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Abstract. Genomic profiling was performed on ex-
plants of late proliferative phase human endometrium
after 24-h treatment with progesterone (P) or oestra-
diol and progesterone (17b-E2+P) and on explants of
menstrual phase endometrium treated with 17b-E2+P.
Gene expression was validated with real-time PCR in
the samples used for the arrays, in endometrium
collected from early and mid-secretory phase endo-
metrium, and in additional experiments performed on
new samples collected in the menstrual and late
proliferative phase. The results show that late prolif-

erative phase human endometrium is more responsive
to progestins than menstrual phase endometrium, that
the expression of several genes associated with
embryo implantation (i.e. thrombomodulin, mono-
amine oxidase A, SPARC-like 1) can be induced by P
in vitro, and that genes that are fully dependent on the
continuous presence of 17b-E2 during P exposure can
be distinguished from those that are P-dependent to a
lesser extent. Therefore, 17b-E2 selectively primes
implantation-related genes for the effects of P.
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Introduction

Optimal development of the endometrium is an
essential prerequisite for successful blastocyst implan-
tation. Progesterone (P) is essential for secretory
differentiation of endometrium, and the need for
oestrogen in cooperation with P in regulating the
implantation process is species-specific [1]. Our

current knowledge of the cellular and molecular
events orchestrating endometrial growth and differ-
entiation prior to implantation is limited.
In the natural cycle, the human endometrium is
receptive during a short period, approximately 19 to
24 days after the onset of menstruation [2 – 6]. Prior to
and during this period, the endometrium undergoes
extensive morphological and physiological changes to
facilitate implantation of the embryo [2, 6, 7]. These
changes are tightly controlled by oestrogen and P [6, 8,
9]. The responsiveness of the endometrium to P is
partly dependent upon the pre-ovulatory changes that
have occurred under the influence of oestrogen. This
is illustrated by the fact that high oestrogen levels and/
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or prolonged oestrogen exposure accelerates endo-
metrial maturation, thus disturbing the synchrony of
embryo and endometrial development and subse-
quent implantation [10, 11]. Currently, there is no
clear definition and understanding of human endo-
metrial maturation and only limited knowledge about
the cellular mechanisms involved. We define mature
endometrial tissue as the physiological state of the
human endometrium that allows a correct response to
the luteal P, resulting in implantation of the embryo
and maintenance of pregnancy.
Our limited understanding of the processes underlying
endometrial maturation and P-controlled differentiation
prior to and during implantation is largely due to the lack of
relevant model systems to evaluate endometrial responses
under physiologically relevant conditions. Previous work
has demonstrated that explant culture of human endome-
trial tissue is a suitable model to study the response to
oestrogen and P, most likely due to the preservation of the
tissue context [12–14]. Using this model we showed
previously that the responsiveness of the endometrium to
oestrogen changes throughout the proliferative phase with
regard to the regulation of gene expression and prolifer-
ation [12].
The present study was designed to gain more insight
into the responses of human endometrium to P with
regard to gene expression and into the influence of
17b-oestradiol (17b-E2) on this process. To this end,
global gene expression analysis was performed on
human endometrial tissue fragments collected from
the menstrual and late proliferative phases after short-
term culture in the presence of P and 17b-E2.

Materials and methods

Human endometrial tissue. Endometrial tissue was collected from
26 women (20–45 years of age) with regular menstrual cycles who
underwent surgery for benign indications. The tissue was collected
from hysterectomy specimens for benign indications or by pipelle
biopsies during laparoscopy for sterilisation (Pipelle catheter,
Unimar Inc., Prodimed, Neuilly-Enthelle, France). It was docu-
mented that the women were not on any kind of steroid medication.
All women who agreed to participate in the study signed an
informed consent form according to a protocol approved by the
Medical Ethical Committee of the Academic Hospital Maastricht.
Tissue was transported to the laboratory in DMEM/Ham�s F12
medium on ice. A portion of each sample was fixed in 10%
buffered formalin for evaluation by histology. The endometrium
was dated according to clinical information with respect to the start
of the last menstrual period, which was reconfirmed by histological
examination of the tissue [15]. Of the 26 biopsy specimens, 11 were
collected in the proliferative phase [menstrual phase, cycle day
(CD)1–5, n=6; late proliferative phase, CD11–14, n=5], and 15
were collected in the secretory phase [early secretory (ES),
CD15–18, n=7; mid-secretory (MS), CD19–24, n=8]. Of the 11
biopsy specimens collected from the proliferative phase, 4 were
used for microarray studies, and 7 were used for validation
purposes with real-time PCR analysis. The biopsy specimens
collected from the secretory phase were used for validation only.

Explant cultures. Human endometrium explant cultures were
prepared from menstrual phase and late proliferative phase
endometrium as described by Punyadeera et al. [16]. In brief,
human endometrial tissue was cut into 2–3 mm3 pieces. A total of
24 explants were placed in Millicell-CM culture inserts (0.4 mm
pore size, 30 mm diameter; Millipore, France) in 6-well plates
containing 1.2 ml phenol red-free DMEM/Ham�s F12 medium
(Life Technologies, Grand Island, NY), supplemented with L-
glutamine (1 %), penicillin and streptomycin (1%, P/S). Cultures
were performed for 24 h. Previous experiments have shown that
collagenase activity remains very low in proliferative endometrial
tissue during the first 24 h of culture [17] and that the tissue viability
is not affected after 24 h of culture [13].
The explants prepared from late proliferative phase endometrium
were cultured in the presence of vehicle (0.1% ethanol), 17b-E2

and P (1 nM each), or P alone (1 nM). The 17b-E2 was included to
maintain the in vivo oestrogen support. In order to make inferences
with regard to the responsiveness of the endometrium before and
after prolonged in vivo oestrogen exposure, we also treated explant
cultures prepared from menstrual phase endometrium (CD3 and
CD4) with 17b-E2 and P. To test the importance of 17b-E2 in the
response of late proliferative phase endometrium to P, 17b-E2 was
also omitted from some cultures. The steroid hormones were
provided by Organon N.V. (Oss, The Netherlands).
Total RNA extraction and cDNA synthesis. Total cellular RNA
from explants was extracted using the SV total RNA isolation kit
(Promega, USA) according to the manufacturer�s protocol, with
slight modifications: The concentration of DNase-1 during DNase
treatment of the RNA samples was doubled, and the incubation
time was extended by 15 min in order to completely remove
genomic DNA. Total RNA was eluted from the column in 50 ml
RNase-free water and stored at �708C until further analysis. The
quality of the RNA samples was determined with the Agilent
bioanalyzer 2100 lab-on-a-chip (Agilent, USA). All the samples
analysed gave 28S to 18S ratios higher than 1.5. PCR for a
housekeeping gene, GAPDH, was performed to confirm that the
RNA samples were free of genomic DNA.
Total RNA (1 mg) was incubated with random hexamers (1 mg/ml,
Promega) at 708C for 10 min. The samples were chilled on ice for
5 min. To this mixture, a reverse transcriptase (RT) mix consisting
of 5� RT buffer (4 ml), 10 mM dNTP mix (1 ml ; Pharmacia,
Uppsala, Sweden), 0.1 M DTT (2 ml ; Invitrogen, CA, USA), and
superscript II reverse transcriptase (200 U/ml ; Invitrogen) was
added, and the samples were incubated at 428C for 1 h, after which
the reverse transcriptase was inactivated by heating the samples at
958C for 5 min. The cDNAwas stored at�208C until further use. In
each real-time PCR reaction, 50 ng cDNA template was used.
Affymetrix gene chip microarrays. Pooling of the RNA samples
was performed according to the phase of the menstrual cycle and
treatment conditions, i.e. two RNA samples from the menstrual
phase (CD3 and CD4) and two RNA samples from the late
proliferative phase (CD12 and CD13) were pooled. cRNA was
generated from the pooled RNA and was labelled with biotin
according to the Affymetrix protocol (Santa Clara, USA). cDNA
was hybridised to the Affymetrix HU-133A chips, which contains
approximately 22 000 human oligonucleotide probe sets, including
68 controls. The chip hybridisations were carried out in triplicate.
After washing, the chips were scanned and analysed using the
MicroArray suite MAS5. A detail description of the Affymetrix
chip content is available at the NetAffy analysis web page (http://
www.affymetrix.com/analysis/index.affx).
Microarray data analysis. Following gene chip data quality control,
data files (.EXP, .DAT, .CEL) generated by MAS5 were transferred
by FTP to the server housing the Rosetta Resolver Gene
Expression Data Analysis System. Rosetta Resolver uses Affyme-
trix gene chip error models to transform the raw data into a
processed form that can be used in various expression analyses and
allows normalization of sample data of triplicate hybridizations
using one-way analysis of variance (ANOVA) [18]. Changes in
expression levels between the control and the treated samples were
calculated using two criteria: (1) the absolute fold change (>2-fold)
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(e.g. the ratio between treated and control samples) and (2) a
corresponding p-value less than 0.01.
The use of microarrays results in a massive amount of data, which
requires special tools to filter and extract relevant information. By
combining the fold changes or log ratios and the p-value, we
generated a so-called significance code, which simplifies the
selection and extraction of genes of interest, especially when
analyzing various conditions. The significance code assigned to the
genes was based on ANOVA-retrieved p-values and up- or down-
regulation compared to the untreated samples. A significance code
of 1 (increased or up-regulated) was used for genes with p<0.01 and
a log ratio >0; a significance code of �1 (decreased or down-
regulated) was used for genes with p<0.01 and log ratio <0. For
genes that didn�t show significant regulation, the significance code
was 0 (log ratio =0 and p>0.01 independent of log ratio).
Data were then exported from Rosetta Resolver to the Spotfire
decision site 7.1 (Spotfire, Gçteborg, Sweden), in which gene sets of
interest were visualized and subsequently selected. Data were
analyzed through the use of Ingenuity Pathways Analysis (IPA,
Ingenuity� Systems, www.ingenuity.com). The data set containing
the significantly up- and down-regulated genes and the corre-
sponding expression values were uploaded into the application.
Each gene identifier was mapped to its corresponding gene object
in the Ingenuity Pathways Knowledge Base. These genes, called
focus genes, were overlaid onto a global molecular network
developed from information contained in the Ingenuity Pathways
Knowledge Base. Networks of these focus genes were then
algorithmically generated based on their connectivity.
A network is a graphical representation of the molecular relation-
ships between gene products. The gene products are represented as
nodes, and the biological relationship between two nodes is
represented as a line. All lines are supported by at least one
reference in literature, textbook, or canonical information stored in
the Ingenuity Pathways Knowledge Base. The intensity of the node
colour indicates the degree of up- (red) or down- (green)
regulation. Nodes are displayed using various shapes that represent
the functional class of the gene product.
Validation of array data using real-time PCR analysis. A selection
of genes was validated with q-PCR to confirm expression in the
samples used for microarray analysis. In addition, the expression of
these genes was evaluated in an independent series of experiments.
To confirm that the genes induced by P in vitro are indeed up-
regulated during the implantation window, we also assessed their
expression levels in endometrial tissue collected in the ES and MS
phases of the cycle.
Primers and probes were purchased from Perkin-Elmer Applied
Biosystems as pre-developed assays. Human cyclophilin A was
selected as an endogenous RNA control in order to normalize for
differences in the amount of total RNA added to each reaction.
Uncultured human endometrial tissue was included as a positive
control. All PCR reactions were performed using an ABI Prism
7700 sequence detection system (Perkin-Elmer Applied Biosys-
tems). The thermal cycling conditions comprised an initial decon-
tamination step at 508C for 2 min, a denaturation step at 958C for
10 min, and 40 cycles of 15 s at 958C, followed by 1 min at 608C.
Experiments were performed for each sample in duplicate.
Quantitative values were obtained from the threshold cycle
number (Ct), at which the increase in the signal associated with
exponential growth of PCR products was first detected with the
ABI Prism 7700 sequence detector software (Perkin-Elmer, Foster
city, CA) The fold-change in expression was calculated using the
DD Ct method, with cyclophilin A mRNA as an internal control
[19]. For a detailed description of the procedure, please refer to the
ABI user manual (http://www.uk1.unifreiburg.de/core/facility/tag-
man/user_bulletin_2.pdf).
Statistical analysis of real-time PCR results. Statistical tests were
carried out using the SPSS 11 (SPSS Inc., Chicago, IL) statistical
analysis package. The effects of 17b-E2+P and P alone on cultured
explants were analysed using the nonparametric paired Wilcoxon
signed rank test at a confidence level of 95%. The nonparametric
unpaired Mann-Whitney U test at a confidence level of 95 % was
employed to analyse the real-time PCR data generated from

