
Abstract. Sialic acids consist of a family of acidic nine-
carbon sugars that are typically located at the terminal po-
sitions of a variety of glycoconjugates. Naturally occur-
ring sialic acids show an immense diversity of structure, 
and this reflects their involvement in a variety of biologi-
cally important processes. One such process involves the 
direct participation of sialic acids in recognition events 

through specific interactions with lectins, a family of 
proteins that recognise and bind sugars. This review will 
present a detailed overview of our current knowledge re-
garding the occurrence, specificity and function of sialic 
acid-specific lectins, particularly those that occur in vi-
ruses, bacteria and non-vertebrate eukaryotes.
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Introduction

Sialic acids (Sia) are a family of nine-carbon a-keto acids 
(Fig. 1) found predominantly at the non-reducing end of 
oligosaccharide chains on glycoproteins and glycolipids. 
Sia can occur free in nature, but are generally found gly-
cosidically linked to either the 3- or 6-hydroxyl group of 
galactose (Gal) residues or to the 6-hydroxyl group of N-
acetylglucosamine (GlcNAc) or N-acetylgalactosamine 
(GalNAc) residues. Sia can also exist as a2,8-linked 
homopolymers known as polysialic acid (Fig. 1). The 
expression of Sia was previously thought to be unique 
to deuterostomes and pathogenic bacteria infecting these 
animals; however, more recent findings suggest that they 
may be more widely distributed and possibly quite an-
cient in their origin [1, 2].
Sia show remarkable structural diversity, with the family 
currently comprising over 50 naturally occurring members 

[1, 2]. The largest structural variations of naturally occurring 
Sia are at carbon 5, which can be substituted with either an 
acetamido, hydroxyacetamido or hydroxyl moiety to form 
5-N-acetylneuraminic acid (Neu5Ac), 5-N-glycolylneur-
aminic acid (Neu5Gc) or deaminoneuraminic acids (KDN), 
respectively (Fig. 1) [1]. Further structural diversity is gen-
erated primarily by a combination of the above-mentioned 
variations at C-5, with modifications of any of the hydroxyl 
groups located at C-4, C-7, C-8 and C-9.
The diversity of Sia structure is reflected by its involve-
ment in a variety of biological functions, many stemming 
from its unique physical and chemical properties, such as 
charge and size. For those interested in this aspect of Sia 
biology we recommend several excellent reviews [1–3]. 
Beside the more general functions attributed to its unique 
physiochemical properties, Sia can also mediate a variety 
of specific recognition processes [3]. For instance, as the 
terminal residues on many glycoconjugates, Sia can mask 
underlying structures, as observed for erythrocytes and 
other blood cells, as well as serum glycoproteins, where the 
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addition of Sia to the subterminal Gal impedes the binding 
of Gal-specific receptors of macrophages and hepatocytes, 
hindering their removal from the circulation [4].
In contrast to masking, Sia can also directly participate in 
a variety of recognition events (Fig. 2), with this probably 
being its most important role. First noted in microorgan-
isms, Sia are now recognized as being the most common 
ligand (or receptor) for pathogenic and non-pathogenic 
viruses, bacteria and protozoa. Obviously, if Sia only 
served as recognition sites for pathogens, the biosynthe-
sis of such a complex monosaccharide would have been 
eliminated during evolution in higher animals. However, 
due to their exposed position on cell surfaces, Sia have 
evolved not only to shield cells from the environment, 
but also as recognition markers in multicellular organ-
isms. Sugar-binding proteins (excluding antibodies and 
enzymes) are collectively called lectins, and there are 
numerous Sia-specific lectins in nature. This review will 
present a detailed overview of the occurrence, specificity 
and function of Sia-specific lectins, particular in viruses, 
bacteria and non-vertebrate eukaryotes. In all cases, where 
the crystal structures of Sia-specific lectins have been 
elucidated, these are cited within the Tables.

Viruses

The adhesion of a virus particle to specific cell-surface 
molecules is the key interaction between the virus and 
its host, and as such is a critical step in the development 
of viral disease, as well as being a potential target for 
antiviral therapy. Attachment strategies employed by vi-
ruses involve multiple interactions between several viral 
and cellular molecules. Many viruses employ an adhe-
sion-strengthening attachment strategy in which primary 
virus-cell interactions involve low-affinity adhesion of 
the virus to common cell surface molecules that are often 
carbohydrates in nature. This initial phase of attachment 
is then followed by higher-affinity interactions between 
the virus and a secondary receptor on permissive cells, 

an event that often triggers virus entry. Members of at 
least eight different virus families exploit sialoglycocon-
jugates for attachment. Some viruses bind preferentially 
to Sia attached via a particular glycosidic linkage, and this 
specificity may contribute to virus host range, tissue tro-
pism and pathogenesis.
In this section, we will discuss the role of viral Sia-spe-
cific lectins in host cell infection and pathogenesis, spe-
cifically Sia-lectins from influenza virus, paramyxovirus, 
reovirus and picornavirus. A comprehensive list of viral 
Sia-specific lectins thus far identified is presented in 
Table 1.

Influenza viruses
Influenza belong to the family Orthomyxoviridae, which 
show a near obligatory dependence on the host cell sur-
face Sia for infection. Whereas influenza B and C are 
purely human viruses, influenza A viruses circulate in a 
wide range of avian and mammalian hosts. Influenza A 
virus is probably the best-known and most-studied ex-
ample in the field, and with the recent outbreaks of avian 
influenza in humans, probably the most likely to cause 
the next influenza pandemic.
The surface of the influenza virus is decorated with two 
major antigenic glycoproteins, the receptor-destroying 
enzyme sialidase and the viral lectin haemagglutinin 
(HA). Even though HA and sialidase play quite different 
roles in viral infection, both recognize a common ligand, 
Sia. For a recent review describing the role of sialidase in 
influenza virus infection see [5 and references therein]. 
Work performed by Suzuki et al. has demonstrated that 
the host range variation in influenza virus A is due in part 
to the type of Sia linkage present on the host cell receptor 
(reviewed in [5]). Therefore, we will only briefly describe 
the relevance of the Sia linkage specificity of influenza 
virus A HA, predominantly as it relates to the H5N1, 
H9N2 and H7N7 strains of avian influenza virus.
Human influenza A virus HA predominantly binds 
Neu5Aca2,6Gal structures which are present on non-

Figure 1. The structural diversity of Sia is generated by a combination of variations at C-5 with modifications of any of the hydroxyl 
groups at C-4, C-7, C-8 and C-9. Sia is predominantly found glycosidically linked via a2,3-, a2,6- or a2,8-linkages to underlying sugars 
as shown.
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ciliated cells of the human trachea. The avian influenza 
virus exclusively binds Siaa2,3Gal, thus limiting the 
host range to those species possessing these receptor 
structures (e.g. birds, horses and pigs). Recently, how-
ever, ciliated cells of the human trachea were found to 
contain a2,3-linked Neu5Ac and were able to replicate 
some avian influenza variants [6]. This finding provides 
a plausible mechanism accounting for the recent infec-
tions and fatalities associated with the H5N1 strain that 
were acquired only through direct contact with infected 
birds. The mechanism of H7N7 transmission discovered 
in the Netherlands is unknown. On the other hand, the 
H9N2 strain has acquired a preference for a2,6-linked 
Neu5Ac, therefore potentially being transmissible from 
human to human [7]. However, H9N2 has only caused 
mild symptoms in infected individuals, and no cases of 
human-to-human transmission have been reported. This 
indicates that an avian influenza virus with HA specific-
ity similar to human strains, therefore allowing human-
to-human transmission, is plausible.

