
Abstract. The fatality of cancer predominantly results
from the dissemination of primary tumor cells to distant
sites and the subsequent formation of metastases. During
tumor progression, some of the primary tumor cells
as well as the tumor microenvironment undergo charac-
teristic molecular changes, which are essential for the
metastatic dissemination of tumor cells. In this review, we
will discuss recent insights into pro-metastatic events oc-
curring in tumor cells themselves and in the tumor
stroma. Tumor cell-intrinsic alterations include the loss
of cell polarity and alterations in cell-cell and cell-matrix

Cell. Mol. Life Sci. 63 (2006) 449–468
1420-682X/06/040449-20
DOI 10.1007/s00018-005-5296-8
© Birkhäuser Verlag, Basel, 2006

adhesion as well as deregulated receptor kinase signaling,
which together support detachment, migration and inva-
sion of tumor cells. On the other hand, the tumor stroma,
including endothelial cells, fibroblasts and cells of
the immune system, is engaged in an active molecular
crosstalk within the tumor microenvironment. Subse-
quent activation of blood vessel and lymph vessel angio-
genesis together with inflammatory and immune-sup-
pressive responses further promotes cancer cell migration
and invasion, as well as initiation of the metastatic pro-
cess.

Key words: Angiogenesis; lymphangiogenesis; metastasis; tumorigenesis; tumor stroma.

Introduction

Carcinomas are the most frequent type of human malig-
nancies, and the vast majority of cancer deaths are caused
by the formation of metastases rather than by the primary
tumor itself. Since existing metastases are difficult to tar-
get by conventional cancer therapies, a curative regimen
requires the detection of the disease before the primary
tumor has spread. Yet, despite evolving clinical diagnos-
tic tools, a large proportion of tumors have already metas-
tasized by the time of diagnosis.
The selective process of metastasis requires that cancer
cells successfully complete several sequential, rate-limit-
ing steps. They must detach from the primary tumor, in-
vade the host stroma, intravasate into lymphatic or blood
vessels, spread to the capillary bed of distant organs, ex-

travasate and proliferate in the receptive organ parench-
yma [1]. The succeeding metastatic cells have undergone
changes in their proliferative, survival, migratory and in-
vasive abilities and can be seen as winners of a ‘metasta-
sis decathlon’ [2]. It is now well established that tumor
cell-autonomous changes are not sufficient to allow tu-
mor progression and metastasis to occur. By analogy with
the architecture of organs, tumors are not only composed
of a ‘parenchyma’ formed by the neoplastic cells, but also
of a supportive ‘stroma’, consisting of specific extra-cel-
lular matrix (ECM) components, fibroblasts, adipocytes,
vascular cells, smooth muscle cells and cells of the
haematopoietic system [3]. During tumor progression
and metastasis, an active crosstalk occurs between tumor
cells and their stroma, mainly mediated by direct cell-cell
contact or paracrine cytokine and growth factor signal-
ing, reminiscent of the communication between epithelial
and mesenchymal cells during embryonic development.

Review

Metastasis: cell-autonomous mechanisms versus 
contributions by the tumor microenvironment
L. Kopfstein and G. Christofori*

Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, University of Basel, 
Mattenstrasse 28, 4058 Basel (Switzerland), Fax: +41 61 267 3566, e-mail: gerhard.christofori@unibas.ch

Received 4 July 2005; received after revision 3 November 2005; accepted 14 November 2005
Online First 16 January 2006

* Corresponding author.

Cellular and Molecular Life Sciences



Such signaling may activate the tumor microenvironment
at the primary and secondary tumor sites, thereby under-
going morphological changes (desmoplasia’) and allow-
ing or even supporting tumor outgrowth, invasion and
metastasis [4]. Hence, tumor cell-stroma interaction is an
important new focus of research in the treatment of me-
tastatic disease.
Many excellent reviews cover particular aspects of mole-
cular pathways known to be involved in the metastatic
process. This review more broadly summarizes recent
progress in the elucidation of various pro-metastatic mol-
ecular events and pathways occurring during tumor pro-
gression. In particular, we emphasize the distinction be-
tween tumor cell and tumor stroma contribution, and we
discuss the role of tumor cell polarity, adhesion and
deregulated receptor kinase signaling, as well as endothe-
lial cells, fibroblasts and immune cells in invasion and
metastatic dissemination of tumor cells.

Tumor cell-intrinsic changes

Changes in cell-cell and cell-matrix adhesion

Loss of E-cadherin function and epithelial-
mesenchymal transition
E-cadherin is a central player in the makeup of cell polar-
ity and epithelial organization. With its extracellular do-
mains, this cadherin mediates calcium-dependent ho-
mophilic cell-cell contact in adhesion junctions, while
linking adhesion junctions to the actin cytoskeleton via a
cytoplasmic cell adhesion complex consisting of a-, b-,
g- and p120 catenins [5]. Thereby cell-cell adhesion can
affect localization and function of cytoskeletal regulators
and influence actin-guided cell motility [6]. In most can-
cers of epithelial origin, E-cadherin-mediated cell-cell
adhesion is lost concomitantly with tumor progression
and is correlated with advanced tumor grades and poor
patient survival [7]. Consistent with this observation,
forced downregulation of E-cadherin function in a mouse
model of carcinogenesis promotes tumor progression, in-
vasion and metastasis [8]. These and many more results
from a variety of in vivo and in vitro experimental sys-
tems demonstrate that E-cadherin is an important mole-
cule in tumor progression [5].
How does the loss of E-cadherin promote metastasis? In
order to leave the coherent epithelial cell assembly of the
primary tumor, malignant tumor cells have to acquire a
fibroblastoid, migratory and invasive phenotype. A simi-
lar process physiologically occurs during embryonic de-
velopment, tissue remodeling, wound healing and in-
flammation and is termed epithelial-to-mesenchymal
transition (EMT) [9]. A number of in vitro studies (see
below) collectively support the idea that morphologic and
molecular changes of tumor cells required for the first

steps of metastasis mimic physiological EMT. In fact, full
EMT of in vitro cultured tumor cells is thought to resem-
ble, at least in part, the metastatic process in cancer pa-
tients. Nevertheless, this hypothesis is still under debate
and evidence for carcinoma EMT in vivo has yet to be
found [10]. We support the view that EMT-like events oc-
cur in tumors and that studying these events may con-
tribute to our understanding of metastasis formation.
Oncogenic events in tumor cells as well as growth factors
secreted by tumor and stromal cells, including transform-
ing growth factor-b (TGF-b) and fibroblast growth factor
2 (FGF-2), induce EMT (fig. 1). During EMT, cells pro-
gressively redistribute or downregulate their apical and
basolateral epithelial-specific proteins, such as tight and
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Figure 1. Mechanisms of tumor invasion and metastatic dissemina-
tion. During scattering and epithelial-to-mesenchymal transition
(EMT), cells undergo major changes in morphology and lose cell-
cell contacts. (A) EMT of tumor cells. Loss of E-cadherin leads to
disruption of adhesion junctions and is essential for EMT. TGF-b,
FGF-2 and Wnt induce or stabilize Snail1, Snail2, dEF1 and SIP1,
all direct or indirect transcriptional repressors of E-cadherin. Con-
comitant with the loss of E-cadherin function, the expression of
mesenchymal marker proteins is induced. (B) Degradation of base-
ment membrane (BM) and extra-cellular matrix (ECM). HGF/SF
and EGF activate fibroblasts and endothelial cells to secrete matrix
metalloproteases and urokinase-type plasminogen activator. The
BM and ECM are thereby degraded, allowing tumor cells to trans-
migrate into the subepithelial ECM and to finally intravasate into
blood or lymphatic vessels. (C) Activation of the tumor cell actin
cytoskeleton, migration and invasion of metastatic cells into blood
vessels. Upon loss of cell polarity, activated Rac, Cdc42 and RhoA
are no longer sequestered at adhesion junctions and exert pro-mi-
gratory activities: Rac induces lamellipodia and membrane ruffles
at the leading edge of the cell, Cdc42 bundles actin into filopodia,
Rho assembles actin into stress fibers. These cytoskeletal changes
result in increased cell motility.