uncultured ES phase endometrial tissue and uncultured MS phase
endometrial tissue.

Results

Validation of array data with quantitative real-time
PCR. Eight genes were selected from the initial
dataset on the basis of fold-change (�2-fold) and on
literature-documented expression during the im-
plantation window: (1) four genes previously descri-
bed in literature to be up-regulated during the
implantation window and selectively stimulated by
17b-E2+P in late proliferative phase but not men-
strual phase endometrium (Dickkopf homolog 1,
DDK1; thrombomodulin, THBD; monoamine ox-
idase A, MAOA; gastrin, GAS) [2, 20, 21]; (2) two
genes not yet reported that were selectively stimu-
lated by 17b-E2+P in late proliferative phase ex-
plants but not in menstrual phase explants (cytidine
deaminase, CDA; SPARC-like 1, SPARCL1); and
(3) two genes that were selectively stimulated by
17b-E2+P in menstrual phase explants but not in late
proliferative phase explants (trefoil factor 1, TFF1;
mammaglobin 1).
The real-time PCR results corroborated well with the
array data (Table 1). We performed additional inde-
pendent experiments to validate the observed effects
of treatment with 17b-E2+P and P alone (Fig. 1). From
the validated genes, DKK1, MAOA and SPARCL1
were significantly stimulated by P in late proliferative
and menstrual phase explants both in the presence and
absence of 17b-E2. The induction of SPARCL1
expression by P was significantly decreased in the
presence of 17b-E2 in both menstrual and late
proliferative phase explants.
The response of DKK1 to P was higher in the late
proliferative phase explants than in the menstrual phase
explants, whereas the induction of mammaglobin expres-
sion by 17b-E2+P and P alone was more pronounced in
menstrual phase than in late proliferative phase endome-
trium. Thrombomodulin expression was induced only by
P in late proliferative phase explants.
The expression of DKK1, THBD, MAOA, GAS,
CDA and SPARCL1 was also assessed in an inde-
pendent series of ES and MS endometrial samples to
confirm selective up-regulation in the implantation
window. The expression levels are presented in Fig. 2.
The expression of DKK1, MAOA, CDA and
SPARCL1 was significantly higher in MS endome-
trium compared to ES endometrium.
Gene expression in menstrual and late proliferative
phase endometrial tissue explants after 17b-E2+Por P
treatment. Treatment of late proliferative phase
endometrial tissue with 17b-E2+P up-regulated (�2-
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fold) the expression of 110 gene transcripts and down-
regulated (�2-fold) the expression of 109 gene tran-
scripts when compared to the control (vehicle)
(Table 2). Treating late proliferative phase explants
with P alone up-regulated (�2-fold) the expression of
107 gene transcripts and down-regulated (�2-fold) the
expression of 54 gene transcripts when compared to
the control (vehicle) (Table 3). A total of 77/107 up-
regulated and 42/54 down-regulated genes were also
modulated by 17b-E2+P treatment in late prolifera-
tive phase explants (Table 3).
The response of menstrual phase endometrium to 17b-
E2+P was less pronounced than that of late prolifer-
ative phase endometrium. Treatment of menstrual
phase endometrial tissue with 17b-E2+P up-regulated
(�2-fold) the expression of only 38 gene transcripts
and down-regulated (�2-fold) the expression of 79
gene transcripts when compared to the control sample
(vehicle) (Table 4).

Almost all genes modulated by 17b-E2+P in late
proliferative phase endometrium were specific for
that phase of the cycle. Of the 110 up-regulated (�2-
fold) gene transcripts, 100 were expressed in late
proliferative phase explants and not menstrual phase
explants; of these, 10 gene transcripts were docu-
mented to be up-regulated during the window of
implantation (Table 5). Of the 107 down-regulated
(�2-fold) gene transcripts, 102 were selective for late
proliferative phase explants; of these, 7 genes were
documented to be down-regulated during the implan-
tation window (Table 5). The genes regulated by 17b-
E2+P in both menstrual and late proliferative phase
explants are presented in Table 6.
Ingenuity Pathways Analysis. Ingenuity Pathways
Analysis revealed various significant networks of
interconnected focus genes after treatment with 17b-
E2+P. In late proliferative phase endometrium, five
highly significant networks were identified. Network 1

Table 1. Validation results of the microarray findings for selected genes.

Gene Real-time PCR individual samples Pooled array samples

E2+P M phase E2+P LP phase P alone M phase P alone LP phase E2+P E2+P P alone

CD3 CD4 CD12 CD13 CD3 CD4 CD12 CD13 M phase LP phase LP phase

DKK1 1.80 1.93 2.67 12.68 3.20 2.96 4.27 13.69 1.58 6.03 5.01

THBD 1.11 1.14 2.72 4.08 2.24 3.59 2.67 3.48 1.30 2.95 2.43

MAOA 0.97 1.19 5.64 1.85 1.82 1.80 6.36 1.19 1.10 2.59 2.00

GAS 0.69 0.26 1.07 3.07 1.51 0.57 1.95 2.49 1.00 2.19 1.58

CDA 1.27 0.62 1.97 4.01 1.09 1.34 1.02 3.61 0.32 2.82 1.86

SPARCL1 1.47 2.43 6.96 3.02 1.11 1.87 4.07 2.36 1.29 2.00 2.04

Gene transcript levels of DKK1, THBD, MAOA, GAS, CDA and SPARCL1 were assessed with quantitative real-time PCR in the
individual samples used for microarray hybridization. Data are presented as fold change [P, progesterone; E2, 17b-oestradiol; CD, cycle
day; M, menstrual (n=2); LP, late proliferative (n=2)].

Figure 1. Mean fold changes
found for DKK1, THBD,
MAOA, GAS, CDA and
SPARCL1 in menstrual phase
(M, n=4) and late proliferative
phase (LP, n=3) explants treated
with 17b-oestradiol and proges-
terone (17b-E2+P, dark grey
bars) or P alone (light grey
bars). Controls (open bars) were
cultured with vehicle alone. Data
are presented as fold changes
(*p<0.05).
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connected nodes IL1B, PLAU, MMP1, MMP3,
MMP7, MMP9, SERPINE1 and EDN1; network 2
connected IL8, MMP14, FGF2, PDGFB, ITGB3,
PDGFRA, PDGFRB, PTGS2 and EGR1; network 3
related TGFb2, TGFb3, INHBA, PTHLH, JUN,
SMAD3 and SMAD7; network 4 linked IGF1,
TNFSF11 and HOXA9; and network 5 coupled
ICAM1, CXCL10, IL15, SOCS1, RARa and
ARNT2. Network 1 is illustrated in Figure 3.
In contrast, in menstrual phase endometrium only two
highly significant networks were extracted from the
data. One network connected CCL5, TNFS11,
INTGB3, MAPK8 and ESR1. The second network
linked IFGBP3, TGFb2, FGF2, HGF, PDGFA,
MMP9, PTGS2, RARb and EGR1. The latter net-
work is presented in Figure 2.

Discussion

Previous work in our laboratory has shown that
explant cultures of human endometrial tissue are
biologically relevant in vitro models to investigate
oestrogen regulation of gene expression and prolifer-
ation [12, 16]. With regard to progestins, it has been
shown that tissue cultures of human endometrium are
also responsive, as evidenced by the suppressive
effects on the production and activation of MMPs
[12 – 14]. The present study was designed to gain more
insight into the responses of human endometrium to P
with regard to gene expression and the influence of
17b-E2. The results show that in explant cultures of
human endometrium, the expression of genes that
have been implicated in the process of embryo
implantation can be modulated by 17b-E2 and P.

Figure 2. Example of a highly significant network identified in the gene expression profile of menstrual phase endometrium treated with
17b-oestradiol and progesterone (17b-E2+P) as determined by the Ingenuity Pathways Analysis program. Green indicates down-regulated
genes, and pink indicates up-regulated genes.
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Table 2. Genes affected by 17b-oestradiol and progesterone (17b-E2+P) in explants of late proliferative phase endometrium.