The rise of a strain as fatal as H5N1, but potentially as 
transmissible as H9N2, will largely depend not only on 
the acquisition of HA human-like receptor specificity, 
but also on the maintenance of virulence characteristics. 
The most probable mechanism involves the participation 
of an intermediate host that can replicate both avian and 
human viruses, thus acting as a mixing vessel. Pigs repre-
sent one such adaptive host, since they possess both a2,3- 
and a2,6-linkages and have been shown to bind avian and 
human influenza A viruses [8].
Interestingly, the HA specificity of the Spanish flu, a strain 
that resulted in 20 million deaths in 1918/19, possesses 
the binding site specificity of an avian HA [9, 10], but 
preferentially binds Neu5Aca2,6Gal [11]. The available 
crystal structure [9, 10], as well as recent binding studies 
[12], strongly suggests that the exchange of Glu190 in the 
avian HA with Asp190 in Spanish flu HA leads to a subtle 
increase in binding pocket size that is then able to accom-
modate the binding of Neu5Aca2,6Gal structures. This 
shows that a minor alteration in the binding pocket of 

Figure 2. Sia, which frequently occupy the terminal position of glycan chains on glycoproteins (the individual sugars are represented by 
spheres) or glycolipids, participate in numerous recognition events through Sia-specific lectins. These include, from left to right, cell-cell 
communication in multicellular organisms and host-pathogen interactions. This figure was provided by Dr. Jenny Wilson from the Institute 
for Glycomics, Griffith University, Australia.
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Table 1. Viruses and their Sia-specific lectins.

Species Lectin1 Specificity 3D structure 
[Ref.]

Ref.

Orthomyxoviridae
Influenza virus A
human
avian
porcine
equine

HA
Neu5Aca2,6Gal
Neu5Aca2,3Gal
Neu5Aca2,3Gal, Neu5Aca2,6Gal
Neu5Gca2,3Gal

[129]
[130]
[130]

[5 and
references 
therein]

Influenza virus B HA Neu5Aca2,6Gal [131] [14]
Influenza virus C HE Neu5,9Ac2 [132] [14]

Paramyxoviridae
Newcastle disease virus HN GM3, GM2, GM1,GD1a, GD1b, GT1b

N-glycans
 [19] [18]

Sendai virus HN NeuAca2,3Galb1,3GalNac/4GlcNAc [16]
Human parainfluenza virus type 1 HN NeuAca2,3Galb1,4GlcNAc [17]
Human parainfluenza virus type 3 HN NeuAc/Neu5Gca2,3/6Galb1,4GlcNAc [133] [17]
Parainfluenza virus 5 HN Sia [134] [15]
Porcine rubulavirus LPM HN Neu5Aca2,3Gal [135]
Mumps virus HN Sia [136]

Polyomaviridae
Murine polyoma virus
large-plaque
small-plaque

VP1
Neu5Aca2,3Galb1,3GalNA
Neu5Aca2,3Galb1,3[Neu5Aca2,6]GalNAc

[137] [138]

Simian virus 40 VP1 GM1 [139]
Human polyoma virus JC Siaa2,6 [140]
Human polyoma virus BK Siaa2,3 [141]

Coronaviridae
Bovine coronavirus S protein, HE Neu5,9Ac2a2,3Gal ≥ Neu5,9Ac2a2,6Gal [22]
Human coronavirus OC43 S protein Neu5,9Ac2a2,6Gal ≥ Neu5,9Ac2a2,3Gal [142]
Porcine haemagglutinating encephalomy-
elitis virus 

HA-A Neu5,9Ac2 [143]

Porcine transmissible gastroenteritis coro-
navirus

S protein Neu5Gca2,3 ≥ Neu5Aca2,3 [26]

Avian infectious bronchitits coronavirus HA-A Neu5Aca2,3 [25]
Murine hepatitis virus HE Neu4,5Ac2 [24]

Reoviridae
Reovirus type 3 s1 Sia [144] [30]
Reovirus type 1 s1 Siaa2,3 [32] 
Avian rotavirus PO-13, Ty-3, Ty-1, Ch-1 VP4 Sia [145]
Porcine rotavirus group A OSU VP4 Neu5Gc-GM3 ≥ Neu5Ac-GM3 [146]
Porcine rotavirus CRW-8 VP4 Sia [147] [148]
Porcine rotavirus group C AmC-1 VP4 Sia [149]
Porcine rotavirus A131, A138, A411, 
A253, SB-1A, C134, TFR-41, EE, YM

VP4 Sia [148]

Human rotavirus KUN, MO VP4 GM1 [150]
Human rotavirus Wa, HCR3a VP4 Sia [148]
Rhesus rotavirus VP4 Neu5Ac > > Neu5Gc [151] [37]
Simian rotavirus RRV VP4 Sia [152]
Simian rotavirus SA11 VP4 Neu5Gc-GM3 [34]
Simian rotavirus SA11 4F VP4 Sia [148]
Bovine rotavirus NCDV VP4 Neu5Gc-GM3 [34]
Bovine rotavirus UK VP4 Neu5Ac-GM3, GM1 [34]
Bovine rotavirus RF, BRV033 VP4 Sia [148]
Canine rotavirus CU-1, K9 VP4 Sia [148]
Feline rotavirus Cat97 VP4 Sia [148]
Bluetongue virus Neu5Ac, Neu5Gc [153]

Adenoviridae
Adenovirus type 37 fiber knob Siaa2,3 [154] [155]
Adenovirus types 8, 19a fiber knob Sia [155, 156]
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avian HA can increase the host range to include humans, 
resulting in a potentially pandemic influenza A virus.
The influenza C virus HA is unique among influenza 
virus HAs in two key ways: (i) it preferentially binds 9-
O-acetylated Sia, and (ii) it possesses an acetylesterase 
activity that removes the O-acetyl group at C-9 following 
binding. Due to this ability the influenza C virus HA is 
referred to as a HA-esterase (HE) with receptor-destroy-
ing activity [13]. This unique HA has proved a useful tool 
for investigating the biology of 9-O-acetylated Sia [14].

Paramyxoviruses
Several paramyxoviruses, including Newcastle disease 
virus (NDV), Sendai virus, parainfluenza virus 5 (SV5), 
and mumps virus depend on host cell surface Sia for at-
tachment. The attachment protein has HA and sialidase 
activities that binds to Sia-containing cell surface mol-
ecules, and mediates enzymatic cleavage of Sia from the 
surface of virions and infected cells (reviewed in [15]).
The chemical nature of paramyxovirus receptors has 
been studied extensively in Sendai virus [16], where gan-

gliosides bearing Neu5Ac on the subterminal Gal, such 
as GD1a, as well as the glycoprotein glycophorin have 
been shown to act as receptors. The binding specific-
ity of human parainfluenza viruses types 1 (hPIV1) and 
3 (hPIV3) has also been characterized [17]. Whereas 
hPIV1 preferentially recognizes oligosaccharides con-
taining N-acetyllactosaminoglycan branches with ter-
minal Neu5Aca2,3Gal, hPIV3 additionally recognizes 
Neu5Aca2,6Gal- and Neu5Gca2,3Gal-containing recep-
tors. A two-phase model, where gangliosides represent 
the primary receptors and N-linked glycoproteins serve 
as the second receptor critical for viral entry, has been 
suggested for NDV [18]. Structural analysis of the NDV 
lectin reveals two different Sia binding sites; however, the 
second binding site is not essential for viral infection, but 
probably enhances the fusion promoting activity of the 
sialidase [19].

Coronaviruses
Human coronaviruses (CoV) cause respiratory tract ill-
nesses such as the common cold and the recently identi-

Table 1. (Continued).

Species Lectin1 Specificity 3D structure 
[Ref.]

Ref.