adherens junction proteins (including E-cadherin), and
re-express mesenchymal molecules, such as vimentin and
N-cadherin. These changes lead to the abrogation of cell-
cell contacts and the gain of cell motility necessary for in-
vasion (reviewed in [11]). EMT is in contrast to the
process of cell scattering, where different epithelial mark-
ers are reversibly downregulated and expression of mes-
enchymal proteins is not induced. Scattering can be me-
diated by a number of growth factors, including hepato-
cyte growth factor/scatter factor (HGF/SF), TGF-b,
FGF-2, TGF-a and epidermal growth factor (EGF) via
the PI3K or the Raf/MAPK signaling pathways [9, 12].
Loss of E-cadherin promotes, whereas maintenance of its
expression inhibits, EMT and metastasis [5, 8]. E-cad-
herin is therefore considered a metastasis suppressor
gene. Downregulation of E-cadherin mostly occurs at the
transcriptional level. The E-cadherin promoter is fre-
quently repressed by specific transcriptional repressors,
including Snail1 (previously Snail), Snail2 (previously
Slug), SIP1, dEF1, Twist and E12/E47, and by subse-
quent promoter hypermethylation [13, 14]. Consistent
with this observation, some of these repressors have
been found expressed specifically at the invasive front of
human invasive hepatocellular and breast carcinoma [15,
16]. The expression of these repressors seems to be
highly regulated by pathways, including canonical Wnt
signaling, TGF-b (see below), FGF, EGF, Stat3 and nu-
clear factor k-B (NFk-B) signaling [17–19]). Notably,
Snail1 is a highly unstable protein. It is rapidly phospho-
rylated by glycogen synthase kinase 3b (GSK3b) and
subsequently ubiquitylated and degraded by the protea-
some pathway [20]. As a result of transcriptional repres-
sion, the E-cadherin promoter is frequently found hyper-
methylated in a large subset of cancer cases [21]. E-cad-
herin can also be downregulated at the protein level.
Receptor tyrosine kinases (RTKs), such as EGFR, c-
Met, IGF1R, FGFR and the non-receptor tyrosine kinase
c-Src can induce phosphorylation of E-cadherin and
catenins, resulting in their ubiquitylation by the E3 lig-
ase Hakai and subsequent endocytosis and degradation
[22–25]. Finally, secreted proteases such as matrix met-
alloprotease (MMP)-9, for example induced by TGF-b
and HGF/SF, can cleave E-cadherin and disrupt cad-
herin-mediated cell-cell contacts [26].
Loss of E-cadherin during EMT disrupts adhesion junc-
tions between neighboring cells and thereby supports de-
tachment of malignant cells from the epithelial cell layer.
Yet, migration and invasion of tumor cells is also pro-
moted by the loss of interaction of E-cadherin with the
cytoskeleton, subsequent changes in the activities of Rho
family GTPases, most prominently Rac1, Cdc42 and
RhoA, and the concomitant reorganization of the actin
cytoskeleton (fig. 1). In epithelial cells, E-cadherin-me-
diated assembly of adherens junctions recruits and ac-
tivates Rac1 and Cdc42. Thereby, E-cadherin-bound a-

and p120-catenin directly interact with Rho family-spe-
cific guanine nucleotide exchange factors (GEFs) and
with Rho family members [27, 28]. Moreover, activated
Rac1 and Cdc42 promote and consolidate E-cadherin-
mediated adhesion by sequestering their downstream ef-
fector IQGAP1, which in its free form inhibits the inter-
action of b-catenin with a-catenin/E-cadherin [29]. After
an early activation phase, where RhoA is required for E-
cadherin clustering, RhoA gets gradually downregulated
with a concomitant repression of cell migration [30]. In
contrast, forced expression of RhoA (and also RhoC) in
tumor cells induces focal adhesions and stress fibers, pro-
moting invasion and metastasis [31, 32]. Upon loss of E-
cadherin function, RhoA, Rac1 and Cdc42 are released
from adhesion junctions and promote cell migration and
invasion. Consistent with the dual role of these mole-
cules, the Rac1-specific GEF Tiam1 localizes to adhesion
junctions and promotes cell adhesion on substrates im-
peding cell migration (fibronectin, laminin), whereas it is
found in lamellipodia when cells are cultured on cell
motility-supporting collagen type I [33]. However, the
mechanisms, by which ECM and thus integrin-mediated
signaling affect the activity of RhoA, Rac1 and Cdc42,
and with it E-cadherin function, remain to be elucidated.
Recent studies have shown that mesenchymal cadherins,
in particular N-cadherin, enhance tumor cell motility and
migration (reviewed in [5]), thus exhibiting an opposite
effect compared with E-cadherin. N-cadherin-induced tu-
mor cell invasion can even overcome E-cadherin-medi-
ated cell-cell adhesion. A novel concept based on the
above observations is that a ‘cadherin switch’ from ep-
ithelial to mesenchymal cadherins exists which supports
the transition from a benign to an invasive, malignant tu-
mor phenotype. Hence, in addition to the loss of E-cad-
herin, the gain of N-cadherin may critically contribute to
tumor invasion and metastatic dissemination. In fact, N-
cadherin has been shown to induce tumor cell migration,
most likely by stimulating FGF receptor-mediated signal
transduction [34, 35]. Hence, changes in the expression
of cadherins not only modulate cell-cell adhesion but also
induce pro-metastatic signaling pathways.