Gene Gene Symbol fold
change

Accession # Function

cytochrome P450, family 26, subfamily A, polypeptide 1 CYP26A1 33.11 NM_000783.1 metabolism

hemoglobin, alpha 2 –- 28.18 V00489 –-

calpain 6 CAPN6 19.05 NM_014289.2 metabolism

heart and neural crest derivatives expressed 2 HAND2 10.47 NM_021973.1 transcription
factor

secretoglobin, family 1D, member 2 SCGB1D2 10.00 NM_006551.2 extracellular
matrix

hemoglobin, alpha 1 HBA1 9.55 AF105974.1 transport

FK506 binding protein 5 FKBP5 7.76 NM_004117.1 metabolism

chemokine (C-X-C motif) ligand 11 CXCL11 7.59 AF030514.1 signal
transduction

carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 CHST7 7.08 NM_019886.1 metabolism

glycine-N-acyltransferase GLYAT 6.17 AW024233 metabolism

hemoglobin, beta HBB 6.17 M25079.1 transport

dickkopf homolog 1 (Xenopus laevis) DKK1 6.03 NM_012242.1 growth factor

Homo sapiens mutant beta-globin (HBB) gene, complete cds. –- 5.50 AF059180 –-

neuronal pentraxin II NPTX2 5.50 U26662.1 cell adhesion

PDZ domain containing 3 PDZK3 5.50 AF338650.1 signal
transduction

apolipoprotein D APOD 4.90 NM_001647.1 transport

alkaline phosphatase, placental (Regan isozyme) ALPP 4.79 NM_001632.2 metabolism

keratin 6A KRT6A 4.68 J00269.1 structural
protein

G protein-coupled receptor 105 GPR105 4.47 NM_014879.1 signal
transduction

solute carrier family 7, member 8 SLC7A8 4.37 NM_012244.1 transport

hypothetical protein FLJ11539 FLJ11539 4.17 NM_024748.1 –-

a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 8 ADAMTS8 3.98 NM_007037.1 cell growth

integrin, beta-like 1 ITGBL1 3.80 NM_004791.1 cell adhesion

potassium inwardly-rectifying channel, subfamily J, member 8 KCNJ8 3.80 NM_004982.1 transport

RGC32 protein RGC32 3.80 NM_014059.1 cell growth

prostaglandin-endoperoxide synthase 1 PTGS1 3.72 NM_000962.1 metabolism

regulator of G-protein signalling 2, 24kDa RGS2 3.72 NM_002923.1 signal
transduction

cannabinoid receptor 1 (brain) CNR1 3.55 U73304 signal
transduction

hemoglobin, delta HBD 3.39 NM_000519.2 transport

keratin 6B KRT6B 3.39 L42612.1 structural
protein

sushi-repeat-containing protein, X-linked SRPX 3.24 NM_006307.1 cell adhesion

thrombomodulin THBD 3.24 NM_000361.1 membrane
protein

delta sleep inducing peptide, immunoreactor DSIPI 3.16 AL110191.1 transcription
factor

cytochrome P450, family 4, subfamily B, polypeptide 1 CYP4B1 3.09 J02871.1 metabolism

hemoglobin, gamma A HBG1 3.09 NM_000559.1 transport

paired basic amino acid cleaving system 4 PACE4 3.09 NM_002570.1 signal
transduction

insulin receptor substrate 2 IRS2 3.02 BF700086 signal
transduction
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Table 2 (Continued)

Gene Gene Symbol fold
change

Accession # Function

metallothionein 1K MT1K 2.95 R06655 transport

amylase, alpha 1A; salivary AMY1A 2.88 NM_004038.1 metabolism

fibrinogen-like 2 FGL2 2.88 NM_006682.1 extracellular
matrix

latent transforming growth factor beta binding protein 1 LTBP1 2.88 NM_000627.1 protein binding

monoamine oxidase A MAOA 2.88 NM_000240.1 transport

retinol binding protein 4, plasma RBP4 2.88 NM_006744.2 transport

cytidine deaminase CDA 2.82 NM_001785.1 metabolism

potassium voltage-gated channel, subfamily G, member 1 KCNG1 2.82 AI332979 transport

mitogen-activated protein kinase kinase 6 MAP2K6 2.82 NM_002758.1 signal
transduction

solute carrier family 15 (H+/peptide transporter), member 2 SLC15A2 2.82 BF223679 transport

hemoglobin, gamma G HBG2 2.75 AI133353 transport

protein kinase, X-linked PRKX 2.75 NM_005044.1 metabolism

suppressor of cytokine signaling 1 SOCS1 2.75 AB005043.1 signal
transduction

KIAA0924 protein KIAA0924 2.69 NM_014897.1 nuclear

secretoglobin, family 1D, member 1 SCGB1D1 2.69 NM_006552.1 extracellular
matrix

serine (or cysteine) proteinase inhibitor, clade E, member 1 SERPINE1 2.69 NM_000602.1 metabolism

chloride channel 4 CLCN4 2.63 AA071195 transport

fatty-acid-Coenzyme A ligase, long-chain 2 FACL2 2.63 NM_001995.1 metabolism

monoamine oxidase B MAOB 2.63 NM_000898.1 transport

secretoglobin, family 2A, member 1 SCGB2A1 2.63 NM_002407.1 hormone
binding

ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A ATP6V1A 2.57 NM_001690.1 transport

dipeptidylpeptidase 4 DPP4 2.57 M80536.1 metabolism

nuclear factor I/B NFIB 2.57 AI186739 transcription
factor

creatine kinase, brain CKB 2.51 NM_001823.1 metabolism

cytokine receptor-like factor 1 CRLF1 2.51 NM_004750.1 signal
transduction

iroquois homeobox protein 4 IRX4 2.51 NM_016358.1 transcription
factor

Homo sapiens mRNA; cDNA DKFZp586B0220 –- 2.45 AL049435.1 –-

chemokine (C-X-C motif) ligand 10 CXCL10 2.45 NM_001565.1 signal
transduction

hypothetical protein FLJ20701 FLJ20701 2.45 NM_017933.1 –-

insulin-like growth factor binding protein 1 IGFBP1 2.45 NM_000596.1 signal
transduction

Norrie disease (pseudoglioma) NDP 2.45 NM_000266.1 signal
transduction

zinc finger protein 145 ZNF145 2.45 NM_006006.1 protein binding

hypothetical protein FLJ20366 FLJ20366 2.40 NM_017786.1 –-

peroxisome proliferative activated receptor, gamma, coactivator 1 PPARGC1 2.40 NM_013261.1 DNA binding

S100 calcium binding protein A2 S100A2 2.40 NM_005978.2 transport

Arg/Abl-interacting protein ArgBP2 ARGBP2 2.34 NM_021069.1 structural
protein

interleukin 1 receptor-like 1 IL1RL1 2.34 NM_003856.1 signal
transduction
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Table 2 (Continued)

Gene Gene Symbol fold
change

Accession # Function

NPD009 protein NPD009 2.34 AF237813.1 –-

Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal
domain, 2

CITED2 2.29 NM_006079.1 transcription
factor

colony stimulating factor 2 receptor, alpha, low-affinity CSF2RA 2.29 BC002635.1 immune
response

secreted and transmembrane 1 SECTM1 2.29 BF939675 membrane
protein

H.sapiens mRNA for interleukin-15 –- 2.24 Y09908.1 –-

GREB1 protein GREB1 2.24 NM_014668.1 –-

adiponectin receptor 2 ADIPOR2 2.19 NM_024551.1 membrane
protein

hypothetical protein DKFZp434B044 DKFZP434B044 2.19 AL136861.1 extracellular
matrix

gastrin GAS 2.19 NM_000805.2 signal
transduction

alkaline phosphatase, liver/bone/kidney ALPL 2.14 X14174.1 metabolism

chromosome 1 open reading frame 29 C1orf29 2.14 NM_006820.1 –-

Fas apoptotic inhibitory molecule FAIM 2.14 NM_018147.1 –-

KIAA0089 protein KIAA0089 2.14 AA135522 metabolism

POU domain, class 5, transcription factor 1 POU5F1 2.14 NM_002701.1 transcription
factor

serum amyloid A2 SAA2 2.14 M23699.1 immune
response

SEC14-like 1 (S. cerevisiae) SEC14L1 2.14 AV748469 transport

solute carrier family 26 (sulfate transporter), member 2 SLC26A2 2.14 AI025519 transport

CDC14 cell division cycle 14 homolog B (S. cerevisiae) CDC14B 2.09 AU145941 metabolism

hypothetical protein FLJ11795 FLJ11795 2.09 NM_024669.1 –-

likely ortholog of mouse tumor necrosis-alpha-induced adipose-related
protein

FLJ23153 2.09 NM_024636.1 transport

KIAA0960 protein KIAA0960 2.09 BF447246 –-

oxysterol binding protein-like 11 OSBPL11 2.09 NM_022776.1 transport

protein tyrosine phosphatase, receptor type, R PTPRR 2.09 NM_002849.1 signal
transduction

fibrinogen, A alpha polypeptide FGA 2.04 NM_021871.1 cell adhesion

interleukin 6 signal transducer (gp130, oncostatin M receptor) IL6ST 2.04 AB015706.1 signal
transduction

KIAA0367 protein KIAA0367 2.04 AL138349 –-

KIAA0711 gene product KIAA0711 2.04 NM_014867.1 protein binding

ADP-ribosyltransferase 3 ART3 2.00 U47054.1 metabolism

cut-like 2 (Drosophila) CUTL2 2.00 AB006631.1 transcription
factor

dual specificity phosphatase 1 DUSP1 2.00 AA530892 metabolism

eukaryotic translation initiation factor 2, subunit 3 gamma, 52kDa EIF2S3 2.00 NM_001415.1 translation

interleukin 20 receptor, alpha IL20RA 2.00 NM_014432.1 signal
transduction

PRO2000 protein PRO2000 2.00 NM_014109.1 DNA binding

solute carrier family 7, member 2 SLC7A2 2.00 NM_003046.1 transport

SPARC-like 1 (mast9, hevin) SPARCL1 2.00 NM_004684.1 –-

toll-like receptor 2 TLR2 2.00 NM_003264.1 immune
response
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Table 2 (Continued)

Gene Gene Symbol fold
change

Accession # Function

coagulation factor XIII, A1 polypeptide F13A1 �2.00 NM_000129.2 metabolism

protein kinase (cAMP-dependent, catalytic) inhibitor alpha PKIA �2.00 NM_006823.1 metabolism

glutaminyl-peptide cyclotransferase (glutaminyl cyclase) QPCT �2.00 NM_012413.2 metabolism