Picornaviridae
Encephalomyocarditis virus Sia [38]
Human rhinovirus 87 Sia [39]
Theiler’s murine encephalomyelitis virus 
BeAn

VP2 Siaa2,3 [45] [44]

Mengo encephalomyocarditis virus HA-A Sia [40]
Bovine enterovirus 261 Sia [41]
Human enterovirus type 70 Siaa2,3 [43]
Hepatitis A virus VP1/VP3 Sia [42]
Equine rhinitis A virus Siaa2,3 [157]

Parvoviridae
Canine parvovirus VP2 Sia [158]
Feline panleukopenia virus Sia [158]
Murine minute virus VP1 Sia [159]
Bovine parvovirus HA-A Neu5Aca2,3Gal [160]
Adeno-associated virus serotype 4 HA-A Neu5Aca2,3Gal [161]2 [162]
Adeno-associated virus serotype 5 HA-A Neu5Aca2,3Gal, Neu5Aca2,6Gal [159]2 [162]

Papillomaviridae
Monkey B-lymphotropic papovavirus Sia [163]

Rhabdoviridae
Rabies virus Sia [164]
Vesicular stomatitis virus Sia [165]

Herpesviridae
Murine cytomegalovirus Neu5Ac [166]
Human cytomegalovirus Neu5Ac > Neu5Gc [167]

Hepdnaviridae
Hepatitis B virus small S protein Neu5Ac [168]

1 HA, haemagglutinin; HE, haemagglutinin esterase; HN, haemagglutinin neuraminidase; HA-A, haemagglutinin activity observed.
2 Structure of whole virus determined.
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fied SARS-CoV, which causes a life-threatening pneu-
monia and represents the most pathogenic human coro-
navirus identified thus far [20].
Several coronavirus strains, as demonstrated for bovine 
coronavirus (BCoV), the human coronavirus OC43 
(HCoV-OC43) and the porcine haemagglutinating en-
cephalomyelitis virus (HEV), use 9-O-acetylated Sia as 
receptor determinants [21]. Like influenza C, coronavi-
ruses possess a HE. These viruses also express a spike 
protein (S) on their surface that has greater HA than HE 
activity and also binds Neu5,9Ac2 [22]. This suggests 
that after initiating the infection by attachment to host 
cell surface Neu5,9Ac2, a secondary interaction of the S 
protein with a specific protein receptor is necessary for 
activation of the fusion process [23].
Interestingly, analysis of the murine hepatitis virus 
MHV-S and MHV-JHM strains with free Sia derivatives 
show that their HE specifically recognizes 4-O-acetyl 
Sia (Neu4,5Ac2) and not Neu5,9Ac2. Since Neu4,5Ac2 
has not been found in mice, the nature of the substrates 
and/or secondary receptors for MHV-S in the natural host 
remains to be determined [24]. In contrast, avian infec-
tious bronchitis virus (IBV) and the transmissible gas-
troenteritis virus (TGEV) do not possess genes encoding 
HE, and instead bind non-acetylated a2,3-linked Sia [25, 
26]. This interaction is not only important for enhancing 
cell attachment and entry, but also increases the stability 
of the virus against detergent-like bile salts encountered 
in the gastrointestinal tract [27]. Furthermore, a role in 
overcoming the mucus barrier and intestinal peristalsis 
by binding of virions to Sia of mucin-type glycoproteins 
has been postulated [28].

Reoviruses
Reoviruses belong to the family Reoviridae, which in-
cludes the orthoreoviruses, rotaviruses, Colorado tick 
fever and Bluetongue virus. Within the orthoreoviruses, 
most serotype 3 viruses bind cell surface Sia. Infections 
are initiated by the binding of the viral attachment pro-
tein, s1, to receptors on the host cell surface. The s1 pro-
tein consists of two distinct receptor-binding regions, a 
Sia-binding fibrous tail lectin domain and a junctional 
adhesion molecule-1 (JAM1)-binding globular head do-
main [29, 30].
The ability of the s1 lectin domain to utilize Sia as a viral 
coreceptor is dictated by a single amino acid, with the 
exchange of Leu204 to Pro204 converting a Sia nega-
tive binding (Sia–) phenotype to a Sia-positive binding 
(Sia+) phenotype [30]. In the case of Sia+ reovirus strains, 
initial binding is likely to be via multivalent virion-Sia 
interactions. By virtue of its rapid association rate, this 
interaction attaches the virion to the cell surface, en-
abling it to diffuse laterally until it interacts with the s1 
head receptor molecule. This secondary interaction with 

JAM1 seems to be the only binding event available to 
Sia– strains and may be necessary and sufficient for virus 
endocytosis [31]. Although serotype 1 reoviruses were 
initially thought not to bind Sia, recent studies have now 
shown that a2,3-linked Neu5Ac is involved in reovirus 
T1L binding to rabbit M cells and polarized Caco-2BBe 
cells [32].
Rotaviruses, the leading cause of gastroenteritis in hu-
mans, possess an outermost layer composed of two 
proteins, VP4 and VP7. Treatment of the virus with 
trypsin results in the specific cleavage of VP4 into the 
polypeptides denoted as VP8* and VP5*. It is gener-
ally accepted that Neu5Ac is required by several animal 
rotavirus strains to attach to the cell surface. The infec-
tivity of some of these strains is greatly diminished by 
the treatment of cells with sialidase; consequently, these 
strains are termed sialidase-sensitive. By contrast, many 
animal strains and most strains isolated from humans are 
sialidase-resistant [33]. This is believed to be due to the 
ability of these strains to bind gangliosides that possess 
internal Sia that are resistant to sialidase treatment [34]. 
The gangliosides GM1 and GM3, and the Gal component 
of glycoprotein receptors, as well as integrins a2b1 and 
a4b1 all play a role in attachment and entry of rotaviruses 
into host cells, indicating that the rotavirus functional re-
ceptor is a complex of several cell components [35]. A 
recently proposed model suggests that the initial contact 
of a sialidase-sensitive virus strain with the cell surface is 
through the binding of the VP8* domain of VP4 to a gan-
glioside receptor which induces a conformational change 
in VP4, thus allowing the virus to interact with integrin 
a2b1 through VP5*. Following this second interaction, 
one to three additional interactions take place involving 
VP5* and VP7, integrins avb3 and axb2, and probably 
other proteins [36].
Studies have now demonstrated that the rhesus rotavirus 
VP8* core specifically binds a-glycosidically linked Sia 
with a 10-fold lower affinity for Neu5Gc, requires no ad-
ditional carbohydrate moieties for binding and does not 
distinguish 3′ from 6′ sialyllactose [37]. The broad speci-
ficity and low affinity of Sia binding by VP8* supports 
the suggestion that more specific interactions that occur 
after Sia binding are responsible for rotavirus host range 
and cell-type specificity.

Picornavirus
The Picornaviridae comprise one of the largest and most 
important families of human and animal pathogens, in-
cluding hepatitis A virus (HAV) and human rhinovirus 
(HRV). Among the Picornaviridae the use of Sia as a 
receptor has been described for encephalomyocarditis 
virus, human rhinovirus 87 (HRV87), Theiler’s murine 
encephalomyelitis virus (TMEV), mengovirus and bo-
vine enterovirus 261 [38–41]. Moreover, the hepatitis A 
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virus (HAV) has recently been found to bind human red 
blood cells through an interaction with sialoglycoproteins 
[42]. Among the enteroviruses (EV), EV70 is the only 
human EV requiring cell surface Sia for attachment, with 
a strong preference for O-linked glycans containing ter-
minal Siaa2,3-linked to galactose [43].
TMEV is unique among picornaviruses because of the ex-
istence of two naturally occurring neurovirulence groups 
with distinct disease phenotypes and highly similar amino 
acid sequences (>90%) and capsid structures [44]. While 
it is possible that members of the two TMEV neuroviru-
lence groups use the same receptor protein, the attach-
ment factors (co-receptors) clearly differ. While high-
neurovirulence strains bind the proteoglycan heparan 
sulfate, low-neurovirulence strains bind a2,3-linked Sia 
moieties on N-linked oligosaccharides [44]. Site-specific 
mutations together with crystallographic studies revealed 
four tightly clustered virus capsid amino acids, all within 
a positively charged area on the viral surface, with Sia 
contact through non-covalent hydrogen bonds being im-
portant for low-neurovirulence strain central nervous sys-
tem persistence [45].

Bacteria

As is the case with viral infections, adhesion of bacteria 
to host tissues represents an initial and essential step in 
pathogenesis. Bacterial surface components that medi-
ate adherence are collectively called adhesins. Because 
cell surfaces are decorated with glycoconjugates, it is not 
surprising that an increasing number of carbohydrate-
specific bacterial adhesins have been discovered. Several 
Gram-negative and Gram-positive bacteria have been 
reported to use Sia-containing glycoconjugates on host 
cells as ligands (see Table 2 for full listing), although the 
identity of the specific bacterial lectin (or adhesin) re-
mains uncertain in many cases. Often, these lectins are 
associated with multi-subunit fimbriae or pili, with the 
expression of specific lectins being responsible for the 
tissue tropism of infections.

