, 82].

While Ufd2 and Ufd3 provide an additional layer of
control in certain Cdc48-dependent degradation path-
ways, other substrate-processing cofactors appear to
execute their (enzymatic) function on predetermined
substrates without further regulatory impact. For
example, peptide:N-glycanase (PNGase) removes
sugar moieties from glycosylated ERAD substrates
before they are degraded by the 26S proteasome [40,
41, 44, 83]. The deubiquitylating enzyme (DUB)
Ataxin-3 is another substrate-processing factor in-
volved in mammalian ERAD [84, 85], even though
the physiological significance of removing ubiquitin
moieties from ERAD substrates is still unclear.
Remarkably, and in analogy to Ufd2, both PNGase
and Ataxin-3 link p97 with the 26S proteasome by
means of interacting with the human Rad23 homo-
logues HHR23A and B [41, 83, 86, 87]. This tight
coupling of Cdc48/p97 segregase activity with the 26S
proteasome is likely to ensure an efficient downstream
turnover of Cdc48/p97 substrates destined for degra-
dation.

The UBX(-like) proteins VCIP135 and Otul:
substrate-processing DUBs

The human UBX(-like) protein VCIP135 is a DUB of
the Otubain family and so far the only cofactor
identified to cooperate with the p97** and p97°*’
complexes in membrane fusion events [53, 88]. The
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deubiquitylation of a presumably oligo-ubiquitylated,
unknown p97°* substrate by VCIP135 is required for
the reassembly of mitotic Golgi fragments in vitro [21,
53]. VCIP135 has also been shown to cooperate with
the p97°* complex in maintaining Golgi and ER
membranes during interphase [30]. Intriguingly, the
DUB activity of VCIP135 is dispensable in the context
of p97° function, consistent with the ubiquitylation-
independent activity of p97** in membrane fusion
processes. This raises the interesting possibility that
VCIP135 combines two distinct substrate-processing
activities: a general, still uncharacterized function
required for p97*- and p97**’-dependent processes,
and the DUB activity specifically required for deubi-
quitylation of p97°* substrates.

In contrast to VCIP135, the yeast Otubain family
member Otul has been characterized in the context
of Cdc48VM!"Nrld_dependent degradation processes
[52], where it participates in the aforementioned
antagonistic interplay of Ufd2 and Ufd3. Otul can
bind to Cdc48 simultaneously with Ufd3 and remove
preexisting ubiquitin tags from substrates stabilized
by Ufd3 [52], thereby preventing their degradation.
Obviously, this stabilizing effect of Otul and Ufd3
only makes sense for substrates that are still func-
tional, as is the case for the transcription factor Spt23
in the OLE pathway studied by Rumpf and Jentsch
[52]. In ERAD, in contrast, Cdc48/p97 substrates
have already been identified as misfolded by the ER
quality control system and are destined for degrada-
tion. This would make any antagonistic function of
Otul and/or Ufd3 dispensable, if not undesirable. In
accordance with this consideration, Ufd2 is involved
in the degradation of ERAD substrates [80, 89] and is
found in one complex with Cdc48"'™™P* and Ubx2,
while Ufd3 is not [our unpublished data].

Other means of regulation

Although most Cdc48/p97 cofactors can be classified
according to the categories substrate-recruiting and
—processing, additional mechanisms to regulate Cdc48/
p97 activities exist. One possibility is to control the
oligomeric state of Cdc48/p97. Such a function has been
described for the TUG homolog Pux1 from Arabidopsis
thaliana, which disassembles hexameric AtCdc48 com-
plexes into smaller units [46, 90]. PUX1 mutants display
accelerated plant growth, but specific cellular pathways
regulated by AtPux1 have not yet been identified.

The rat protein SVIP (small VCP-interacting protein)
is a non-UBX p97/Cdc48 interactor anchored to
microsomal membranes, which has been shown to be
mutually exclusive with p47 and Ufd1-Npl4 in p97
binding [70]. As SVIP comprises only 76 amino acids,
it is unlikely to be a classical substrate-recruiting
cofactor. Rather, it appears to act as a negative
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regulator of p97 in the ERAD pathway [91], perhaps
by interfering with the formation of a stable p97Y™!-Nek
complex at the ER.

Concluding remarks

Many members of the UBX protein family are still
uncharacterized. As regulatory cofactors, their func-
tional analysis provides an excellent starting point for
the elucidation of novel cellular functions of Cdc48/
p97. In particular, studying UBX proteins which are
only present in higher eukaryotes, like Rep-8 and
UBXD3, will help to reveal interesting new Cdc48/
p97-dependent processes specific to multicellular
organisms.

For some mammalian UBX proteins, cellular func-
tions have already been described, yet the involve-
ment of Cdc48/p97 has not been addressed. The
putative mammalian homologue of Pux1, TUG, binds
to the GLUT4 glucose transporter and regulates its
plasma membrane localization [38, 92], suggesting a
role of Cdc48/p97 in vesicular transport to the plasma
membrane. Besides its characterization as substrate
recruitment factor in proteolysis pathways [43], the
human FAF1 protein has been implicated in apoptosis
and the NFxB pathway [93-98]. Furthermore, the rat
UBX protein Socius has been found to interact with
Rho GTPases and was suggested to be involved in the
organization of the actin cytoskeleton [99].

In conclusion, even though some principles governing
the regulation of Cdc48/p97 activities by UBX and
non-UBX cofactors have emerged, much remains to
be learned about the cellular pathways controlled by
specific cofactors and about the interplay of different
cofactors at the molecular level. And how many
Cdc48/p97 cofactors still await identification ?
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