TGF2_HUMAN Transforming growth factor beta 2 precursor (TGF-beta 2) –- �2.04 BF061658 –-

cadherin 5, type 2, VE-cadherin (vascular epithelium) CDH5 �2.04 NM_001795.1 cell adhesion

cellular retinoic acid binding protein 2 CRABP2 �2.04 NM_001878.2 signal
transduction

drebrin 1 DBN1 �2.04 NM_004395.1 structural
protein

dimethylarginine dimethylaminohydrolase 2 DDAH2 �2.04 AJ012008 metabolism

early growth response 1 EGR1 �2.04 NM_001964.1 transcription
factor

hypothetical protein FLJ11082 FLJ11082 �2.04 NM_018317.1 –-

matrix metalloproteinase 1 (interstitial collagenase) MMP1 �2.04 NM_002421.2 metabolism

matrix metalloproteinase 3 (stromelysin 1, progelatinase) MMP3 �2.04 NM_002422.2 metabolism

matrix metalloproteinase 9 MMP9 �2.04 NM_004994.1 metabolism

reticulon 3 RTN3 �2.04 NM_023941.1 membrane
protein

stanniocalcin 1 STC1 �2.04 U46768.1 signal
transduction

Thy-1 cell surface antigen THY1 �2.04 AL558479 membrane
protein

tumor necrosis factor receptor superfamily, member 21 TNFRSF21 �2.04 NM_016629.1 signal
transduction

basic helix-loop-helix domain containing, class B, 3 BHLHB3 �2.09 BE857425 transcription
factor

chromosome 21 open reading frame 7 C21orf7 �2.09 NM_020152.1 –-

glycoprotein A repetitions predominant GARP �2.09 NM_005512.1 –-

regulator of G-protein signalling 3 RGS3 �2.09 NM_021106.1 signal
transduction

trefoil factor 1 TFF1 �2.09 NM_003225.1 growth factor

ATP-binding cassette, sub-family A (ABC1), member 8 ABCA8 �2.14 NM_007168.1 transport

hypothetical gene BC008967 BC008967 �2.14 BE299456 –-

solute carrier family 14 (urea transporter), member 1 SLC14A1 �2.14 NM_015865.1 transport

a disintegrin and metalloproteinase domain 12 (meltrin alpha) ADAM12 �2.19 NM_003474.2 metabolism

aquaporin 3 AQP3 �2.19 AB001325 transport

carcinoembryonic antigen-related cell adhesion molecule 6 CEACAM6 �2.19 BC005008.1 signal
transduction

chloride channel, calcium activated, family member 4 CLCA4 �2.19 NM_012128.2 transport

chloride intracellular channel 2 CLIC2 �2.19 AI768628 transport

DVS27-related protein DVS27 �2.19 AB024518.1 –-

hypothetical protein FLJ31737 FLJ31737 �2.19 N91149 –-

fascin homolog 1, actin-bundling protein FSCN1 �2.19 NM_003088.1 structural
protein

synuclein, alpha interacting protein (synphilin) SNCAIP �2.19 NM_005460.1 protein binding

embryonal Fyn-associated substrate EFS �2.24 NM_005864.1 cell adhesion

integral membrane protein 2C ITM2C �2.24 NM_030926.1 –-

keratin 23 (histone deacetylase inducible) KRT23 �2.24 NM_015515.1 –-

matrix metalloproteinase 27 MMP27 �2.24 NM_022122.1 metabolism
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Table 2 (Continued)

Gene Gene Symbol fold
change

Accession # Function

pre-B-cell leukemia transcription factor 1 PBX1 �2.24 BF967998 transcription
factor

suppression of tumorigenicity ST7 �2.24 NM_013437.1 –-

Homo sapiens mRNA, chromosome 1 specific transcript KIAA0509. –- �2.29 AB007978.1 –-

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B APOBEC3B �2.29 NM_004900.1 metabolism

ARF-GAP, RHO-GAP, ankyrin repeat and plekstrin homology domains-
containing protein 3

ARAP3 �2.29 NM_022481.1 signal
transduction

carboxypeptidase Z CPZ �2.29 BC006393.1 metabolism

melanoma antigen, family D, 4 MAGED4 �2.29 NM_030801.1 –-

matrilin 4 MATN4 �2.29 NM_003833.2 extracellular
matrix

regulator of G-protein signalling 4 RGS4 �2.29 AL514445 signal
transduction

chromosome 6 open reading frame 59 C6orf59 �2.34 NM_020133.1 –-

aldo-keto reductase family 1, member B10 (aldose reductase) AKR1B10 �2.40 NM_020299.1 metabolism

angiopoietin 2 ANGPT2 �2.40 AF187858.1 signal
transduction

dapper homolog 1, antagonist of beta-catenin (xenopus) DACT1 �2.40 NM_016651.2 nuclear

G protein-coupled receptor 17 GPR17 �2.40 NM_005291.1 signal
transduction

glutathione peroxidase 2 (gastrointestinal) GPX2 �2.40 NM_002083.1 metabolism

microfibrillar-associated protein 2 MFAP2 �2.40 NM_017459.1 extracellular
matrix

transforming growth factor, beta 3 TGFB3 �2.40 J03241.1 growth factor

WNT1 inducible signaling pathway protein 2 WISP2 �2.40 NM_003881.1 signal
transduction

hepatocyte growth factor (hepapoietin A; scatter factor) HGF �2.45 M77227.1 growth factor

KIAA1277 protein KIAA1277 �2.45 AA127623 –-

matrix metalloproteinase 14 (membrane-inserted) MMP14 �2.45 AU149305 metabolism

Ras family member Ris RIS �2.45 NM_016563.1 signal
transduction

thymosin, beta, identified in neuroblastoma cells TMSNB �2.45 NM_021992.1 structural
protein

latexin protein LXN �2.51 NM_020169.1 –-

serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 2 SERPINB2 �2.51 NM_002575.1 cell growth

carbonic anhydrase II CA2 �2.57 M36532.1 metabolism

deleted in malignant brain tumors 1 DMBT1 �2.57 NM_004406.1 cell growth

fibronectin leucine rich transmembrane protein 2 FLRT2 �2.57 NM_013231.1 cell adhesion

orosomucoid 1 ORM1 �2.57 NM_000608.1 transport

stathmin-like 2 STMN2 �2.57 BF967657 signal
transduction

synaptojanin 2 SYNJ2 �2.57 AF318616.1 metabolism

carcinoembryonic antigen-related cell adhesion molecule 5 CEACAM5 �2.63 NM_004363.1 membrane
protein

ectodermal-neural cortex (with BTB-like domain) ENC1 �2.63 NM_003633.1 protein binding

mucin 4, tracheobronchial MUC4 �2.63 AJ242547.1 signal
transduction

protocadherin 16 dachsous-like (Drosophila) PCDH16 �2.63 BF222893 cell adhesion

interleukin 24 IL24 �2.69 NM_006850.1 signal
transduction
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Table 2 (Continued)

Gene Gene Symbol fold
change

Accession # Function

transforming growth factor, beta 2 TGFB2 �2.69 NM_003238.1 growth factor

integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) ITGB3 �2.75 M35999.1 cell adhesion

plasminogen activator, urokinase PLAU �2.75 NM_002658.1 metabolism

chromosome 20 open reading frame 42 C20orf42 �2.82 NM_017671.1 –-

four jointed box 1 (Drosophila) FJX1 �2.82 NM_014344.1 –-

ephrin-B2 EFNB2 �2.88 BF001670 cell growth

parathyroid hormone-like hormone PTHLH �2.88 BC005961.1 signal
transduction

tribbles homolog 2 TRB2 �2.88 NM_021643.1 metabolism

twist homolog 1 TWIST1 �2.88 X99268.1 DNA binding

gap junction protein, alpha 4, 37kDa (connexin 37) GJA4 �2.95 NM_002060.1 transport

integrin, beta 6 ITGB6 �2.95 NM_000888.3 cell adhesion

bradykinin receptor B1 BDKRB1 �3.02 NM_000710.1 signal
transduction

solute carrier family 21 (organic anion transporter), member 11 SLC21A11 �3.02 NM_013272.2 transport

myristoylated alanine-rich protein kinase C substrate MARCKS �3.09 M68956.1 membrane
protein

angiopoietin-like 2 ANGPTL2 �3.16 NM_012098.1 signal
transduction

tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin) TNFRSF11B �3.16 NM_002546.1 signal
transduction

acid phosphatase, prostate ACPP �3.24 NM_001099.2 metabolism

homeo box A11 HOXA11 �3.24 NM_005523.3 transcription
factor

hypothetical protein FLJ38993 FLJ38993 �3.31 AF070524.1 signal
transduction

matrix metalloproteinase 11 (stromelysin 3) MMP11 �3.31 AI761713 metabolism

pleckstrin 2 PLEK2 �3.31 NM_016445.1 signal
transduction

SRY (sex determining region Y)-box 9 SOX9 �3.31 NM_000346.1 DNA binding

lymphocyte-specific protein tyrosine kinase LCK �3.39 NM_005356.1 signal
transduction

BDG-29 proten BDG29 �3.47 AL117532.1 DNA binding

deiodinase, iodothyronine, type II DIO2 �3.47 U53506.1 metabolism

SRY (sex determining region Y)-box 4 SOX4 �3.47 AI989477 transcription
factor

cysteine knot superfamily 1, BMP antagonist 1 CKTSF1B1 �3.63 AF154054.1 –-

chromogranin A (parathyroid secretory protein 1) CHGA �3.72 NM_001275.2 transport

cystic fibrosis transmembrane conductance regulator, ATP-binding cassette CFTR �4.07 NM_000492.2 transport

Ras-induced senescence 1 RIS1 �4.07 BF062629 –-

hypothetical protein FLJ10640 FLJ10640 �4.17 NM_024703.1 metabolism

ribosomal protein S20 RPS20 �4.27 AF113008.1 protein
biosynthesis

SRY (sex determining region Y)-box 11 SOX11 �4.68 AB028641.1 transcription
factor

platelet-derived growth factor beta polypeptide PDGFB �5.75 NM_002608.1 growth factor

ribosomal protein L27a RPL27A �5.75 BE737027 protein
biosynthesis

Gene transcripts regulated (�2-fold) by 17b-E2+P in late proliferative phase explants when compared to the vehicle-treated controls. Data
are presented as fold changes.
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Table 3. Genes affected by progesterone alone in explants of late proliferative phase endometrium.