Integrins and tumor progression
In order to detach and migrate, tumor cells depend on
changes in both cell-cell and cell-matrix interactions. It is
tacitly assumed that strong cell-matrix adhesions need to
be dissolved, whereas transient and weak adhesions are a
prerequisite for migration. This complex situation has
made it difficult to experimentally determine the func-
tional contribution of cell-matrix adhesion to tumor pro-
gression. With integrins being the prototype mediators of
cell-matrix adhesion, they have been studied in great de-
tail, also in tumor progression [36–38]. It is beyond the
scope of this review to discuss the detailed mechanisms
by which integrins affect tumor cell adhesion and migra-
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tion. Instead, we focus on the functional contribution of
integrins to tumor metastasis. Moreover, the following
sections present several mechanistic links of integrins to
signaling pathways.
Integrins are heterodimeric cell surface receptors consist-
ing of two type-I transmembrane subunits, a and b. They
provide the essential link between the actin cytoskeleton
and the ECM during cell migration. Different a and b
subunits form distinct integrin subtypes, which link ECM
ligands, such as fibronectin, vitronectin, laminin and col-
lagen, to the intracellular actin cytoskeleton [38]. Impor-
tantly, binding to these ECM components activates inte-
grins, which in turn induce intracellular signaling cas-
cades modulating cell proliferation, survival, polarity,
motility and differentiation [36, 38, 39]. Thereby inte-
grins mediate anchorage dependence, since they allow
these processes only in appropriately adhering cells.
However, during tumor progression, mutations in onco-
genes and tumor-suppressor genes can enable non-adher-
ent neoplastic cells to survive and proliferate in the ab-
sence of proper cell-matrix adhesion [40]. Cancer cells
that profit from integrin signals are being selected due to
their survival and proliferation advantage. Many cancer
types, including melanoma, glioblastoma, prostate,
breast and ovarian cancer, exhibit increased expression of
avb3, a2b1, a4b1 and a6b1 integrins during tumor progres-
sion [41–43]. Tumor cell migration and metastasis is
supported by integrin-mediated focal adhesion and actin-
omyosin-dependent contractility, as demonstrated for in-
stance for integrins a6b4, a2b1 and aVb3 [44–46]. Further-
more, activated integrins can recruit proteases, such as
MMP-9, towards the site of attachment, and the subse-
quent ECM degradation supports migration and invasion
of cells into the surrounding tissue [38, 43]. Unfortu-
nately, various subsets of integrins seem to mediate dif-
ferent functions during progression of different cancer
types, and more experimental work will be required to
unravel their actual functional contribution.
Endothelial cell integrins have been studied in great de-
tail during physiological and pathological angiogenesis
and have been shown to play an important role in tumor
angiogenesis. Distinct subtypes, including a1b1 and a2b1

integrins, support vascular endothelial growth factor
(VEGF)-mediated angiogenesis in tumor xenotransplan-
tion experiments [47]. Endothelial a5b1, aVb3 and aVb5

integrins are critically involved in both VEGF- and FGF-
mediated angiogenesis. Peptide antagonists against these
integrins are able to interfere with tumor angiogenesis in
a number of experimental model systems, and initial clin-
ical trials with some of these compounds are under way
[37]. Interestingly, experiments with mice lacking aVb3

and aVb5 integrins have demonstrated increased rather
than reduced tumor growth, raising the possibility of a
dual function of integrins at least in the angiogenic
process [48]. Thus, changes in integrin-mediated matrix

adhesion on tumor cells, endothelial cells and certainly
other cells of the tumor stroma can influence tumor cell
migration, invasion and angiogenesis, all rate-limiting
processes in tumor metastasis.

Immunoglobulin family adhesion molecules:
NCAM and L1
Among many other cell adhesion molecules (CAMs), two
have been specifically implicated in promoting tumor
cell invasion and metastatic spread, NCAM (CD56) and
L1 (CD171, L1CAM). Both structurally belong to the im-
munoglobulin (Ig) superfamily and are critical for central
nervous system (CNS) development. They not only me-
diate static neuron-neuron adhesion but also are particu-
larly involved in neurite outgrowth, axon guidance and
neural cell migration. In addition to providing mechani-
cal cell-cell and cell-ECM adhesion, they also activate
signaling receptors and induce intracellular signaling cas-
cades [5, 49].
NCAM has been shown to play an important role in the
progression to tumor malignancy. Both the shift of the
adult NCAM 120-kDa isoform to the embryonic 140-
and 180-kDa isoforms and a general downregulation of
NCAM expression are associated with poor prognosis in
a few cancer types [50, 51]. In a transgenic mouse tumor
model of pancreatic b cell carcinogenesis (Rip1Tag2),
loss of NCAM leads to the formation of lymph node
metastasis mediated by the increased expression of the
lymphangiogenic factors VEGF-C and D and with it up-
regulated peri-tumoral lymphangiogenesis [52, 53]. Sim-
ilar to its function in neurons, NCAM also modulates
cell-matrix adhesion of tumor cells by binding to FGFR
and inducing a variety of signaling pathways that lead to
b1 integrin-mediated cell-matrix adhesion and neurite
outgrowth [34].
While L1 exerts functions similar to NCAM in neurons,
L1 is specifically expressed at the invasive front of glio-
mas, melanomas, lung, prostate, renal, ovarian and en-
dometrial carcinoma, and its expression appears to corre-
late with metastasis [54–59]. Similar to NCAM, L1 has
been shown to enhance migration and invasion of tumor
cells in vitro. L1 promotes cell-matrix adhesion and mi-
gration of tumor cells on ECM proteins, such as fibro-
nectin and laminin, by associating with integrins through
an integrin recognition motif. Namely, integrins avb5, avb3

and a5b1 have been found to associate with L1 [49, 60–
62]. In these studies, integrin-mediated signaling events
induced by associated L1 seem to be responsible for pro-
moted cell migration. Interestingly, L1-integrin interac-
tion may not only occur in cis at the cell surface but also
by ectodomain shedding of L1 and subsequent autocrine/
paracrine binding of soluble L1 to avb5 integrin. Inde-
pendent of integrin binding and activation, L1 has also
been shown to promote growth factor-induced mitogen-
activated protein kinase (MAPK) signaling and to subse-
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quently stimulate extracellular regulated kinase (Erk)1/2-
mediated transcriptional changes in genes associated with
cell motility and invasion and matrix remodeling [49].
Such targets include the genes for cathepsin-L and -B, os-
teopontin (OPN), RhoC and CD44, all proteins implicated
in tumor invasion and metastasis (CD44 and RhoC are dis-
cussed below) [49, 63]. Finally, L1 was recently identified
as a direct target gene of activated Wnt signaling, together
with the metalloprotease ADAM10. Co-induction of
ADAM10 and L1 leads to proteolytic shedding of the L1
extracellular domain, which in turn induces tumor cell
motility and enhanced tumorigenesis [64].
Together, these selected examples indicate that detach-
ment and migration of tumor cells critically depends on
altered cell-cell and cell-matrix adhesion. Yet, such alter-
ations appear not to only affect cell adhesion but also a
variety of signal transduction pathways, mediated by ty-
rosine kinase receptors or by integrins, which all seem to
lead to increased tumor cell invasiveness and metastatic
dissemination.