Gram-negative bacteria

Escherichia coli
Escherichia coli represents the head of the large bacte-
rial family, Enterobacteriaceae, which are facultative an-
aerobic rods that live in the intestinal tract of healthy and 
diseased animals and humans. Pathogenic E. coli express 
several classes of fimbriae-associated lectins that medi-
ate attachment through specific binding to different gly-
coconjugate receptors on a variety of human cells [46]. 
Strains shown to use sialoglycoconjugates as attachment 
sites express either S-fimbriae, K99-fimbriae, the F41 

adhesin or one of the colonization factor antigens (CFA) 
[47].
S-fimbriae were found to preferentially bind to ganglio-
sides carrying Neu5Gca2,3Gal and Neu5Aca2,8Neu5Ac 
structures, with the C-8 and C-9 hydroxyl groups on Sia 
being required for recognition [48]. The adhesion protein, 
SFaS, a minor component of the multi-subunit S-fimbriae, 
has been cloned and characterized [47]. Mutagenesis stud-
ies suggest that the amino acids Lys116 and Arg118 influ-
ence SfaS binding to Sia [49]. Notably, these amino acids 
are part of a stretch of conserved amino acids which are 
also found in other bacterial Sia-binding lectins such as 
CFAI and K99 adhesins of E. coli and the Vibrio cholerae 
toxin B subunit, as well as the E. coli toxin LTI-B [49].
The K99 fimbrial antigen is often found in enterotoxi-
genic E. coli isolated from calves, piglets and lambs suf-
fering from diarrhoea. In contrast to S-fimbriae, where 
the adhesin SfaS is only a minor component, in K99-
fimbriae the Sia binding site is found in the major sub-
unit. The presence of a hydrophobic region close to the 
binding site seems to enhance Sia binding affinity [50, 
51], which favours Neu5Gc over Neu5Ac. The specific 
recognition of Neu5GcLacCer by K99-fimbriated E. coli 
might contribute to host specificity, since humans and 
animals that lack Neu5Gc cannot be infected [52]. Often 
expressed simultaneously with K99 is F41, which binds 
glycophorin A with a clear selectivity for the M blood 
type [53]. Although the binding of F41 to glycophorin is 
clearly Sia-dependent, the polypeptide must also be in-
volved since the M and N blood type determinant resides 
in the amino acid composition.
Of the CFA the most extensively studied are CFAI [54], 
CFAII [55] and CFAIV [56]. Whereas CFAI is a single 
fimbrial antigen, CFAII and CFAIV are composed of 
antigenically distinct structures called coli surface anti-
gens. Although very little is known about the receptors or 
binding structures for the different CFA, CFAI has been 
shown to bind to free Sia [57], sialoglycoproteins [58] 
and GM2 [59]. Furthermore, purified CS2 antigen be-
longing to CFAII has been shown to be a Sia-dependent 
lectin inhibited specifically by sialyllactose [60].

Helicobacter pylori
Helicobacter pylori (synonym of Campylobacter pylori) 
is a microaerophilic bacterium implicated in a variety of 
human gastric diseases, including antral gastritis, peptic 
ulcer and gastric cancer [61]. Notably, H. pylori exhibits 
an unusual complexity in carbohydrate-binding specificity 
with interactions through sialylated oligosaccharides, gan-
gliotetraosylceramide, Lewis b (Leb) antigen, monohexo-
sylceramide, lactosylceramide, lactotetraosylceramide, 
sulfatide and heparan sulfate, reflecting the complex in-
terrelationship with its host.
Among other H. pylori adhesins, two have been shown to 
interact in a Sia-dependent manner. While the Sia-bind-
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ing lectin SabA recognizes all terminal a2,3-linked Sia 
regardless of the underlying glycan structure, the neutro-
phil-activating  protein, HPNAP, binds solely Neu5Aca
2,3Galb1,4GlcNAcb1,3Galb1,4GlcNAc structures [62, 
63]. Although whole H. pylori bacterial cells are able to 
bind Neu5Aca2,3Galb1,4GlcNAcb1,3Galb1,4GlcNAc
b-terminated glycosphingolipids, knockout experiments 

have shown that recognition is mediated solely by the 
SabA adhesin [64, 65]. Recently, a third a2,3-Sia-recog-
nizing protein was identified from H. pylori [66].
Given that only inflamed healthy stomach tissue ex-
presses high levels of Sia [67], it would appear that inter-
actions with Sia may be more important in longer-term 
survival and maintenance of a chronic state than in me-

Table 2. Bacteria and their Sia-specific lectins.

Species Lectin1 Specificity 3D structure 
[Ref.]

Ref.

Gram-negative
Escherichia coli SfaI, II¸ SFaS Neu5Gca2,3Gal; Neu5Aca2,8Neu5Ac [48]

K99 fimbriae Neu5Gca2,3Galb1,4Glc [52]
F41 fimbriae Sia [53]
CFA I; CS2 Sia [59, 60]

Helicobacter pylori SabA Siaa2,3 [64]
HP-NAP Neu5Aca2,3Galb1,4GlcNAcb1,3Galb1,4

GlcNAc
[63]

Sia [66]
Helicobacter hepaticus HA-A Sia? [169]
Helicobacter bilis HA-A Sia? [169]
Haemophilus influenzae HifA GM3,GM1, GM2, GDla, GD2, GD1b [170]

HMW1 Siaa2,3 [70]
P2, P5 Sia [68]

Actinobacillus actinomycetemcomitans Sia [171]
Pasteurella haemolytica adhesin Neu5Ac [69]
Neisseria meningitidis OpcA; Opa Neu5Ac [172] [173]
Neisseria subflava Sia-1 Neu5Aca2,3Galb1,4Glc [174]
Brucella abortus HA-A Sia [175]
Brucella melitensis HA-A Sia [175]
Pseudomonas aeruginosa Sialyl-Lex; Siaa2,6 [176, 177] 
Bordetella bronchiseptica SBHA Neu5Ac [178]
Bordetella avium HA-A GD1a, GT1b [179]
Moraxella catarrhalis fimbrial pro-

tein
GM2 [180]

Flavobacterium psychrophilum HA-A Sia [181]
Treponema pallidum Sia [182]

Gram-positive
Streptococcus gordonii GspB Siaa2,3 ≥ Siaa2,6 [76]

Hsa Neu5Aca2,3Gal [75]
Streptococcus sanguis SrpA Sia [77]
Streptococcus mutans PAc Siaa2,6 [183]
Streptococcus mitis SABP Neu5Aca2,3Galb1,3GalNac [184]
Streptococcus suis Neu5Aca2,3Galb1,4G1cNAcbl-3Gal [185]
Streptococcus pneumoniae CbpA Sia [186]
Streptococcus oralis Sia [187]
Ureaplasma urealyticum HA-A Sia [188]

Mycoplasma
Mycoplasma pneumoniae HA-A Neu5Aca2,3Galb1,4GlcNAcb1,3 [189]
Mycoplasma gallisepticum HA-A Sia [190]

Toxins
Vibrio cholerae cholera toxin GM1 [191] [82]
Vibrio mimicus haemolysin GD1a, GT1b [192]
Clostridium botulinum neurotoxin A-F 1b series gangliosides [193] [194]
Clostridium tetani tetanus toxin GT1b, GQ1b [195] [196]
Clostridium perfringens delta toxin GM2 [197]
Escherichia coli heat-labile en-

terotoxin
GM1 [198] [196]

Bordetella pertussis pertussis toxin GD1a; Neu5Aca2,6Galb1,4GlcNAc [199] [200]

1 HA-A, haemagglutinin activity observed.
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diating primary recognition events. A prominent feature 
of H. pylori-induced gastritis is infiltration of neutrophils 
into the gastric epithelium, leading to phagocytosis and 

an oxidative burst with production of reactive oxygen me-
tabolites, which may provide the nutritional source for the 
bacterium [65]. Thus, initial attachment of H. pylori may 
be achieved through binding to receptors present in the 
normal gastric epithelium (e.g. Leb antigen and lactote-
traosylceramide), whereas the Sia binding capacity of H. 
pylori mediates adhesion through lectins such as SabA to 
the epithelium in the already diseased stomach [64].