Gene Gene Symbol fold change Accession # Function

cytochrome P450, family 26, subfamily A, polypeptide 1 CYP26A1 28.84 NM_000783.1 metabolism

calpain 6 CAPN6 19.50 NM_014289.2 metabolism

hemoglobin, alpha 2 –- 12.88 V00489 –-

heart and neural crest derivatives expressed 2 HAND2 10.96 NM_021973.1 transcription
factor

secretoglobin, family 1D, member 2 SCGB1D2 9.55 NM_006551.2 extracellular
matrix

carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 CHST7 7.59 NM_019886.1 metabolism

glycine-N-acyltransferase GLYAT 7.08 AW024233 metabolism

FK506 binding protein 5 FKBP5 6.31 NM_004117.1 metabolism

PDZ domain containing 3 PDZK3 6.17 AF338650.1 signal
transduction

neuronal pentraxin II NPTX2 6.03 U26662.1 cell adhesion

chemokine (C-X-C motif) ligand 11 CXCL11 5.50 AF030514.1 signal
transduction

solute carrier family 7, member 8 SLC7A8 5.25 NM_012244.1 transport

a disintegrin-like and metalloprotease with thrombospondin type 1
motif, 8

ADAMTS8 5.01 NM_007037.1 metabolism

dickkopf homolog 1 (Xenopus laevis) DKK1 5.01 NM_012242.1 growth factor

keratin 6A KRT6A 4.90 J00269.1 structural protein

alkaline phosphatase, placental (Regan isozyme) ALPP 4.79 NM_001632.2 metabolism

apolipoprotein D APOD 4.68 NM_001647.1 transport

G protein-coupled receptor 105 GPR105 4.68 NM_014879.1 signal
transduction

prostaglandin-endoperoxide synthase 1 PTGS1 4.68 NM_000962.1 metabolism

TU3A protein TU3A 4.68 AL050264.1 –-

hemoglobin, alpha 1 HBA1 4.57 AF105974.1 transport

mitogen-activated protein kinase kinase 6 MAP2K6 4.27 NM_002758.1 signal
transduction

keratin 6B KRT6B 4.07 L42612.1 structural protein

claudin 5 CLDN5 3.98 NM_003277.1 structural protein

regulator of G-protein signalling 2, 24kDa RGS2 3.98 NM_002923.1 signal
transduction

RGC32 protein RGC32 3.89 NM_014059.1 cell growth

integrin, beta-like 1 ITGBL1 3.80 NM_004791.1 cell adhesion

solute carrier family 15, member 2 SLC15A2 3.72 BF223679 transport

delta sleep inducing peptide, immunoreactor DSIPI 3.55 AL110191.1 transcription
factor

myosin heavy chain Myr 8 MYR8 3.55 AI522028 metabolism

potassium inwardly-rectifying channel, subfamily J, member 8 KCNJ8 3.31 NM_004982.1 transport

paired basic amino acid cleaving system 4 PACE4 3.31 NM_002570.1 signal
transduction

cannabinoid receptor 1 (brain) CNR1 3.24 U73304 signal
transduction

hypothetical protein FLJ11539 FLJ11539 3.24 NM_024748.1 –-

protein kinase, X-linked PRKX 3.24 NM_005044.1 metabolism

latent transforming growth factor beta binding protein 1 LTBP1 3.16 NM_000627.1 protein binding

KIAA0960 protein KIAA0960 3.09 BF447246 –-

nuclear factor I/B NFIB 3.02 AI186739 transcription
factor
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Table 3 (Continued)

Gene Gene Symbol fold change Accession # Function

sushi-repeat-containing protein, X-linked SRPX 3.02 NM_006307.1 cell adhesion

cytochrome P450, family 4, subfamily B, polypeptide 1 CYP4B1 2.95 J02871.1 metabolism

insulin receptor substrate 2 IRS2 2.95 BF700086 signal
transduction

potassium voltage-gated channel, subfamily G, member 1 KCNG1 2.95 AI332979 transport

Arg/Abl-interacting protein ArgBP2 ARGBP2 2.88 NM_021069.1 structural protein

hemoglobin, beta HBB 2.88 M25079.1 transport

Homo sapiens mutant beta-globin (HBB) gene, complete cds. –- 2.82 AF059180 –-

RAR-related orphan receptor B RORB 2.82 NM_006914.1 transcription
factor

S100 calcium binding protein A2 S100A2 2.75 NM_005978.2 transport

serum amyloid A2 SAA2 2.75 NM_030754.1 immune response

absent in melanoma 1-like AIM1L 2.69 NM_017977.1 –-

RIM binding protein 2 KIAA0318 2.69 AB002316.1 transport

thrombomodulin THBD 2.69 NM_000361.1 signal
transduction

cytokine receptor-like factor 1 CRLF1 2.63 NM_004750.1 signal
transduction

v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian) MAF 2.51 NM_005360.2 transcription
factor

monoamine oxidase B MAOB 2.51 NM_000898.1 transport

secretoglobin, family 1D, member 1 SCGB1D1 2.51 NM_006552.1 extracellular
matrix

interleukin 15 IL15 2.45 NM_000585.1 signal
transduction

hypothetical protein FLJ20701 FLJ20701 2.45 NM_017933.1 –-

secretoglobin, family 2A, member 1 SCGB2A1 2.45 NM_002407.1 hormone binding

dipeptidylpeptidase 4 DPP4 2.40 M80536.1 metabolism

immunoglobulin kappa constant IGKC 2.40 BC005332.1 immune response

immunoglobulin heavy constant gamma 3 (G3 m marker) IGHG3 2.34 M87789.1 immune response

iroquois homeobox protein 4 IRX4 2.34 NM_016358.1 transcription
factor

killer cell immunoglobulin-like receptor, two domains, short
cytoplasmic tail, 1

KIR2DS1 2.34 NM_014512.1 immune response

metallothionein 1K MT1K 2.34 R06655 transport

amylase, alpha 1A; salivary AMY1A 2.29 NM_004038.1 metabolism

creatine kinase, brain CKB 2.29 NM_001823.1 metabolism

cut-like 2 (Drosophila) CUTL2 2.29 AB006631.1 transcription
factor

fatty-acid-Coenzyme A ligase, long-chain 2 FACL2 2.29 NM_001995.1 metabolism

PRO2000 protein PRO2000 2.29 NM_014109.1 DNA binding

serine (or cysteine) proteinase inhibitor, clade E , member 1 SERPINE1 2.29 NM_000602.1 metabolism

adiponectin receptor 2 ADIPOR2 2.24 NM_024551.1 membrane
protein

alkaline phosphatase, liver/bone/kidney ALPL 2.24 X14174.1 metabolism

N-acylsphingosine amidohydrolase (acid ceramidase)-like ASAHL 2.24 AK024677.1 metabolism

hypothetical protein FLJ20366 FLJ20366 2.24 NM_017786.1 –-

Norrie disease (pseudoglioma) NDP 2.24 NM_000266.1 signal
transduction

zinc finger, BED domain containing 2 ZBED2 2.24 NM_024508.1 DNA binding
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Table 3 (Continued)

Gene Gene Symbol fold change Accession # Function

zinc finger protein 145 ZNF145 2.24 NM_006006.1 protein binding

Fas apoptotic inhibitory molecule FAIM 2.19 NM_018147.1 –-

insulin-like growth factor binding protein 1 IGFBP1 2.19 NM_000596.1 signal
transduction

interleukin 20 receptor, alpha IL20RA 2.19 NM_014432.1 signal
transduction

mesothelin MSLN 2.19 NM_005823.2 –-

secreted and transmembrane 1 SECTM1 2.19 BF939675 membrane
protein

CDC14 cell division cycle 14 homolog B CDC14B 2.14 AU145941 metabolism

cathepsin E CTSE 2.14 NM_001910.1 metabolism

LIM and cysteine-rich domains 1 LMCD1 2.14 NM_014583.1 –-

monoamine oxidase A MAOA 2.14 NM_000240.1 transport

toll-like receptor 2 TLR2 2.14 NM_003264.1 signal
transduction

Homo sapiens mRNA; cDNA DKFZp586B0220 –- 2.09 AL049435.1 –-

hypothetical protein DKFZp434B044 DKFZP434B044 2.09 AL136861.1 extracellular
matrix

glutamyl aminopeptidase ENPEP 2.09 L12468.1 metabolism

epithelial V-like antigen 1 EVA1 2.09 NM_005797.1 cell adhesion

fibulin 2 FBLN2 2.09 NM_001998.1 extracellular
matrix

KIAA0924 protein KIAA0924 2.09 NM_014897.1 nuclear

KIAA1609 protein KIAA1609 2.09 AA195017 –-

neuroligin 4 NLGN4 2.09 AI338338 cell adhesion

peroxisome proliferative activated receptor, gamma, coactivator 1 PPARGC1 2.09 NM_013261.1 DNA binding

solute carrier family 26, member 2 SLC26A2 2.09 AI025519 transport

CDC42 effector protein 3 CDC42EP3 2.04 AI754416 –-

GREB1 protein GREB1 2.04 NM_014668.1 –-

interleukin 1 receptor-like 1 IL1RL1 2.04 NM_003856.1 signal
transduction

leucine-rich repeat-containing 1 LRRC1 2.04 NM_018214.1 –-

protein kinase, AMP-activated, gamma 2 non-catalytic subunit PRKAG2 2.04 NM_016203.1 metabolism

SPARC-like 1 (mast9, hevin) SPARCL1 2.04 NM_004684.1 –-

chromosome 18 open reading frame 1 C18orf1 2.00 NM_004338.1 membrane
protein

choline phosphotransferase 1 CHPT1 2.00 AF195624.1 metabolism

endothelial differentiation, lysophosphatidic acid G-protein-coupled
receptor, 7

EDG7 2.00 NM_012152.1 signal
transduction

retinol binding protein 4, plasma RBP4 2.00 NM_006744.2 transport

carcinoembryonic antigen-related cell adhesion molecule 5 CEACAM5 �2.00 NM_004363.1 membrane
protein

chromosome condensation 1 CHC1 �2.00 NM_001269.1 cell growth

cytochrome P450, family 27, subfamily B, polypeptide 1 CYP27B1 �2.00 NM_000785.1 metabolism