Changes in signaling pathways during EMT 
and scattering
Malignant transformation with deregulation of cell growth
is frequently induced by somatic mutations or overex-
pression of receptor tyrosine kinases [65]. Importantly,
deregulated signaling of some receptor tyrosine kinases
not only exerts transformation of tumor cells but also pro-
motes their invasion and metastatic dissemination. The
following sections address some of the newly emerging
aspects of how receptor tyrosine kinases contribute to tu-
mor metastasis (fig. 1).

c-Met and hepatocyte growth factor/scatter factor
(HGF/SF)
Overexpression of and activating mutations in c-Met have
been reported in many human tumors, and xenotransplant
and transgenic mouse models demonstrate a profound
pro-metastatic activity of HGF/SF and c-Met [66–68]. c-
Met, encoded by the MET proto-oncogene, is a dimeric
transmembrane tyrosine kinase receptor for HGF/SF. In-
tracellular transducers of c-Met activity include Ras/
MAPK, PI3K, phospholipase g (PLC-g), Src-related ty-
rosine kinases and growth-factor-receptor-bound protein
2 (Grb2)-associated binder 1 (Gab-1). Internalization is a
typical mechanism by which signaling of receptors such
as c-Met is terminated, and poly-ubiquitylation promoted
by c-Cbl is critical for c-Met downregulation by targeting
it to the proteasome [69, 70].
Although the precise mechanisms underlying c-Met-me-
diated tumor cell migration and invasion are not com-
pletely understood, several critical events have been
recently elucidated. Upon ligand binding, c-Met induces
invasive growth, both during physiological tissue morph-

ogenesis and tumor progression. HGF/SF-mediated ef-
fects appear to depend on the differentiation state of the
c-Met-expressing cells. Whereas HGF/SF induces mor-
phogenesis of E-cadherin-positive polarized epithelial
cells, it promotes scattering and metastasis of cells that
have lost their epithelial characteristics [69]. The metasta-
tic potential of c-Met is mediated via a signal transducer
docking site, which can bind and activate multiple Src
homology region 2 (SH2)-containing intracellular effec-
tors. Interestingly, a distinct mutation of this domain
(H1351N) increases the transforming but in parallel abol-
ishes the metastatic properties of c-Met [71]. c-Met-in-
duced dissociation of adherens junctions, scattering and
metastasis appear to be primarily mediated via the PI3K
pathway in a MAPK-dependent, yet protein kinase B
(PKB/Akt)- or Rac-independent manner [72, 73]. Through
activation of the MAPK pathway, c-Met signaling in-
duces Ets1 transcription factors, which control the ex-
pression of genes involved in ECM remodeling and cell
scattering [74]. In fact, Ets1 expression is known to cor-
relate with metastasis incidence in a number of cancer
types [75, 76].
Recent results indicate that the pro-metastatic activity of
c-Met also critically depends on its ability to associate
with other cell surface proteins, notably a6b4 integrin,
CD44 and Plexin B1. c-Met is constitutively associated
with integrin a6b4, which in turn is phosphorylated by
activated c-Met. Subsequently, phosphorylated integrin
a6b4 recruits the signaling adaptor Shc and PI3K and po-
tentiates HGF/SF-induced activation of the Ras and
PI3K pathways [77]. c-Met also associates with and is
functionally modulated by CD44, a hyaluronan receptor
involved in cell-cell/cell-matrix interactions, cell migra-
tion and metastasis [78]. Upon HGF/SF stimulation, c-
Met associates with a variant CD44 isoform (CD44v6)
and recruits ezrin, radixin and moesin proteins (ERMs)
to the complex [79]. ERMs link adhesion molecules to
filamentous F-actin and participate in membrane and cy-
toskeletal remodeling during cell migration. Both CD44
and the ERM proteins are known to promote metastasis
by various mechanisms. For instance, ezrin can stabilize
mammalian target of rapamycin (mTOR) downstream
signaling molecules, enhancing metastasis [80]. c-Met-
mediated tumor cell invasion is CD44-dependent and
may also require ERMs, since signal transduction by ac-
tivated c-Met via the MAPK pathways depends on the
ERM binding domain of CD44 [79, 81, 82]. Further-
more, HGF/SF specifically induces the expression of
OPN and its association with the hyaluronan-CD44-
ERM complex at the leading edge of metastatic cells [83,
84]. OPN is a protein of the ECM with a wide variety of
cell surface binding proteins and has been shown to pro-
mote tumor cell invasiveness [85]. The functional coop-
eration of c-Met, CD44 and OPN thus may be critical for
metastasis [83].
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Plexins, which share structural homology with c-Met, are
widely expressed receptors for Semaphorins (Sema). The
Sema family consists of secreted and membrane-bound
members that act as guidance signals for neurons [86,
87]. Recently, Plexin B1 has been shown to be overex-
pressed in several tumor cell lines and to be physically as-
sociated with c-Met [87]. Notably, binding of Sema 4D to
Plexin B1 transactivates the tyrosine kinase activity of c-
Met independent of the presence of HGF/SF [88]. Inter-
estingly, the identical signaling pathway in endothelial
cells leads to angiogenesis [89].
In addition to inducing a motile tumor cell phenotype, c-
Met promotes invasion of neoplastic cells by upregulat-
ing proteases such as plasminogen activator (uPA) and
MMPs via MAPK and PKC, respectively. These pro-
teases are critical in degrading the ECM and allowing mi-
gration of tumor cells through the basement membrane
and the surrounding stroma [90].
Based on the multitude of activities and interactions dur-
ing tumor progression, c-Met represents an important
mediator of cell migration and metastasis and, hence, c-
Met-mediated signaling pathways are in the spotlight as
potential targets for the development of anti-metastatic
therapy [91].

Wnt signaling and tumor progression
In many cancer types, Wnt signaling is activated by mu-
tations in a number of effector genes, including the genes
encoding for adenomatous polyposis coli (APC), axin-1
and 2, and b-catenin, which predispose to cancer [92–94].
Besides their critical role in assembling the E-cadherin-
mediated cell adhesion complex, b-catenin and g-catenin
also have important functions in the canonical Wnt-sig-
naling pathway. Non-sequestered, free b- and g-catenin
are rapidly phosphorylated by GSK-3b in the APC/axin/
GSK-3b complex and subsequently degraded by the
ubiquitin-proteasome pathway. If the tumor suppressor
APC is non-functional, as in many colon-cancer cells, or
if GSK-3b activity is blocked by the activated Wnt-sig-
naling pathway, b-catenin accumulates at high levels in
the cytoplasm. Subsequently, it translocates to the nu-
cleus, where it binds to members of the Tcf/Lef-1 family
of transcription factors and modulates the expression of
Tcf/Lef-1-target genes, including c-Myc, cyclin D1, fi-
bronectin, MMP-7, Id2, CD44, axin-2, Tcf-1 and others,
all genes implicated in cell proliferation, transformation
and tumor progression.
The dual function of b-catenin has motivated a multitude
of experiments to assess whether the loss of E-cadherin
function would subsequently lead to the activation of the
Wnt-signaling pathway. In a number of cellular systems,
it has been demonstrated that sequestration of b-catenin
by E-cadherin can compete with the b-catenin/TCF-me-
diated transcriptional activity of the canonical Wnt-sig-
naling pathway. The fact that E-cadherin does not com-

pletely deplete the cytoplasmic b-catenin suggests that b-
catenin exists in different functional pools [95, 96]. Inter-
estingly, in breast and prostate carcinoma cell lines, E-
cadherin suppresses tumor cell invasion by binding b-
catenin without repressing b-catenin/TCF transcriptional
activity, indicating that a novel, as yet unknown, addi-
tional function of b-catenin may be required for cellular
invasiveness [97, 98].
Furthermore, activated Wnt signaling inhibits E-cad-
herin-mediated cell adhesion by inducing expression of
Snail1, a transcriptional E-cadherin repressor. Snail1 in
turn synergizes with the Wnt/b-catenin pathway by in-
ducing Tcf expression, and b-catenin/Tcf can in turn
repress E-cadherin transcription in co-operation with
Snail1 [99, 100].