Pasteurellaceae
Members of Pasteurellaceae are small rods that colonize 
the mucosal surface of the respiratory and genital tracts. 
Different members of the Pasteurellaceae group, such as 
Haemophilus influenzae, Actinobacillus actinomycetem-
comitans and Pasteurella haemolytica have been found to 
possess Sia-specific lectins [68, 69]. The HMW1 and 
HMW2 proteins from H. influenzae are high-molecular-
weight adhesins that mediate binding to cultured epithe-
lial cells. HMW1-mediated adherence studies revealed 
the involvement of a surface glycoprotein containing N-
linked oligosaccharide chains with terminal a2,3-linked 
Sia [70]. HMW1 binding to oropharyngeal epithelial cells 
and human erythrocytes was also inhibited by the ganglio-
sides GM1, GM2 and GDla [71]. However, because GM1, 
GM2 and GDla are not involved in HMW1 attachment, a 
distinct receptor for HMW1 with a complementary func-
tion in the process of colonization has been suggested 
[70]. In addition, proteins P5 and P2, the most abundant 
major outer membrane proteins of H. influenzae, appear 
capable of interacting with mucin via Sia-containing oli-
gosaccharides. Although this property may not impart 
long-term advantage on H. influenzae, in a normal host 
with intact mucociliary function it may facilitate the es-
tablishment of infection in conditions associated with an 
abnormality in mucus clearance, such as chronic bronchi-
tis and cystic fibrosis [68].

Gram-positive bacteria

Streptococcus
Streptococcus gordonii and other species of the viridans 
group, such as S. sanguis and S. oralis, comprise a promi-
nent group of oral bacteria that occur primarily on the 
human tooth surface, and are well-known for their ability 
to colonize damaged heart valves, as well as being among 
the most frequently identified primary etiological agents 
of subacute bacterial endocarditis.
Studies on the adhesion of viridans group streptococci to 
saliva-treated hydroxyapatite provided early evidence for 
bacterial recognition of Sia-containing salivary receptors 
[72]. Two Sia-binding adhesins have now been identified 

in different S. gordonii strains, designated GspB and Hsa. 
Both are members of a family of wall-anchored, serine-
rich repeat proteins that recognize a2,3-linked Sia [73, 
74]. Hsa in particular binds to O-glycosylated mucin-
type glycoproteins, including salivary mucin MG2 and 
leukosialin (the major surface glycoprotein of human 
polymorphonuclear leukocytes). Moreover, Hsa as well 
as GspB seems to be involved in the aggregation of hu-
man platelets by S. gordonii through binding to platelet 
glycoproteins Iba and IIb, an interaction implicated in the 
pathogenesis of infective endocarditis [75, 76].
Recently, the S. sanguis glycoprotein homologue of Hsa/
GspB was identified and named SrpA. Like its S. gor-
donii homologues, SrpA is involved in platelet aggrega-
tion, mediated by binding to GPIba in a Sia-dependent 
manner [77]. Furthermore, recent studies, together with 
the completion of various genome projects, have revealed 
Hsa/GspB homologues in other Gram-positive species 
[78, 79].

Toxins
In addition to adhesins, some bacterial pathogens express 
soluble lectins, which are typically toxins. This toxicity 
results from their ability to catalytically modify macro-
molecules that are required for essential cellular func-
tions such as vesicular trafficking, cytoskeletal assembly, 
signalling or protein synthesis. To reach their targets, 
these proteins bind specific surface receptors before en-
docytosis and translocation across the internal membrane 
can occur. These toxins classically bind to oligosaccha-
ride receptors on host cell surfaces, and many of them 
show high specificity toward Sia, generally located on 
gangliosides [80]. Many belong to the AB5 family of tox-
ins with an A-subunit carrying the catalytic domain of the 
toxin, while the B-subunit is responsible for binding the 
holotoxin to a receptor on the surface of the target cell, an 
obligatory step for the uptake of the enzymatic A-subunit. 
One of the best examples of a Sia-binding soluble lectin 
belonging to the AB5 family is cholera toxin, produced 
by V. cholerae. The B-subunit exhibits specific binding to 
ganglioside GM1, delivering the A-subunit to the cytosol. 
This results in the overactivation of an intracellular sig-
nalling pathway in gastrointestinal epithelial cells, caus-
ing severe diarrhoea [81]. Other notable examples of Sia-
dependent toxins are those from Clostridium botulinum 
and Clostridium tetani, the causative agents of botulism 
and tetanus, respectively, which both recognize ganglio-
sides [82].

Protozoa

As we have shown, Sia-specific lectins play a key role in 
mediating adherence of pathogenic microorganisms to 
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their respective hosts. The number of organisms belonging 
to the kingdom Protozoa recognized as medically signifi-
cant is increasing, particularly in developing countries 
where, for instance, Plasmodium sp., the causative agent of 
malaria, is of particular concern. Even though at this stage 
only a few Sia-specific lectins expressed by protozoal 
pathogens have been reported, the number is increasing 
(see Table 3). Thus far protozoan Sia-specific lectins have 
been described in Leishmania sp., Tritrichomonas sp., Ba-
besia sp. as well as Trypanosoma sp. and Plasmodium sp., 
with the latter being the most extensively studied.

Trypanosoma
Trypanosomes, such as Trypanosoma cruzi, the etiologic 
agent of Chagas disease, express a surface-bound protein, 
called trans-sialidase (TS), which enables the parasite to 
acquire Sia from mammalian host glycoconjugates. In 
T. cruzi, the TS family is encoded by approximately 140 
genes [83], many of which code for an inactive enzyme. 
Initial studies showed that an enzymatically inactive re-
combinant TS, which was able to agglutinate desialylated 

erythrocytes, possessed b-Gal binding activity [84]. More 
recent studies have shown that the inactive TS can also act 
as a Sia-recognizing lectin capable of stimulating CD4+ T 
cell activation in vitro and in vivo. The sialomucin CD43 
was identified as a counter-receptor for TS on CD4+ T 
cells and tests revealed that the inactive TS displays a sim-
ilar specificity to that described for active TS (specific for 
a2,3 linked Sia) [85]. The same group also showed that 
inactive TS from T. cruzi binds Sia and b-Gal residues in 
a sequential order mechanism, suggesting that binding of 
the sialyl residue induces a conformational switch that 
then permits interaction with b-Gal [86]. To our knowl-
edge this is the first report of a lectin recognizing two 
distinct ligands by a sequential order mechanism and may 
have implications for the design of TS inhibitors.

Plasmodium
Although there are many intra-erythrocytic parasites, 
erythrocyte invasion has been most widely studied in 
Plasmodium species. Plasmodium species are the caus-
ative agents of malaria, a disease that afflicts millions 

Table 3. Protozoa and their Sia-specific lectins.

Species Lectin1 Specificity/ligand 3D structure 
[Ref.]

Ref.

Trypanosomatidae
Trypanosoma cruzi inactive TS (Tyr342His) CD43 (leukosialin on CD4+ T cells) 

(Neu5Aca2,3 > Neu5Aca2,6 > sLex)
[201]2 [85]

Leishmania donovani HA-A Sia [202]
Leishmania infantum HA-A Sia [202]
Leishmania tropica HA-A Sia [202]
Leishmania aethiopica HA-A Sia [202]
Leishmania major HA-A Sia [202]
Leishmania mexicana HA-A Sia [202]
Leishmania enrietti HA-A Sia [202]
Leishmania amazonensis HA-A Sia [202]

Trichomonadidae
Tritrichomonas mobilensis TML Neu5Aca2,6 > Neu5Aca2,3 > Neu5Ac [203]
Tritrichomonas foetus TFL Neu5Ac > Neu5Gc > Neu5Aca2,3/6 [204]
Tritrichomonas suis HA-A Sia [205] 

Plasmodiidae
Plasmodium falciparum EBA-175 Neu5Aca2,3Gal (glycophorin A) > 

Neu5Aca2,6Gal
[97] [89]

EBA-140, BAEBL, 
PfEBP2

Sia (glycophorin C) [90]

EBA-181, JESEBL Sia [92]
Sia (glycophorin B) [94]
Sia (receptor E) [94]

RfRh1, NBP1 Sia (receptor Y) [206]
Plasmodium knowlesi b protein Sia (rhesus erythrocytes) [207]

Babesiidae
Babesia divergens Sia (glycophorin A and B) [208]
Babesia bovis Neu5Aca2,3/6 [209]
Babesia equi Neu5Aca2,3 [210]
Babesia caballi Neu5Aca2,3 [210]