DVS27-related protein DVS27 �2.00 AB024518.1 –-

four jointed box 1 (Drosophila) FJX1 �2.00 NM_014344.1 –-

interleukin 24 IL24 �2.00 NM_006850.1 cell growth

matrix metalloproteinase 11 (stromelysin 3) MMP11 �2.00 AI761713 metabolism

synaptojanin 2 SYNJ2 �2.00 AF318616.1 metabolism

aldo-keto reductase family 1, member B10 (aldose reductase) AKR1B10 �2.04 NM_020299.1 metabolism
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Table 3 (Continued)

Gene Gene Symbol fold change Accession # Function

neuromedin B NMB �2.04 NM_021077.1 signal
transduction

pleckstrin 2 PLEK2 �2.04 NM_016445.1 structural protein

transmembrane protease, serine 3 TMPRSS3 �2.04 NM_024022.1 metabolism

twist homolog 1 TWIST1 �2.04 X99268.1 DNA binding

hypothetical protein FLJ38993 FLJ38993 �2.09 AF070524.1 signal
transduction

somatostatin SST �2.09 NM_001048.1 signal
transduction

chromosome 21 open reading frame 7 C21orf7 �2.14 NM_020152.1 –-

carboxypeptidase M CPM �2.14 NM_001874.1 metabolism

glutathione peroxidase 2 (gastrointestinal) GPX2 �2.14 NM_002083.1 metabolism

orosomucoid 1 ORM1 �2.14 NM_000607.1 transport

serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member
2

SERPINB2 �2.14 NM_002575.1 cell growth

solute carrier family 14 (urea transporter), member 1 SLC14A1 �2.14 NM_015865.1 transport

SRY (sex determining region Y)-box 4 SOX4 �2.14 AI989477 transcription
factor

tribbles homolog 2 TRB2 �2.14 NM_021643.1 metabolism

chromosome 20 open reading frame 42 C20orf42 �2.19 NM_017671.1 –-

dapper homolog 1, antagonist of beta-catenin (xenopus) DACT1 �2.19 NM_016651.2 nuclear

ectodermal-neural cortex ENC1 �2.24 AF010314.1 protein binding

keratin 23 KRT23 �2.24 NM_015515.1 –-

deiodinase, iodothyronine, type II DIO2 �2.29 U53506.1 metabolism

plasminogen activator, urokinase PLAU �2.29 NM_002658.1 metabolism

NY-REN-7 antigen NY-REN-7 �2.34 AL117630.1 –-

stanniocalcin 1 STC1 �2.40 U46768.1 signal
transduction

carbonic anhydrase II CA2 �2.45 M36532.1 metabolism

G protein-coupled receptor 17 GPR17 �2.45 NM_005291.1 signal
transduction

high mobility group AT-hook 1 HMGA1 �2.45 AF176039.1 transcription
factor

Ras-induced senescence 1 RIS1 �2.45 BF062629 –-

trefoil factor 1 TFF1 �2.45 NM_003225.1 growth factor

WNT1 inducible signaling pathway protein 2 WISP2 �2.45 NM_003881.1 signal
transduction

aquaporin 3 AQP3 �2.51 AB001325 transport

SRY (sex determining region Y)-box 9 SOX9 �2.51 NM_000346.1 transcription
factor

bradykinin receptor B1 BDKRB1 �2.57 NM_000710.1 signal
transduction

ephrin-B2 EFNB2 �2.57 U16797.1 signal
transduction

gap junction protein, alpha 4, 37kDa (connexin 37) GJA4 �2.57 NM_002060.1 transport

myristoylated alanine-rich protein kinase C substrate MARCKS �2.88 AW163148 structural protein

tumor necrosis factor receptor superfamily, member 11b
(osteoprotegerin)

TNFRSF11B �2.88 NM_002546.1 signal
transduction

small proline-rich protein 2B SPRR2B �2.95 NM_006945.1 structural protein

chromogranin A (parathyroid secretory protein 1) CHGA �3.02 NM_001275.2 transport
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Table 3 (Continued)

Gene Gene Symbol fold change Accession # Function

Homo sapiens non-functional folate binding protein (HSAF000381),
mRNA

–- �3.16 NM_013307.1 –-

acid phosphatase, prostate ACPP �3.31 NM_001099.2 metabolism

integrin, beta 3 ITGB3 �3.47 M35999.1 cell adhesion

platelet-derived growth factor beta polypeptide PDGFB �3.47 NM_002608.1 growth factor

SRY (sex determining region Y)-box 11 SOX11 �3.72 AB028641.1 transcription
factor

cysteine knot superfamily 1, BMP antagonist 1 CKTSF1B1 �3.89 AF154054.1 –-

ribosomal protein S20 RPS20 �6.17 AF113008.1 protein
biosynthesis

ribosomal protein L27a RPL27A �7.59 BE737027 protein
biosynthesis

Gene transcripts regulated (�2-fold) by progesterone alone in late proliferative phase explants when compared to the vehicle-treated
controls. Data are presented as fold changes. The genes in bold were not found to be modulated by 17b-oestradiol and progesterone (17b-
E2+P).

Figure 3. Example of a highly significant network identified in the gene expression profile of late proliferative phase endometrium treated
with 17b-oestradiol and progesterone (17b-E2+P) as determined by the Ingenuity Pathways Analysis program. Green indicates down-
regulated genes, and pink indicates up-regulated genes.
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Table 4. Genes affected by 17b-oestradiol and progesterone (17b-E2+P) in explants of menstrual phase endometrium.

Gene Gene Symbol fold change Accession # function

secretoglobin, family 1D, member 2 SCGB1D2 60.26 NM_006551.2 extracellular
matrix

alkaline phosphatase, placental (Regan isozyme) ALPP 10.00 NM_001632.2 metabolism

hypothetical protein FLJ10847 FLJ10847 7.08 NM_018242.1 transport

secretoglobin, family 2A, member 1 SCGB2A1 6.92 NM_002407.1 hormone binding

secretoglobin, family 2A, member 2 SCGB2A2 6.03 NM_002411.1 hormone binding

trefoil factor 1 TFF1 5.13 NM_003225.1 growth factor

cytochrome P450, family 26, subfamily A, polypeptide 1 CYP26A1 4.68 NM_000783.1 transport

carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 CHST7 4.57 NM_019886.1 metabolism

hypothetical protein FLJ10640 FLJ10640 3.47 NM_024703.1 metabolism

hydroxysteroid (17-beta) dehydrogenase 2 HSD17B2 3.39 NM_002153.1 metabolism

paired box gene 5 (B-cell lineage specific activator protein) PAX5 3.31 NM_016734.1 transcription
factor

apolipoprotein D APOD 3.09 NM_001647.1 transport

solute carrier family 7 (cationic amino acid transporter, y+ system),
member 8

SLC7A8 2.75 NM_012244.1 transport

DNA segment on chromosome 4 (unique) 234 expressed sequence D4S234E 2.69 NM_014392.1 nuclear

GREB1 protein GREB1 2.69 NM_014668.1 –-

anthrax toxin receptor 1 ANTXR1 2.63 NM_018153.1 membrane
protein

histone 1, H2bd HIST1H2BD 2.63 AL353759 DNA binding

prostaglandin-endoperoxide synthase 2 PTGS2 2.63 NM_000963.1 metabolism

heat shock 70kDa protein 6 (HSP70B�) HSPA6 2.57 NM_002155.1 metabolism

cyclin A1 CCNA1 2.45 NM_003914.1 cell growth

asparaginase like 1 ASRGL1 2.40 NM_025080.1 metabolism

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B APOBEC3B 2.34 NM_004900.1 metabolism

hypothetical protein FLJ20152 FLJ20152 2.34 AI816291 –-

histone 1, H2bh HIST1H2BH 2.34 NM_003524.1 DNA binding

Homo sapiens mRNA; cDNA DKFZp564G112 –- 2.24 AA053967 –-

crystallin, alpha B CRYAB 2.19 AF007162.1 structural protein

colony stimulating factor 3 (granulocyte) CSF3 2.19 NM_000759.1 signal
transduction

histone 1, H1c HIST1H1C 2.19 BC002649.1 DNA binding

insulin-like growth factor binding protein 1 IGFBP1 2.19 NM_000596.1 signal
transduction

serine (or cysteine) proteinase inhibitor, clade A, member 3 SERPINA3 2.19 NM_001085.2 immune respons

apolipoprotein M APOM 2.14 NM_019101.1 transport

piggyBac transposable element derived 5 PGBD5 2.14 NM_024554.1 –-

trefoil factor 3 (intestinal) TFF3 2.14 NM_003226.1 immune respons

histone 1, H2bi HIST1H2BI 2.04 NM_003525.1 DNA binding

H2B histone family, member S H2BFS 2.00 NM_017445.1 DNA binding

putative chemokine receptor HM74 2.00 NM_006018.1 signal
transduction

metallothionein 1X MT1X 2.00 NM_002450.1 transport

TUWD12 TUWD12 2.00 NM_003774.2 –-

hyaluronan binding protein 2 HABP2 �2.00 NM_004132.1 metabolism

interleukin 2 receptor, beta IL2RB �2.00 NM_000878.1 immune respons

myosin, light polypeptide kinase MYLK �2.00 NM_005965.1 signal
transduction
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Table 4 (Continued)

Gene Gene Symbol fold change Accession # function

SAM and SH3 domain containing 1 SASH1 �2.00 AK025495.1 cell growth

transglutaminase 2 TGM2 �2.00 BC003551.1 metabolism

adipose specific 2 APM2 �2.04 NM_006829.1 –-

Microfibril-associated glycoprotein-2 MAGP2 �2.04 AW665892 extracellular
matrix

3-phosphoinositide dependent protein kinase-1 PDPK1 �2.04 NM_002613.1 signal
transduction

polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa POLR2J �2.04 AI738591 DNA binding

preferentially expressed antigen in melanoma PRAME �2.04 NM_006115.1 –-

transmembrane protein 5 TMEM5 �2.04 BF224146 membrane
protein

leucine-rich repeat-containing 5 LRRC5 �2.09 NM_018103.1 –-

parathyroid hormone receptor 2 PTHR2 �2.09 NM_005048.1 signal
transduction

retinoblastoma binding protein 6 RBBP6 �2.09 NM_006910.1 cell growth

cadherin 6, type 2, K-cadherin (fetal kidney) CDH6 �2.14 AU151483 cell adhesion

v-myc myelocytomatosis viral related oncogene, neuroblastoma derived
(avian)