Signals elicited by ErbB receptors
Many metastatic human carcinomas are characterized by
the overexpression or constitutive activation of ErbB ty-
rosine kinase receptor (EGFR) family members involving
activating mutations of the receptor kinases or an au-
tocrine loop with EGF family ligands. In addition to stim-
ulating cell differentiation and proliferation, EGF pro-
motes tumor cell motility, invasion and metastasis by af-
fecting a large number of protein functions and signaling
pathways, including Wnt signaling, Snail1 expression,
focal adhesion kinase (FAK) activity and expression of
MMPs [101].
Interestingly, ErbB receptors and Wnt signaling cooper-
ate during tumorigenesis, which may be critical for me-
tastasis formation [102]. In tumors of mouse mammary
tumor virus (MMTV)-Wnt-1 transgenic mice, two mem-
bers of the ErbB family of transmembrane receptor tyro-
sine kinases, ErbB1 (EGF receptor) and ErbB2 (Her-2/c-
Neu), interact with and phosphorylate b-catenin. Interest-
ingly, the b-catenin/ErbB interaction correlates with the
incidence of pulmonary metastases, indicating a func-
tional role of these interactions in metastasis formation
[102]. Tyrosine phosphorylation of b-catenin by ErbB1
and by other receptor tyrosine kinases is known to desta-
bilize its binding to E-cadherin. As a result, adhesion
junctions disassemble, the liberated b-catenin accumu-
lates in the cytoplasm, transfers to the nucleus and, in
combination with Tcf/Lef1 transcription factors, modu-
lates gene expression. Such activation of the Wnt path-
way may result in increased tumor cell migration, inva-
sion and metastasis (reviewed in [103]).
Notably, Snail1 and caveolin-1 seem to play antagonistic
roles during EMT induced by EGF. Caveolins are struc-
tural proteins of caveolae, the invaginations of the
plasma membrane that function as regulators of signal
transduction. Transient EGF signaling induces caveolin-
1-dependent endocytosis of E-cadherin. Long-term EGF
treatment downregulates caveolin-1 and induces Snail1.
Concomitantly, b-catenin/Tcf/Lef-1 transcriptional ac-
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tivity is enhanced [19]. Interestingly, both EGF-medi-
ated upregulation of Snail1 transcription as well as in-
creased transactivation by b-catenin are dependent on
caveolin-1 downregulation. EGF-induced downregula-
tion of caveolin-1 may therefore play a central role in in-
vasion and metastasis.

Insulin-like growth factor 1 receptor (IGF1R)
Insulin-like growth factors (IGFs) and their cognate sig-
naling receptor IGF1R are involved in cellular and organ-
ismal growth, embryonic development and numerous
pathological states, including cancer and metastasis [104].
IGF1R overexpression in the primary tumor correlates
with the increased incidence of metastases in patients with
gastric cancer, gastrinoma, gastrointestinal stromal tu-
mors, thyroid cancer and other malignancies [105–108].
Forced expression of IGF1R in a transgenic mouse model
of pancreatic b cell carcinogenesis (Rip1Tag2) results in
accelerated tumor progression, with increased tumor ma-
lignancy and distant tumor metastasis to various organs
[109]. Conversely, a small chemical inhibitor of IGF1R ty-
rosine kinase activity (NVP-AEW541) is able to repress
tumor cell survival and tumor growth of a number of dif-
ferent tumor types in culture or in xenograft transplanta-
tion experiments, yet its effects on tumor progression and
metastasis have not been explicitly assessed [110, 111].
The mechanisms of IGF1R-mediated invasive and
metastatic abilities of tumor cells have been recently
studied. IGF1R signaling has been famous for mediating
anti-apoptotic and mitogenic effects via PI3K/PKB and
Ras/MAPK pathways. Yet, IGF1R also modulates cell-
substrate adhesion, migration, invasion and cell-cell in-
teraction by signaling via FAK [112, 113]. IGF1R has
also been shown to modulate the expression and function
of different junctional proteins, including cadherins,
catenins, ZO-1 and the small GTPases RhoA, Rac1 and
Cdc42 [114]. Notably, upon IGF-II binding, activated
IGF1R associates with E-cadherin and b-catenin, thereby
inducing reversible scattering [115]. Through internaliza-
tion of the entire complex, E-cadherin is sequestered
from the plasma membrane and targeted to late endo-
somes and lysosomes. As a consequence, the released b-
catenin translocates to the nucleus and induces Tcf/Lef1-
mediated transcription of target genes (see also the previ-
ous sections). Conversely, overexpression of E-cadherin
antagonizes the effects of IGF-II. Such mechanisms are
currently being investigated to resolve the actual contri-
bution of IGF1R to tumor metastasis.

TGF-b signaling
TGF-b is a member of the TGF-b superfamily of ligands
and binds to a heterodimeric receptor consisting of type I
and II transmembrane receptor serine-threonine kinases.
TGF-b-mediated activation of the receptors induces a ca-
nonical signaling pathway via Smad proteins, which re-

sults in nuclear translocation of receptor-Smads (Smad2/
3) together with common-Smad (Smad4) and in the mod-
ulation of expression of various target genes [116, 117].
Depending on the cell type, alternative signaling path-
ways, including MAPK, PI3K and PKC, can also be acti-
vated [118–120].
Depending on the differentiation and transformation sta-
tus of a cell, TGF-b exerts two directly opposing func-
tions; it acts as an anti-proliferative and pro-apoptotic
growth factor on differentiated cells, but induces prolif-
eration and EMT of undifferentiated or transformed cells.
Hence, at early stages of tumor development, TGF-b’s cy-
tostatic action helps to suppress tumor growth. At later tu-
mor stages, however, transformed cells develop resis-
tance to the growth-inhibitory effect of TGF-b and re-
spond to TGF-b by undergoing EMT (reviewed in [121]).
Moreover, TGF-b exerts immunosuppressive functions
that further promote tumor progression.
Resistance of tumor cells to TGF-b-mediated growth re-
straint and induction of EMT is mostly due to functional
changes downstream of the TGF-b signaling pathway [9].
At the transcriptional level, TGF-b cooperates with vari-
ous signaling pathways stimulated by EGF, interferon g
(IFNg) and tumor necrosis factor (TNF)-a. Activated
MAPK signaling, for instance, can inactivate Smads, in-
duce inhibitory Smads or induce an autocrine TGF-b pro-
duction (for detailed reviews see [117, 122]). In immor-
talized (non-transformed) mammary epithelial EpH4
cells, oncogenic Ras and TGF-bR signaling are required
for the induction and maintenance of TGF-b-induced
EMT [123]. In Ha-Ras-transformed EpH4 cells (EpRas),
upregulation of the PI3K pathway prevents TGF-b-in-
duced apoptosis and promotes scattering. Full EMT,
however, depends on the activation of the MAPK path-
way. Similarly, an activated PI3K pathway correlates
with tumor formation of these cells, whereas a hyperac-
tive MAPK pathway is required for both tumorigenesis
and metastasis [9, 12]). Moreover, TGF-b-induced EMT
seems to depend on b1 integrin-mediated signals and
RhoA-induced actin cytoskeleton rearrangements [124].
Such cooperative activities of TGF-b together with its
dual role as tumor promoter and tumor suppressor ob-
scure a direct therapeutic exploitation of this pathway and
stimulate further studies into the mechanistic details of
these activities.