1 HA-A, haemagglutinin activity observed.
2 Represents crystal structure of active TS.
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worldwide, with P. falciparum responsible for the most 
severe form of human malaria. Parasite invasion is com-
posed of an initial phase of random cell-cell contact, fol-
lowed by reorientation and specific receptor-ligand inter-
actions and subsequent entry into host erythrocytes [87].
Parasite proteins, which mediate interaction with eryth-
rocyte receptors, whether Sia-dependent or -independent, 
belong to a family of erythrocyte-binding proteins (EBP). 
The erythrocyte-binding antigen-175 (EBA-175) [88, 89] 
and its paralogue, EBA-140 [90, 91] and EBA-181 [92], 
are EBP of P. falciparum that belong to the Duffy bind-
ing-like protein family and require Sia on host receptors 
for binding and invasion.
P. falciparum utilizes a number of receptors on the eryth-
rocyte surface for merozoite invasion. The glycophorins 
(A, B and C), sialoglycoproteins present on the erythro-
cyte surface, serve as the major receptors for Sia-depen-
dent invasion of erythrocytes [93]. Glycophorin A has 
been identified as the binding partner of EBA-175 [89], 
whereas EBA-140 binds glycophorin C. Glycophorin B 
and the so-called receptor E can also bind P. falciparum 
in a sialidase-sensitive manner; however, the parasitic 
lectin responsible for binding in both cases remains to be 
identified [94]. The Sia-containing receptor for EBA-181 
remains unidentified; however, it has been shown that it 
differs from the EBA-175 and EBA-140 receptors [92]. 
These studies and others [95, 96], which specifically in-
vestigated EBA-175 binding to glycophorin A, show that 
the binding specificity of each parasitic binding protein 
is defined not only by the presence of Sia but also by the 
protein backbone.
The recently published crystal structure of the erythro-
cyte binding domain of EBA-175, RII, complexed with 
a2,3-sialyllactose was found to be dimeric, displaying 

two prominent channels that contain four of the six ob-
served glycan binding sites. Each monomer consists of 
two Duffy binding-like domains (F1 and F2), with F2 
more prominently lining the channels and making the 
majority of the glycan contacts. Based on this structure a 
model, where RII dimerizes upon binding to glycophorin 
A on the erythrocyte surface during the invasion process, 
has been proposed [97].

Fungi

Sia-specific lectins have been isolated and characterized 
from the fruiting bodies of various mushroom species 
(see Table 4 and references therein). And even though 
some of these lectins may in the future prove useful tools 
for the analysis of Sia-containing glycoconjugates, their 
natural function, in many cases, is not clearly understood. 
However, the identification and isolation of Sia-specific 
lectins from pathogenic fungi, particularly airborne spe-
cies that cause severe infections in immunocompromised 
individuals, has raised the possibility that the initial stages 
of infection, particularly fungal spore (conidia) binding 
to the lung epithelial cells, may be mediated through Sia 
(Table 4).

Dermatophytes
The first human pathogenic fungal species thought to 
possess a Sia-specific lectin were Chrysosporium kerati-
nophilum and Anixiopsis stercoraria (synonym of Apha-
noascus fulvescens) [98], which cause skin infections and 
onychomycosis in humans. Later, Sia-specific binding of 
dermatophytes to erythrocytes was observed. Dermato-

Table 4. Fungi and their Sia-specific lectins.

Species Lectin1 Specificity/ligand 3D structure 
[Ref.]

Ref.

Mushroom
Hericium erinaceum HEL Neu5Gc > Neu5Ac [211]
Polyporus squamosus PSA Neu5Aca2,6Galb1,4Glc/GlcNAc [212]
Psathyrella vetutina PVL Neu5Aca2,3Galb1,4GlcNAc2 [213]
Paecilomyes japonica PJA Neu5Ac [214] 
Agrocybe cylindracea ACG Neu5Aca2,3Galb1,4Glc [215] [216]

Pathogenic fungi
Chrysosporium keratinophilum HA-A Neu5Ac [98] 
Anixiopsis stercoraria HA-A Neu5Ac [98]
Dermatophyte (13 species) HA-A Neu5Ac [99] 
Penicillium marneffei Neu5Ac/laminin and fibronectin [217] 
Aspergillus fumigatus HA-A Neu5Aca2,6GalNAc ?/laminin, fibronectin, fibrinogen, 

collagen
[105, 108]

Histoplasma capsulatum Neu5Ac/laminin? [102]
Macrophomina phaseolina3 MPL Neu5Aca2,3Galb1,4GlcNAc [218] 

1 HA-A, haemagglutinin activity observed.
2 Also binds GlcNAc.
3 Phytopathogenic fungus.
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phyte is the common name for a group comprising Mi-
crosporum, Trichophyton and Epidermophyton that 
causes skin disease (dermatophytosis) in animals, includ-
ing humans. Species from all three genera were able to 
haemagglutinate rabbit erythrocytes; however, the hae-
magglutinating activity was greatest in the zoophilic 
(parasitic on animals) and anthropophilic (parasitic on 
man) dermatophytes, in comparison to geophilic (soil in-
habiting) [99]. This indicates that those species that are 
primarily parasitic may express more Sia-specific lectin 
than those that normally inhabit the soil. The significance 
of Sia-specific lectins for the biology and pathogenicity 
of dermatophytes is at this stage difficult to ascertain; 
however, we may be able to draw some conclusions based 
on the importance of Sia recognition in the pathogenicity 
of other fungal species.

Histoplasma capsulatum
Histoplasma capsulatum is the causative agent of his-
toplasmosis, a severe pulmonary infection that is most 
commonly found in tropical areas. Early studies showed 
that a 50-kDa cell wall protein from H. capsulatum yeast 
was able to bind laminin with high affinity, a process 
thought to be important in the initial stages of infection 
[100]. Later, a specific lectin-like interaction between H. 
capsulatum yeast and macrophage-membrane proteins 
was identified [101]. This lectin-like binding was initially 
thought to be specific for b-Gal residues; however, more 
recent studies have shown binding to human erythrocytes 
may be mediated through Sia [102]. Treatment of eryth-
rocytes with sialidase confirmed the importance of Sia; 
however, details regarding observed differences in ‘at-
tachment specificity’ are not provided [103]. 

Aspergillus fumigatus
In developed countries, Aspergillus fumigatus is now re-
garded as the most important airborne fungal human 
pathogen, causing aspergilloma, allergic bronchopulmo-
nary aspergillosis and the usually fatal disease invasive 
aspergillosis in immunocompromised individuals [104]. 
In all cases infection begins with the inhalation of co-
nidia, which adhere and germinate in the lung.
The involvement of Sia in fungal biology has been most 
extensively studied in A. fumigatus, with several groups 
having investigated the Sia-dependent adhesion of A. fu-
migatus conidia to purified extracellular matrix protein 
(ECM) proteins [105, 106]. The participation of Sia in 
conidia-ECM adhesion was first proposed following the 
observation that conidial binding to laminin, fibrino-
gen and fibronectin could be inhibited by Neu5Ac and 
sialyllactose [107]. This led the authors to hypothesize 
the presence of a specific lectin on the conidial wall that 
binds Sia expressed on ECM proteins, a proposition later 
substantiated with the purification of a Sia-specific lectin 
from A. fumigatus [108]. To our knowledge this is the 

only Sia-specific lectin from a human pathogenic fungal 
species to be purified, thus providing an opportunity for 
the identification of similar lectins from other species, 
as well as providing the first clues as to the role of Sia in 
fungal pathogenicity.
The ability of the purified A. fumigatus Sia-lectin to ag-
glutinate erythrocytes was affected only by Neu5Ac and 
Sia-containing glycoproteins, including bovine mucin and 
fetuin, whereas Sia-containing colominic acid and human 
orosomucoid (a1-acid glycoprotein) were unable to in-
hibit haemagglutination activity. The major oligosaccha-
rides present on human a1-acid glycoprotein are tri- and 
tetra-antennary N-glycans with terminal Neu5Aca2,3/
6Galb1,4GlcNAc structures [109]. On the other hand, 
bovine mucin and fetuin contain a significant number of 
O-glycans with GlcNAcb1,3(Neu5Aca2,6)GalNAc-Ser/
Thr [110] and Neu5Aca2,3Galb1,3(Neu5Aca2,6)GalNA
c-Ser/Thr [111] structures, respectively. Therefore, it ap-
pears that the Sia-specific lectin from A. fumigatus may 
recognize Neu5Aca2,6GalNAc structures preferentially 
over other Sia linkages.