MYCN �2.14 BC002712.1 transcription
factor

SRY (sex determining region Y)-box 4 SOX4 �2.14 AI989477 transcription
factor

zinc finger, BED domain containing 2 ZBED2 �2.14 NM_024508.1 DNA binding

ATP-binding cassette, sub-family C (CFTR/MRP), member 3 ABCC3 �2.19 AF009670.1 transport

hypothetical protein LOC339290 LOC339290 �2.19 H49382 –-

hypothetical protein MGC29643 MGC29643 �2.19 AL567376 –-

transcription factor 4 TCF4 �2.19 AU118026 transcription
factor

nudix (nucleoside diphosphate linked moiety X)-type motif 6 NUDT6 �2.24 NM_007083.1 growth factor

ribosomal protein S6 kinase, 90kDa, polypeptide 5 RPS6KA5 �2.24 AF074393.1 metabolism

heme oxygenase (decycling) 1 HMOX1 �2.29 NM_002133.1 metabolism

killer cell lectin-like receptor subfamily B, member 1 KLRB1 �2.29 NM_002258.1 signal
transduction

PTPRF interacting protein, binding protein 2 (liprin beta 2) PPFIBP2 �2.29 AI692180 DNA binding

ubiquitin D UBD �2.29 NM_006398.1 –-

laminin, alpha 3 LAMA3 �2.34 NM_000227.1 structural protein

ribonucleotide reductase M2 polypeptide RRM2 �2.34 BE966236 metabolism

Rho guanine nucleotide exchange factor (GEF) 17 ARHGEF17 �2.40 NM_014786.1 –-

N-myristoyltransferase 1 NMT1 �2.40 AI570834 metabolism

Homo sapiens cDNA: FLJ22812 fis, clone KAIA2955 –- �2.45 AK026465.1 –-

solute carrier family 16 (monocarboxylic acid transporters), member 6 SLC16A6 �2.45 NM_004694.1 transport

spondin 1, (f-spondin) extracellular matrix protein SPON1 �2.45 AI885290 extracellular
matrix

ATP synthase, H+ transporting, mitochondrial F0 complex, subunit s
(factor B)

ATP5S �2.51 NM_015684.1 –-

chemokine (C-C motif) ligand 5 CCL5 �2.51 M21121 signal
transduction

CD96 antigen CD96 �2.51 NM_005816.1 cell adhesion

growth associated protein 43 GAP43 �2.51 NM_002045.1 cell growth

histone H2A.F/Z variant H2AV �2.51 BF343852 DNA binding

tumor necrosis factor receptor superfamily, member 4 TNFRSF4 �2.51 AJ277151 immune respons
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Table 4 (Continued)

Gene Gene Symbol fold change Accession # function

chemokine (C motif) ligand 1 XCL1 �2.57 U23772.1 signal
transduction

Homo sapiens transcribed sequences –- �2.63 BE045982 –-

C-terminal binding protein 1 CTBP1 �2.63 AA053830 metabolism

fibroblast growth factor 9 (glia-activating factor) FGF9 �2.63 NM_002010.1 growth factor

latexin protein LXN �2.63 NM_020169.1 –-

protocadherin gamma subfamily C, 3 PCDHGC3 �2.63 AB002325.1 transport

cathepsin W (lymphopain) CTSW �2.75 NM_001335.1 metabolism

dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 DYRK2 �2.75 NM_006482.1 metabolism

integrin, beta 6 ITGB6 �2.75 NM_000888.3 signal
transduction

hypothetical protein LOC284266 LOC284266 �2.75 AK025833.1 –-

platelet-derived growth factor alpha polypeptide PDGFA �2.75 X03795.1 growth factor

chromosome 14 open reading frame 117 C14orf117 �2.82 NM_018678.1 –-

chromosome 20 open reading frame 42 C20orf42 �2.82 NM_017671.1 –-

insulin-like growth factor binding protein 3 IGFBP3 �2.82 BF340228 signal
transduction

chloride intracellular channel 3 CLIC3 �2.88 NM_004669.1 signal
transduction

hypothetical protein FLJ11082 FLJ11082 �2.88 NM_018317.1 –-

glutathione S-transferase theta 1 GSTT1 �2.88 NM_000853.1 metabolism

B/K protein LOC51760 �2.95 NM_016524.1 transport

retinoic acid receptor responder (tazarotene induced) 1 RARRES1 �2.95 AI669229 cell growth

Homo sapiens, clone IMAGE:4866926, mRNA –- �3.09 AA631242 –-

chemokine (C-X-C motif) ligand 14 CXCL14 �3.09 NM_004887.1 signal
transduction

chemokine (C motif) ligand 2 XCL2 �3.09 NM_003175.1 signal
transduction

cytidine deaminase CDA �3.16 NM_001785.1 metabolism

erythrocyte membrane protein band 4.1 like 4A EPB41L4A �3.39 NM_022140.1 structural protein

zinc finger protein 426 ZNF426 �3.39 NM_024106.1 transcription
factor

regulator of G-protein signalling 5 RGS5 �3.63 AI183997 signal
transduction

KIAA0924 protein KIAA0924 �3.72 NM_014897.1 nuclear

serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 SERPINB5 �4.07 NM_002639.1 cell adhesion

killer cell lectin-like receptor subfamily C, member 3 KLRC3 �4.17 NM_002260.2 immune response

calcium channel, voltage-dependent, alpha 1G subunit CACNA1G �4.27 NM_018896.1 transport

protein phosphatase 1, regulatory (inhibitor) subunit 16B PPP1R16B �4.47 AB020630 signal
transduction

Homo sapiens mRNA; cDNA DKFZp564N1116 –- �4.68 BF344237 –-

integral membrane protein 2A ITM2A �4.79 NM_004867.1 membrane
protein

phosphoribosylformylglycinamidine synthase (FGAR amidotransferase) PFAS �4.90 AL044326 metabolism

major histocompatibility complex, class II, DR beta 3 HLA-DRB3 �5.13 BC005312.1 immune response

immunoglobulin lambda joining 3 IGLJ3 �5.62 X57812.1 –-

fibroblast growth factor 18 FGF18 �6.92 BC006245.1 growth factor
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Table 4 (Continued)

Gene Gene Symbol fold change Accession # function

cystic fibrosis transmembrane conductance regulator, ATP-binding
cassette

CFTR �8.32 NM_000492.2 transport

Gene transcripts regulated (�2-fold) by 17b-E2+P in menstrual phase explants when compared to vehicle-treated controls. Data are
presented as fold changes.

Table 5. Genes affected by 17b-E2+P and reported to be altered in the implantation window.

Gene Symbol fold change Accession # Kao
et al.

Riesewijk
et al.

Carson
et al.

dickkopf homolog 1 DKK1 6.03 NM_012242.1 12.1 7 12.6

thrombomodulin THBD 3.24 NM_000361.1 10

fibrinogen-like 2 FGL2 2.88 NM_006682.1 5

monoamine oxidase A MAOA 2.88 NM_000240.1 7.5 15

retinol binding protein 4, plasma RBP4 2.88 NM_006744.2 6

dipeptidylpeptidase 4 DPP4 2.57 M80536.1 15

nuclear factor I/B NFIB 2.57 AI186739 10

H.sapiens mRNA for interleukin-15 –- 2.24 Y09908.1 3.7 3 2.2

gastrin GAS 2.19 NM_000805.2 11

KIAA0367 protein KIAA0367 2.04 AL138349 4

coagulation factor XIII, A1 polypeptide F13A1 �2.00 NM_000129.2 �4.1

microfibrillar-associated protein 2 MFAP2 �2.40 NM_017459.1 �3

transforming growth factor, beta 3 TGFB3 �2.40 J03241.1 �2.44

gap junction protein, alpha 4, 37kDa (connexin 37) GJA4 �2.95 NM_002060.1 �20

myristoylated alanine-rich protein kinase C substrate MARCKS �3.09 M68956.1 �2.2

matrix metalloproteinase 11 (stromelysin 3) MMP11 �3.31 AI761713 �10

deiodinase, iodothyronine, type II DIO2 �3.47 U53506.1 �2.4

Gene transcripts regulated (�2-fold) by 17b-oestradiol and progesterone (17b-E2+P) that have also been reported to be altered during the
window of implantation (by Riesewijk et al. [2], Carson et al. [20] and Kao et al [21]).

Figure 4. Relative expression levels of gene transcripts for DKK1, THBD, MAOA, GAS, CDA and SPARCL1 in early secretory (n=7)
and mid-secretory (n=8) endometrium, which represent endometrial tissues exposed to low (pre-implantation window) and high
(implantation window) progesterone concentrations, respectively (*p<0.05).
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The number of gene transcripts regulated by P in late
proliferative phase explants was almost twice the
number regulated in menstrual phase explants, indi-
cating that oestrogen priming sensitizes the endome-
trium for P regulation, most likely by induction of P
receptor gene expression [16]. In addition, most of
these genes were specifically modulated in the late
proliferative phase endometrium. Of these genes
(n=100), at least 17 were previously described to be
regulated in the implantation window (Table 5) [2, 20,
21]. Three examples of such genes are DKK1, MAOA
and SPARCL1. Regulation of expression by 17b-
E2+P and P alone was confirmed with real-time PCR
in both explant cultures and endometrium biopsy
specimens collected during the implantation window
and ES phase. These findings demonstrate that the
expression of genes associated with the implantation
window can be modulated in explant cultures of
human endometrium and that for most of these genes,
prolonged in vivo exposure to 17b-E2 is required for
adequate P regulation. These findings also support the
hypothesis that variations in the duration of 17b-E2

priming can affect the response of the endometrium to
P and therefore the subsequent implantation process
[11, 22].
The number of implantation-associated gene tran-
scripts, however, was rather low. This could be because
the culturing of explants alters the physiology of the
tissue and therefore its steroid responsiveness or

because, as shown for prolactin and IGFBP1, in some
cases prolonged exposure to P is required for genes to
respond [23]; the latter finding is supported by a
report from Kao and coworkers showing that many
genes up-regulated in the implantation window are
not yet regulated in ES endometrium, at which time
the endometrium has been exposed to P for only a
short time [21]. Explant cultures are therefore appro-
priate models to study immediate responses of human
endometrium to oestrogens and progestins ex vivo but
do not allow investigation of the entire spectrum of
implantation-associated genes.
The low number of implantation-related genes iden-
tified may also be a result of the relatively low number
of samples used for the initial microarray hybrid-
izations, which increases the likelihood of missing
relevant genes and the chance of generating false
positives. At the time the microarray experiments
were performed, we opted to carry out a limited
number of array hybridizations so that we could apply
rigorous statistical procedures and perform extensive
validation of selected genes for both the array samples
and samples from additional independent experi-
ments. Rockett and Hellmann asked the questions:
how many genes should we pick for validation, and
which genes should we pick? The authors argue that
genes can be selected to ensure successful confirma-
tion, i.e. by selecting genes that have changed more
than 4-fold [24] or by selecting genes that have been

Table 6. Genes affected by 17b-E2+P in explants of both menstrual and late proliferative phase endometrium.