Genes mediating metastasis
An ongoing interesting debate in the field of cancer
metastasis concerns the question whether the metastatic
potential of a tumor cell is primed with the first initial ge-
netic events of transformation or whether tumor cells by
clonal selection progress to tumor malignancy. It seems
that genetic alterations acquired early during tumorigen-
esis (including gain of oncogenes and loss of tumor-sup-
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pressor genes) are sufficient for certain tumor cells to
spread [125, 126]. For instance, gene microarray analysis
has identified specific expression profiles in metastatic
versus non-metastatic primary human carcinomas [127–
130]. Yet, the pro-metastatic efficacy of those genes re-
mains to be shown. On the other hand, circulating tumor
cells are found to carry various genetic alterations, sug-
gesting that additional genetic events are required for tu-
mor cell dissemination [131]. Moreover, many genes are
expressed and seem to be functional only during the
metastatic process. Even more impressive, transgenic ex-
pression of MMP3 is sufficient to induce full-blown
carcinogenesis, indicating that ‘invasive or metastatic’
processes can even affect the transformation status of a
cell [132].
More refined approaches of gene expression analysis
combined with functional experiments have now pro-
vided novel insights into such events. For example, work
published this year has not only identified genes that may
specifically mediate lung metastasis of breast cancer cells
but also confirmed their pro-metastatic functionality in
vitro and in vivo [133]. The genes were tested by overex-
pression in poorly metastatic cells or by RNA interfer-
ence (RNAi) knock-down in highly metastatic cells.
These were observed to specifically metastasize to the
lung and not the bone when orthotopically injected into
the mammary fat pad of immunodeficient mice. Nine
genes have been found to be overexpressed in cells medi-
ating lung metastagenicity in in vivo experiments, encod-
ing the pan-ErbB receptor ligand epiregulin, the chemo-
kine CXCL1, the interleukin decoy receptor IL13Ra2,
the proteases MMP1 and 2, cyclooxygenase-2 (COX2),
the transcriptional inhibitor of cell differentiation-1 (ID1)
and the cell adhesion molecules VCAM1 and SPARC
[133]. Recently, the chemokine receptor CXCR4 was
shown to be highly expressed in breast cancer cells, pri-
mary breast tumors and metastases. Its ligand CXCL12/
stromal cell-derived factor (SDF)1a, on the other hand, is
predominantly found in organs known to be the main tar-
gets of breast cancer metastasis, namely lymph nodes,
lung, bone marrow and liver. Notably, treatment with neu-
tralizing antibodies against CXCR4 reduced the capabil-
ity of a metastatic breast cancer cell line to metastasize to
lymph nodes and the lung [134].
Several other genes with various functions have been iden-
tified in different gene expression profiling experiments on
non-metastatic versus metastatic tumor cell lines. Some of
these are already confirmed as being required for metasta-
sis in vivo. For instance, the transcriptional repressor Twist
is overexpressed in human invasive lobular breast cancer
and has been shown to abrogate E-cadherin-mediated cell-
cell adhesion as well as to induce EMT in vitro. RNAi
knock-down of Twist in a highly metastatic breast cancer
cell line reduces the number of circulating tumor cells in
the blood vasculature and dramatically decreases the inci-

dence of lung metastases when tumor cells are injected or-
thotopically in the mammary fat pad [135].
The neurotrophic tyrosine kinase receptor TrkB has been
identified as a potent metastasis-inducing gene in an
elegant expression cloning experiment [136]. TrkB spe-
cifically suppresses caspase-induced anoikis of non-ma-
lignant epithelial cells. Anoikis is a physiological mecha-
nism eliminating cells that have lost an adequate in-
teraction with the ECM, a process that is apparently
repressed in metastasizing cells. Forced expression of
TrkB in normal epithelial cells confers resistance to
anoikis and allows their metastatic growth in the lung
and heart upon tail vein injection into nude mice. Cells
expressing both TrkB and its ligand BDNF even cause
metastasis throughout the body. In contrast, control-
transfected epithelial cells colonize these organs but un-
dergo apoptosis after a short period of time [136].
Rho-family GTPases function in cytoskeletal reorganiza-
tion, cell migration, stress fiber formation and focal ad-
hesion [137]. It is not surprising that enhanced expression
of one of the Rho GTPase family members, RhoC, corre-
lates with the progression of various tumor types to a
metastatic phenotype [138, 139]. In gene expression pro-
filing experiments with melanoma variants of low or high
metastatic potential, RhoC has been identified as a
candidate involved in the spread of malignant cells. In
fact, melanoma cells expressing high levels of RhoC
show a markedly increased metastatic potential compared
with control cells [32]. Cells lacking RhoC display re-
duced motility and invasiveness in vitro. Moreover, when
crossed to RhoC-deficient mice, transgenic mice devel-
oping metastatic breast cancer (MMTV-PymT) exhibit a
significant decrease in metastasis together with increased
apoptosis of disseminating cells [140].
Protease-activated receptors (PARs) constitute a family of
G-protein-coupled receptors and are involved in various
physiological processes. They are frequently expressed in
the context of metastasis and are currently subject to in-
tense research. PARs seem to be causally involved in the
metastatic process of many human cancers, and a clear
pro-migratory and pro-metastatic effect has been demon-
strated for PAR1 in vitro and in vivo [141]. Activating
cleavage of PAR1 by various proteases induces increased
migration and invasion of cells, notably by the engage-
ment of aVb5 integrins and changes in cell adhesion [142].
In a xenograft mouse model, expression of PAR1 is both
required and sufficient to promote growth and invasion of
breast carcinoma cells. In this model, fibroblast-derived
MMP1 cleaves and activates PAR1, thereby inducing Ca+-
dependent signaling and promoting tumor cell migration
and invasion [141]. Proteases known to activate PAR1 and
2 include thrombin and plasmin, which may account for
one mechanism by which the coagulation system, fre-
quently activated during tumorigenesis, promotes cancer
cell motility and metastasis [143, 144].
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Some of the above-mentioned genes may not only be use-
ful predictive screening markers for cancer patients in or-
der to adapt a more or less aggressive therapy, but may
also serve as potential targets for anti-metastatic mea-
sures. Fortunately, the number of genes and factors in-
volved in cancer metastasis is growing daily, and, after
adequate functional characterization, a number of useful
novel therapeutic targets can be expected.