Plants

Even though only a handful of Sia-specific lectins have 
been identified and isolated from plants (see Table 5 and 
references therein), their historical importance in investi-
gating the expression and biology of Sia is unquestioned. 
The occurrence, specificity and application of Sia-spe-
cific plant lectins has been reviewed elsewhere [112]; 
therefore, we will concentrate on the possible signifi-
cance and function of these lectins in plant biology.
A popular theory used to account for the presence of Sia-
specific lectins in plants concerns their involvement in 
plant defence [113]. Some arguments in favour of this 
role include the fact that these lectins specifically bind 
Sia [114, 115], a carbohydrate that plants themselves do 
not express. This may provide plants with a means of rec-
ognizing and combating sialylated pathogens. Further, the 
digestive tracts of animals capable of feeding on plants 
are covered with highly sialylated mucins, providing nu-
merous ligands for Sia-specific lectins. Presumably, it is 
this binding of Sia-specific lectins from elderberry (Sam-
bucus nigra) bark and wheat germ agglutinin that initiates 
the severe toxicity symptoms observed upon ingestion 
of plant lectins in higher organisms. The consequence 
of this is that elderberry, for example, is virtually never 
attacked in the wild [113]. Moreover, Sia-specific plant 
lectins, like other plant lectins, are predominantly local-
ized in regions of the plant that are most susceptible to at-
tack, and thus require an adequate protection strategy. For 
instance, the lectin from elderberry and the leguminous 
plant Maackia amurensis are found in the bark and seed, 
respectively [114, 115]. Peumans and van Damme have 
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suggested that this aspect of plant physiology has a direct 
influence on viability, arguing that ‘a growing plant that 
is half eaten... may [still] survive and even produce viable 
offspring’ [113].
All of the above hypotheses are based on the assertion that 
a family of plant lectins actually exists that specifically 
binds Sia. However, this view is not universally shared. 
The presence of Sia, is thought by some, to only provide 
an acidic group that enhances the interaction [116]. That 
is, the interaction with Sia-containing glycoconjugates is 
believed to be a purely coincidental one. Evidence sup-
porting this assertion includes the observation that free Sia 
does not interact with ‘putative’ Sia-specific plant lectins, 
with Gal or lactose being the real binding partner [117]. 
The crystal structure of M. amurensis lectin complexed 
with sialoglycoconjugates shows that a Gal residue occu-
pies the primary binding site [118]. A sulfate group at C3 
of Gal instead of Sia was found to bind M. amurensis lec-
tin, indicating that only a charged group is required rather 
than a complete Sia molecule [119]. However, this would 
mean that the presence of a Sia molecule, regardless of 
linkage, would elicit the same effect. This is clearly not 
the case (see Table 5). Finally, Sia-specific lectins appear 
not to be as widespread in plants as would be expected 
given their proposed importance in plant defence. In spite 
of these arguments it is nevertheless difficult to reconcile 
this view with the fact that these lectins show exquisite 
specificity for what in essence are the natural sialogly-
coconjugates that they would encounter in nature. It is 
therefore reasonable to suggest that due to evolutionary 
pressure placed on these plants by sialylated pathogens 
and/or predators, they have developed extremely specific 
defence mechanisms.

Animals

Sia-specific lectins have a wide variety of functions in an-
imals. Even though for many individual lectins a function 

is unknown, for the majority their principal role seems to 
relate to the proper function of the immune system. There 
are a variety of lectins reported to bind Sia with high 
specificity in different animal phyla. This strict specific-
ity is of obvious importance, ensuring proper function 
and regulation of these lectins. However, animals must 
also cope with numerous pathogens that, as we have al-
ready discussed, bind to their hosts via Sia. Since many 
pathogens have evolved lectins that are highly specific for 
Sia type and linkage, their hosts have needed to counter 
with various modifications to avert pathogenic entry, all 
the while ensuring that the proper ligands for their en-
dogenous lectins are preserved. This ‘arms-race’, a term 
used by Angata and Varki [2], between host and pathogen 
not only explains the unusual structural complexity of 
Sia, but also the rapid evolution of some Sia-recognizing 
lectins, as is the case for the CD33-related siglecs [120]. 
This section will summarize the numerous Sia-binding 
proteins identified from invertebrate and vertebrate ani-
mals, their function and significance in animal biology.

Invertebrates
Sia-specific lectins have been isolated and characterized 
from various invertebrates, including molluscs, arthro-
pods, echinoderms and urochordates, with many species 
containing more than one such protein (see Table 6 and 
references therein). Even though some of these lectins 
have served as useful tools for the analysis of Sia-con-
taining glycoconjugates, their natural function, in many 
cases, is unclear. In a similar way to that postulated in 
plants, it has been assumed that most of these lectins play 
some role in the defence mechanism against bacterial in-
fections [121].
Invertebrates, without the benefit of an adaptive immune 
system, possess an immensely strong innate immune re-
sponse to counteract the continuous challenge of infec-
tion. Innate immunity is mainly targeted toward antigens 
such as lipopolysaccharides commonly present on the 

Table 5. Plants and their Sia-specific lectins.

Species Lectin1 Specificity/ligand 3D structure [Ref.] Ref.

Maackia amurensis MAL Neu5Aca2,3Galß1,4GlcNAc [118] [114]
Maackia amurensis MAH Neu5Aca2,3Galß1,3[Neu5Aca2,6]GalNAc [118] [219]
Sambucus nigra SNA Neu5Aca2,6Gal [115]
Sambucus canadensis SCA Neu5Aca2,6Gal [220]
Sambucus sieboldiana SSA Neu5Aca2,6Gal [220]
Trichosanthes japonica TJA Neu5Aca2,6Galb1,4GlcNAc [221]
Viscum album ML-I Neu5Aca2,6Galb1,4GlcNAc [222]
Saraca indica saracin Neu5Aca2,6/3Galb1,4GlcNAc [223]
Artocarpus integrifolia jacalin Gal and Man > Neu5Ac [224] [224] 
Triticum vulgaris WGA internal GlcNAc > Neu5Ac [225] [226]
Morus alba MLL Neu5Gc [227] 
Lactuca scariole PLA Sia [228]

1 HA-A, haemagglutinin activity observed.
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surface of potential pathogenic Gram-negative bacteria. 
Invertebrate lectins seem to participate in the innate im-
mune response by inducing bacterial agglutination or ac-
tivation of phagocytes through binding to Sia on foreign 
cells (opsonin activity) [121].
Furthermore, Sia-binding lectins can express direct 
haemolytic activity as shown for a Sia-specific lectin 
called limulin from the American horseshoe crab Limu-

lus polyphemus, where the plasma-based cytolytic sys-
tem seems to be mediated by this single protein. Hae-
molysis depends on the Sia-binding activity of limulin, 
since sialylated glycoconjugates, such as fetuin, as well 
as Neu5Ac and colominic acid inhibit haemolysis, and 
desialylation of the target cells renders them immune to 
cytolysis [122].

Table 6. Invertebrates and their Sia-specific lectins.

Species Lectin1 Specificity Ref.