Gene Gene
Symbol

fold change
M

fold change
LP

Accession # Function

alkaline phosphatase, placental (Regan isozyme) ALPP 10.00 4.79 NM_001632.2 metabolism

apolipoprotein D APOD 3.09 4.90 NM_001647.1 transport

carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 CHST7 4.57 7.08 NM_019886.1 metabolism

cytochrome P450, family 26, subfamily A, polypeptide 1 CYP26A1 4.68 33.11 NM_000783.1 transport

GREB1 protein GREB1 2.69 2.24 NM_014668.1 unknown

insulin-like growth factor binding protein 1 IGFBP1 2.19 2.45 NM_000596.1 signal
transduction

secretoglobin, family 1D, member 2 SCGB1D2 60.26 10.00 NM_006551.2 unknown

secretoglobin, family 2A, member 1 SCGB2A1 6.92 2.63 NM_002407.1 signal
transduction

solute carrier family 7 (cationic amino acid transporter, y+
system), member 8

SLC7A8 2.75 4.37 NM_012244.1 transport

chromosome 20 open reading frame 42 C20orf42 �2.82 �2.82 NM_017671.1 unknown

cystic fibrosis transmembrane conductance regulator CFTR �8.32 �4.07 NM_000492.2 transport

hypothetical protein FLJ11082 FLJ11082 �2.88 �2.04 NM_018317.1 unknown

integrin, beta 6 ITGB6 �2.75 �2.95 NM_000888.3 cell adhesion

latexin protein LXN �2.63 �2.51 NM_020169.1 unknown

Gene transcripts regulated (�2-fold) by 17b-oestradiol and progesterone (17b-E2+P) in both menstrual (M) and late proliferative (LP)
phase explants when compared to their respective vehicle-treated controls. Data are presented as fold changes.
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reported to be changed in similar models or conditions
[25]. We selected six genes primarily based on the fact
that their expression is altered during the implantation
window. In addition, we selected two genes that have
not yet been reported in the endometrium. With the
exception of DKK1 (more than 5-fold induction), the
expression of the selected genes changed less than 3-
fold. We could confirm steroid regulation for four of
eight genes in independent experiments, which justi-
fies our approach.
Rockett and Hellmann also questioned the additive
value of corroborating the findings of microarray
experiments with alternative means of quantitating
the mRNA abundance of a limited number of genes of
the array [25]. The vast majority of studies published
state that the DNA array data can be corroborated,
indicating that the array data are reliable as long as the
experimental design and statistical analysis is sound.
Even in high-impact journals, studies that have not
been validated are being published; Goodman illus-
trated this by showing that our of 28 microarray papers
in Science, Cell and Nature published in 2002, only 11
reported corroborative studies [26]. It is evident that
clear standards, such as the guideline Minimal In-
formation about a Microarray Experiment
(MIAME), in the confirmatory studies area are
necessary [25].
A clear distinction could be made between genes that
are regulated by P irrespective of the presence of 17b-
E2 and genes for which the expression is clearly
influenced by the continuous presence of 17b-E2.
Many genes modulated by P alone were similarly
modulated in the 17b-E2+P-treated explants (119/161
P-modulated genes), however, 42 of the P-modulated
genes were not affected in the 17b-E2+P-treated
explants. Also, of the 219 17b-E2+P-modulated genes,
117 were not modulated by treatment with P alone.
This clearly indicates that the expression of a subset of
genes is sensitive to the continuing presence of 17b-E2.
It also indicates that in vivo priming of CD12 and
CD13 endometrium is remembered by the tissue in
vitro, leading to similar expression patterns for certain
genes induced both in the absence and presence of
17b-E2.
A good example of genes for which expression is
known to be suppressed by P, but which were only
suppressed by P in the presence of 17b-E2, are various
members of the MMP family [12 – 14]. Only the
expression of MMP11 was suppressed by P alone;
the expression of MMP1, -3, -14 and -27 was only
suppressed in the presence of 17b-E2. Similarly, cystic
fibrosis transmembrane conductance regulator
(CFTR) was suppressed in 17b-E2+P-treated explants
but not in P-treated explants, suggesting that contin-
ued presence of 17b-E2 is required for the down-

regulation of CFTR. This corresponds with the finding
that CFTR is highly expressed in the human endome-
trium around the ovulatory period [27] and is respon-
sive to both 17b-E2 and P.
Some genes were induced by 17b-E2+P in both
menstrual and late proliferative phase explants (i.e.
alkaline phosphatase, ALPP; monoamine oxidase,
MAOA; secretoglobin family 1, member D,
SCGB1D2; CFTR; P450 cytochrome family 26 sub-
family A, CYP26A), indicating that the expression of
these genes does not depend on prolonged in vivo
oestrogen priming of the endometrium. A particularly
interesting observation in this regard is the up-
regulation of expression of the CYP26A gene in
both menstrual and late proliferative phase endome-
trium by 17b-E2+P and, to a lesser extent, by P alone.
This enzyme is responsible for the metabolism of the
active retinoid metabolite all-trans retinoic acid. The
importance of controlling retinoid levels in the uterus
is illustrated by the fact that vitamin A deficiency in
women, nonhuman primates and laboratory animals is
associated with pregnancy failure and developmental
defects [28 – 30], whereas excess vitamin A levels are
detrimental to blastocyst development [31] and the
decidualization process [32].
Uterine vitamin A levels in women increase in the
presence of oestrogens [33, 34], most likely as the
result of up-regulation of retinaldehyde dehydrogen-
ase (RALDH2), a critical enzyme in retinoic acid
(RA) biosynthesis [35]. Since retinoids are morpho-
gens and essential for epithelial cell growth [36], they
may be involved in the regeneration, growth and
differentiation of the endometrial epithelium after
menstruation. The induction of CYP26A expression
by P in the secretory phase most likely serves to
inactivate excessive amounts of retinoids.
Databases can be explored with several different
bioinformatics tools. We have employed the Ingenuity
Pathways Analysis (IPA) program, which has the
added advantage that it is an evidence-based data
mining tool. In contrast to most other bioinformatics
tools, which annotate certain functions to gene
products, the IPA program includes any reported
interaction between two genes, whether it involves
regulation of gene or protein expression, protein-
protein interactions or enzymatic conversion (for
example, phosphorylation). It is therefore a continu-
ously growing database and, by the nature of its
development, not complete. It is not unusual that the
most affected genes are not presented in the networks.
The networks present groups of genes that have a
proven biological relationship. The nodes in these
highly significant networks presumably represent
genes that have important modulatory roles. When
interpreting the data, one has to realize that the IPA
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database is biased in that certain genes have received
more attention than others and therefore have a
higher likelihood to be included in a network. How-
ever, the continuously growing database will allow re-
analysis of the data in the future, which may reveal
novel unidentified relationships between genes or
groups of genes.
The significant suppressive actions of P on nodes
representing immunomodulators were immediately
apparent; these included IL-1b, IL-8, COX2, the
chemokine CCL5 and members of the TGF-b super-
family (TGF-b2 and -3, INHBA and their signalling
molecules SMAD2 and -3). At the end of the secretory
phase, a rapid influx of leukocytes, consisting mostly
of NK cells and macrophages, into the endometrium
can be observed; this is believed to be the result of the
disappearance of P suppression on key inflammatory
mediators [37, 38]. Apparently, these immunosup-
pressive actions of P can at least partly be mimicked in
the explant model by short-term incubation with 17b-
E2 and P.
One of the few nodes present in highly significant
networks identified by the IPA program in both 17b-
E2- and P-treated menstrual and late proliferative
phase endometrium was FGF2 or basic fibroblast
growth factor (bFGF). FGF2 expression is sup-
pressed by P. The significance of this finding is
illustrated by the fact that FGF2 inhibits the decidu-
alization process in human endometrial stromal cells
[39] and should therefore be controlled by P during
the secretory phase. FGF2 is an important mitogenic
and angiogenic factor that is expressed as different
isoforms synthesized through the alternative use of
translation initiation codons [40] . In human endo-
metrium, only the smallest 18-kD isoform is present
[41]. It is located predominantly in the cytoplasm and
is stored in the extracellular matrix [42]. FGF2 is
released mostly during menstruation and the early
proliferative phase and is expressed in blood vessels
throughout the menstrual cycle [41, 43] . The FGF
receptors, however, are not expressed in blood
vessels except during the MS (FGFR2) and late
secretory phases (FGFR1 and FGFR2). Blood ves-
sels may therefore not be the main target of FGF2.
FGF2 receptors are predominantly found in the
epithelial compartment [44] , suggesting that FGF2 is
involved in the control of regeneration and growth of
epithelial cells in a paracrine fashion. FGF2 is known
to regulate proliferation of various cell populations
of the bone marrow [44], which were shown to be of
eminent importance for regeneration of the human
endometrium [45].
In conclusion, explant culture of human endometrium
is a biologically relevant in vitro model system that
allows the investigation of steroid regulation of gene

expression in the tissue context. Regulation of the
expression of several genes associated with embryo
implantation can be mimicked in vitro. We showed
that expression of thrombomodulin, monoamine
oxidase A and SPARCL1 is regulated by progestins.
Only a subset of implantation-associated genes was
modulated in the short-term explant cultures; how-
ever, we clearly showed that we can distinguish genes
that require continuous presence of 17b-E2 from those
that depend on P only. Therefore, 17b-E2 selectively
primes implantation-related genes for the effects of P.
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