Metastasis-promoting activities of the tumor 
microenvironment
Mounting evidence from various experimental systems
has demonstrated in the past years that the tumor mi-
croenvironment contributes in a pivotal way not only to
tumor initiation but also to tumor progression. Normal
stroma modulates cell homeostasis in order to exert tis-
sue-specific physiological functions and to prevent inap-
propriate growth, apoptosis and differentiation. In con-
trast, aberrant stroma supports de-differentiation and
transformation of cells. Tumor formation thus depends on
both tumor cell-intrinsic genetic events and changes in
the tumor microenvironment [40, 145].
In the following chapters, we call attention to cells of the
tumor stroma and discuss some selected examples of the
molecular mechanisms by which the tumor microenvi-
ronment promotes tumor cell invasiveness and spread to
distant organs (fig. 2).

Tumor angiogenesis
The entry of tumor cells into blood vessels (intravasa-
tion) initiates dissemination of cancer cells from the pri-
mary tumor to distant organs via the blood vasculature
(hematogenous metastasis). This first step not only de-
pends on tumor-cell-intrinsic invasive properties but ob-
viously also on the presence of a tumoral vascular net-
work, which itself constitutes part of the tumor stroma.
Stimulated sprouting of new tumor blood vessels from a
pre-existing vascular network (angiogenesis) represents
a risk factor for the development of distant metastases in
at least two ways. First, an increasing number of tumor
blood vessels augment the contact area between tumor
cells and their potential escape routes, thereby increas-
ing the probability of intravasation. Second, tumor
blood vessels display a distinct morphology in compar-
ison to the physiological vascular bed, facilitating entry
of cells: they are larger, tortuous and leaky due to a frag-
mented basement membrane and an incomplete pericyte
lining [146]. Furthermore, hematogenous spread of can-
cer cells can also occur as a result of lymphogenous
metastasis. Since the lymph is drained into the venous
system and lymph nodes display afferent and efferent
blood vessels, tumor cells circulating in the lymphatic
vasculature can successively enter the systemic circula-
tion.

Angiogenesis is orchestrated by a fine-tuned balance be-
tween secreted pro- and anti-angiogenic factors [147].
The contribution of the tumor stroma to the regulation of
angiogenesis has also complicated the simplistic view
that angiogenesis is mainly induced by transforming sig-
naling pathways and by tumor hypoxia, resulting in the
tumor cells’ expression of angiogenic factors, such as
VEGF-A and PlGF. Rather, several cell types of the tu-
mor stroma appear to contribute in a significant way: (i)
endothelial cells by secreting angiogenic factors, such as
angiopoietin-2, which affect the activation status of the
endothelium and its differentiation into mature vessels,
(ii) infiltrating macrophages and mast cells by secreting
additional angiogenic factors, including VEGF-A, FGF-
2, TGF-b and IL-8, and MMPs that activate latent forms
of these growth factors, (iii) cancer-associated fibroblasts
(CAFs) by secreting additional growth factors, cytokines
and chemokines and by modulating the ECM and (iv) ad-
ditional cells of the innate and adaptive immune system
or of tissue homeostasis (see below) [148, 149].
During tumor outgrowth, tumor cells and cells of the tu-
mor stroma are stimulated for example by tumor hypoxia
or lack of nutrition to produce angiogenic factors, such
as VEGF-A and PlGF. These factors, together with vari-
ous inflammatory chemokines and cytokines and other
stimuli secreted by both neoplastic and tumor stroma
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Figure 2. Contribution by the tumor microenvironment. Stromal
and tumor cells cross-talk via soluble growth factors, cytokines and
chemokines as schematically exemplified in this figure for tumor-
associated macrophages (TAMs) and carcinoma-associated fibrob-
lasts (CAFs). Stromal cells and tumor cells thus mutually influence
their behavior in a way that promotes metastasis. For instance, tu-
mor cell-secreted PDGF stimulates macrophages to produce TGF-
b, which induces the transdifferentiation of fibroblasts into CAFs.
CAFs in turn secrete macrophage chemoattractants, which promote
the infiltration of macrophages into the tumor. Both TAMs and
CAFs secrete growth factors, cytokines and proteases, which pro-
mote tumor cell survival, migration and invasion into the surround-
ing tissue. Moreover, a variety of tumor and stromal cell-secreted
factors induce the formation of blood and lymphatic vessels and
also modulate the immune system to tolerate the transformed cells.



cells, tilt the balance between angiogenesis inhibitors
and inducers towards the stimulation of angiogenesis
(angiogenic switch). Thereby, tumor-cell and tumor-
stroma-induced angiogenesis not only promotes primary
(and secondary) tumor growth, but also the hematoge-
nous dissemination of tumor cells and the outgrowth of
metastasis.
Most, though not all, clinical studies demonstrate a di-
rect correlation of high primary tumor blood micro-
vessel densities (MVDs) with increased incidence of
metastases [150, 151]. Tumor MVD is a significant and
independent prognostic indicator for relapse-free and
overall survival of cancer patients [152]. Similarly, ele-
vated tumor or serum levels of the pro-angiogenic fac-
tors VEGF-A, interleukin (IL) and FGF-2 as well as a
low ratio between the angiogenesis inhibitor throm-
bospondin-2 and VEGF-A are associated with an in-
creased incidence of metastasis in cancer patients [153–
155]. Xenograft animal models confirm the correlation
of tumoral overexpression of angiogenic growth factors,
increased MVD of primary and secondary tumors and
metastasis formation [156–158]. Consistent with these
results, transgenic mice developing prostate adenocarci-
noma (TRAMP) exhibit impaired metastasis when
crossed into a FGF-2 knockout background [159]. Sim-
ilarly, in xenotransplant and transgenic mouse models,
increased tumor and/or serum levels of angiogenesis
inhibitors, such as IL-10, tissue inhibitor-1 of metallo-
proteinases (TIMP-1), thrombospondin-1 or endostatin,
reduce the incidence of metastasis [158, 160–162]. Yet,
upregulated tumor angiogenesis may not necessarily
lead to metastasis formation. For example, forced ex-
pression of VEGF-A in a transgenic mouse model
(Rip1Tag2) accelerates tumor angiogenesis and growth
of primary tumors but does not result in increased meta-
stasis formation [163]. Although tumorigenic transfor-
mation, mediated for example by Ras or ErbB2, can up-
regulate the expression of angiogenic growth factors
and repress the production of anti-angiogenic mole-
cules, the direct contribution of the angiogenic process
to tumor metastasis is difficult to demonstrate [164]. In-
hibition of angiogenesis during tumor progression by
specific angiogenesis inhibitors also affects primary tu-
mor growth and thus indirectly the metastatic dissemi-
nation of tumor cells. One should also be aware of the
observation that intra-tumoral hypoxia and concomitant
upregulation of the expression of angiogenic factors
may occur only intermittently, leading to variations in
the expression in tumors and in serum levels at different
time points of measurement. Moreover, methods and
markers for the determination of MVD have not been
standardized, hindering a direct comparison of indepen-
dent studies [165]. In any case, interference with angio-
genesis will not only lead to a repression of tumor
growth but may also reduce tumor metastasis.