MOLLUSCA
Bivalvia

Modiolus modiolus HA-A Neu5Ac [229]
Crassostrea gigas HA-A Neu5Ac [230]
Crassostrea virginica Sia [231]
Mytilus edulis Neu5Ac [232]
Anadara granosa AFL Neu5Gc [233]

Gastropoda
Cepaea hortensis agglutinin I Neu5,9Ac2 [234]
Achatina fulica achatinin H Neu5,9Ac2 [235]
Pila globosa PAL Neu5Gc [236]
Limax flavus LFA Neu5Ac > Neu5Gc [237]

ARTHROPODA
Chelicerata

Limulus polyphemus limulin Neu5Ac, Neu5Gc [238]
Tachypleus tridentatus tCRP-2; tCRP-3 Neu5Ac [239]
Tachypleus gigas HA-A Sia [240]
Carcinoscorpius rotundicauda carcinoscorpin Neu5Gc, Neu5Aca2,6GalNAc-ol [241]
Centruroides sculpturatus HA-A Neu5Ac, Neu5Gc [242]
Mastigoproctus giganteus Neu5Ac [243]
Androctonus australis HA-A Neu5Ac, Neu5Gc [244]
Vaejovis spinigerus HA-A Sia [245]
Heterometrus granulomanus scorpin Neu5Ac, Neu5Gc [246]
Aphonopelma chalcodes HA-A Sia [247]
Ixodes ricinus Sia [248]
Ornithodoros moubata dorin M Neu5Ac [249]
Ornithodoros tartakovskyi Sia [250]
Ornithodoros tholozani Sia [250]

Crustacea
Paratelphusa jacquemontii HA-A O-Ac-Neu5Ac [251]
Cancer antennarius HA-A Neu5,9Ac2, Neu4,5Ac2 [252]
Scylla serrata HA-A Neu5Gc [253]
Liocarcinus depurator HA-A O-Ac-Neu5Ac [254]
Homarus americanus lobster agglutinin I Neu5Ac [255]
Macrobrachium rosenbergii HA-A Neu5Ac [256]
Penaeus monodon monodin Neu5Ac [257]
Litopenaeus setiferus LsL Neu5Ac, O-Ac-Neu5Ac [258]
Litopenaeus schmitti PPL Neu5Ac [259]

Tracheata
Allomyrina dichotoma Allo A-II Neu5Aca2,6Galb1,4GlcNAc [260]

ECHINODERMATA
Echinoidea

Hemicentrotus pulcherrimus 350-kDa sperm-binding protein Neu5AcGlcCer, (Neu5Ac)2GlcCer [123]
Strongylocentrotus purpuratus 350-kDa sperm-binding protein Neu5AcGlcCer, (Neu5Ac)2GlcCer [123]

UROCHORDATA
Styela plicata Neu5Ac [261]

Halocynthia pyriformis Neu5Ac, Neu5Gc [261]

1 HA-A, haemagglutinin activity observed; no structural information is currently available on any of the lectins listed here.
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In addition to their role in the immune system, inverte-
brate lectins have been reported to play an important role 
in sperm-egg binding, as shown for the species-specific 
Sia-binding protein [350-kDa sperm-binding protein 
(SBP)] found in sea urchins [123].

Vertebrates
In vertebrates a variety of Sia-dependent lectins are known 
to play an important role in cellular communication with 
many of them found in the immune system (see Table 7 
for full listing). The first vertebrate Sia-binding protein 
reported was Complement Factor H, a soluble serum fac-

tor that is part of the alternative pathway of complement, 
one of the earliest response components of the innate im-
mune system [124].
Another important group of vertebrate Sia-binding pro-
teins are the selectins, a family of C-type lectins that 
recognize sialyl Lewis x (sLex) and sialyl Lewis a (sLea) 
[125]. Together with other cell adhesion molecules, se-
lectins mediate the adhesion and extravasation of leuko-
cytes from the vascular bed into the surrounding tissue 
[126]. Furthermore, P-selectin has also been shown to be 
involved in tumour metastasis [127].
Siglecs are the largest family of sialic acid-recognizing 
lectins identified thus far with 11 members identified 

Table 7. Vertebrate lectins that recognize Sia.

Lectin (synonyms) Specificity Expression 3D struc-
ture [Ref.]

Ref.

Selectins
E-Selectin (CD62E;ELAM-1) sLex, sLea Act-endo [262] [126, 3]
P-Selectin (CD62P; GMP-140; 
PADGEM)

sLex, sLea Act-endo, Plat [262] [126, 3]

L-Selectin (CD62L; Mel 14 antigen) 6′-sulfo sLex Leuco [126, 3]

Siglecs
Siglec-1 (sialoadhesin) Neu5Aca2,3Gal > Neu5Aca2,6Gal 

> Neu5Aca2,8
Macro [263] [128, 120] 

Siglec-2 (CD22) Siaa2,6Gal B [128, 120] 
Siglec-3 (CD33) Siaa2,6Gal > Siaa2,3Gal My-pro, Mono, Macro [128, 120] 
Siglec-4 (MAG) Neu5Aca2,3Gal Oligo, Schwann [128, 120] 
Siglec-5 Siaa2,6Gal, Siaa2,3Gal > 

Neu5Aca2,8 
Mono, Neutro, B, Macro [128, 120] 

Siglec-6 (OB-BP1) Siaa2,6GalNAc (sialylTn) Plac, B [128, 120] 
Siglec-7 (AIRM-1) Neu5Aca2,8 > > Siaa2,6Gal > 

Siaa2,3Gal 
Mono, NK [264] [128, 120] 

Siglec-8 Siaa2,3Gal > Siaa2,6Gal Eosino, Baso, Mast [128, 120] 
Siglec-9 Siaa2,3Gal, Siaa2,6Gal Mono, Neutro, NK, B [264] [128, 120] 
Siglec-10 Siaa2,3Gal, Siaa2,6Gal Mono, NK, Eosino, B [128, 120] 
Siglec-11 Neu5Aca2,8Neu5Ac Macro [128, 120] 

Others
Complement factor H Sia blood [265]
Interleukin-1a biantennary 

Neu5Aca2,3Galb1,4GlcNac
blood [266]

Interleukin-1b Neu5Aca2,3Galb1-Cer (GM4) blood [266]
Interleukin-2 GD1b blood [267]
Interleukin-4 Neu5Ac1,7lactone blood [266]
Interleukin-7 Siaa2,6GalNAc (sialylTn) blood [266]
CD83 Sia dendritic cells [268]
L1 Neu5Aca2,3 neurons, CD4+ T cells, 

Mono, B
[268]

Sia-binding proteins Sia rat sperm [269]
Sia-binding protein Sia hamster sperm [270]
Laminin Siaa2,3Galb1,4GlcNAc extracellular matrix [271]
Sarcolectin Neu5Ac, Neu5Gc placenta [272]
Calcyclin Neu5Gc bovine heart [273]
Calreticulin Neu5Gc, Neu5Ac ovine placenta [274]
cSBL Sia frog egg [275]
Sia-binding proteins Sia rat uterus [276]

Information is given for Homo sapiens unless otherwise stated. Act-endo, activated endothelium; B, B cells; Baso, basophils; Eosino, eo-
sinophils; Leuco, leucocytes; Macro, macrophages; Mast, mast cells; Mono, monocytes; My-pro, myeloid progenitors; Neutro, neutrophils; 
NK, natural killer cells; Oligo, oligodendrocytes; Plac, placental trophoblasts; Plat, platelets; Schwann, Schwann cells.
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in the human genome. Each siglec has a distinct pref-
erence for specific Sia type and linkage (see Table 7). 
Apart from Siglec-4, all siglecs are expressed by cells 
of the immune system. However, the function/s of most 
members of the siglec family are only poorly understood, 
though their cell-type-specific expression suggests in-
volvement in discrete cellular events. For further infor-
mation we recommend that interested readers see recent 
comprehensive reviews from Varki and Angata [120] and 
Crocker [128].

Conclusions

The immense structural diversity and wide distribution 
of Sia suggest that sialobiology has only scratched the 
surface regarding the identification of Sia-specific lectins 
in nature. This is particularly the case in the microbial 
world, where it seems probable that a vast array of Sia-
specific lectins with unique specificities and functions 
exist that may not only prove useful tools for studying the 
biology of Sia, but may even represent novel targets for 
drug discovery.
The biological roles of many of the Sia-specific lectins 
described still remain unknown; therefore, detailed inves-
tigations are necessary to further analyse the interaction 
of Sia-binding proteins with their counter-receptors, as 
well as to elucidate the resulting signals controlling their 
function. This will not only broaden our understanding of 
the role of Sia in biological systems but also its relevance 
in biomedical research. Of particular importance is the 
need for sialobiologists to better understand how Sia and 
Sia-specific lectins drive the constantly evolving ‘arms-
race’ being waged between pathogenic microorganisms 
and their hosts.
In this review we have summarized the key features re-
lating to the occurrence, specificity and function of the 
Sia-specific lectins currently known, specifically those 
identified and characterized from microorganisms and 
non-vertebrate eukaryotes. The challenge now for Si-
alobiologists is to not only continue identifying, but also 
analysing the function of novel Sia-specific lectins, thus 
adding to the growing list summarized herein.
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