Tumor-induced lymphangiogenesis
Some tumor types, including melanoma and cancers of
the breast, lung and gastrointestinal tract, preferably
spread via lymphatics [166]. Sentinel lymph node biopsy
of patients with these tumors is routinely used for re-
finement of prognostic and therapeutic measures. Since
the lymphatic vasculature is specialized for entry and
transport of immune cells, lymphogenous spread is more
efficient than that via blood vessels. Lymphatic capillar-
ies are larger, lack a basal lamina and display an en-
dothelial cell arrangement facilitating intravasation of
cells. Moreover, the composition of lymph is similar to
interstitial fluid and flow velocities are low, thus allow-
ing better cell viability as compared with the serum tox-
icity and shear stress encountered in the bloodstream
[167]. Histological analyses of human primary tumor
samples demonstrate a consistent correlation between
the presence of enlarged peri-tumoral lymphatics and the
incidence of regional lymph node metastases [168, 169].
Moreover, animal models clearly demonstrate a signifi-
cant promotion of lymphogenic metastasis by tumor-in-
duced lymphangiogenesis (reviewed in [170]). VEGF-C
and D are the two most-investigated secreted lymphan-
giogenic factors. During secretion from the producing
cell, these glycoproteins are proteolytically processed by
plasmin and other (unknown) proteases. Unprocessed
forms can only bind to VEGF receptor-3 (VEGFR-3),
which is usually found on both normal and tumor lym-
phatic endothelial cells. Processing of VEGF-C and D
increases the binding affinity for VEGFR-3 and allows
binding to VEGFR-2, which is specifically expressed on
blood vessel endothelial cells. Therefore, expression and
the processing status of VEGF-C and D in a given tissue
appear to determine the lymphangiogenic and angio-
genic activities of these growth factors [171]. Expression
of VEGF-C in tumor tissue serves as a reliable marker
for ongoing tumor lymphangiogenesis and increased risk
of regional lymph node metastasis in many cancer types
[172, 173]. Data for VEGF-D are less consistent sug-
gesting that its ability to promote metastatic spread via
lymphatics depends on the investigated cancer type and/
or grade [174–176].
The question remains whether VEGF-C and D may alter
adhesive properties of both tumor and endothelial cells or
modify functional features of lymphatic vessels, thus en-
hancing tumor cell adhesion to and intravasation into
lymphatics. In addition, it is conceivable that VEGF-C
and D activate lymphatic endothelial cells to secrete
chemotactic factors for tumor cells. Although it is known
that both tumor and stromal cells can express VEGF-C
and D [53, 177], it is not clear to what extent and upon
which signals cells of the tumor stroma contribute to tu-
mor-associated lymphangiogenesis [178]. Moreover, the
genetic background of a given patient may modulate ex-
pression levels and processing of VEGF family members
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and thereby determine the biological behavior of a tumor
[179, 180].

Carcinoma-associated fibroblasts
Besides endothelial cells of nearby vessels, neoplastic
cells can also activate resident fibroblasts, which then
cooperate in tumor progression (fig. 2). Activated fi-
broblasts or myofibroblasts (also called carcinoma-asso-
ciated fibroblasts, CAFs) are often encountered at the in-
vasive front of many different cancer types. Myofibrob-
lasts share features of both smooth muscle cells and
fibroblasts and are important promoters of growth and
differentiation during embryogenesis, wound healing
and other tissue-remodeling processes [181]. It is pre-
dominantly fibroblasts that transdifferentiate into myofi-
broblasts, but also vascular smooth muscle cells, peri-
cytes, hematopoietic bone marrow-derived precursor
cells and even cancer cells themselves are discussed as
putative progenitors. Tumor cell-secreted platelet-de-
rived growth factor (PDGF) stimulates fibroblast prolif-
eration and the release of TGF-b from macrophages,
which itself is chemotactic for fibroblasts at lower con-
centrations and induces their transdifferentiation into
myofibroblasts at high concentrations [181]. Further-
more, tumor cells often express TGF-b themselves
[121]. Myofibroblasts appear shortly before the invasive
stage of tumors and promote degradation of basement
membranes and ECM by secreting serine proteases,
MMPs and urokinase plasminogen activator. Moreover,
they express IGFs and HGF/SF, thus promoting cell-sur-
vival and migration, as well as the pro-angiogenic factors
FGF-2 and VEGF and the pro-inflammatory cytokines
IL-1, 6, 8 and TNF-a. By doing so, myofibroblasts not
only stimulate their own migration into the tumor, but
also promote survival, proliferation and invasion of adja-
cent cancer cells as well as angiogenesis, collectively en-
hancing metastasis [182–184].
Fibroblasts of the tumor stroma participate in the deci-
sion whether neighboring tumor cells proliferate and in-
vade into surrounding tissue and metastasize to distant
sites [185]. For example, epithelial cells and fibroblasts
in tissues that line portals of entry to the body secrete
high levels of IFNb, whereas fibroblasts of internal or-
gans do not. It has been demonstrated in xenotransplant
and in vitro experiments that IFNb secreted by skin fi-
broblasts downregulates expression of FGF-2 and se-
creted type IV collagenase in transplanted colon and re-
nal carcinoma cells, thereby inhibiting their angiogenic
and invasive capabilities in the skin. In contrast, when
transplanted orthotopically, tumor cells express high lev-
els of FGF-2 and secreted type IV collagenase, resulting
in the development of highly vascularized and metastatic
tumors [186, 187]. Moreover, transgenic mice in which
TGF-b receptor type II is selectively inactivated in fi-

broblasts develop prostate and gastric cancer even in the
absence of mutations in the respective epithelial cells
[188]. Notably, the mutated fibroblasts secrete high lev-
els of HGF/SF, thereby conferring a paracrine tumori-
genic signal on the epithelial cells.

Contribution of the immune system to tumor 
metastasis
The increased incidence of cancer in immunosuppressed
patients and intense research in tumor immunology over
the past years provide evidence that the immune system
can to some degree recognize and eliminate tumor cells
[190, 191]. Nevertheless, an increasing body of evidence
indicates that immune cells represent a double-edged
sword during tumorigenesis. Although many tumors are
potentially immunogenic, they evidently develop mecha-
nisms to escape immunosurveillance by various mecha-
nisms and can even ‘educate’ immune cells to support tu-
mor cell survival and proliferation. Many recent reports
have addressed these functions of the immune system and
suggest new strategies how to therapeutically boost a can-
cer patient’s immune response against the cancer. How-
ever, only limited insights have been gained into the role
of immune cells during late-stage tumor progression and
metastasis. Apparently, tumor-induced immunotolerance
not only allows primary tumor outgrowth but also metas-
tasis. Such ‘immunological’ involvement of the immune
system in preventing carcinogenesis has been recently
summarized [192]. Here, we restrict ourselves to the
question of whether ‘tumor-educated’ immune cells can
actively contribute to tumor cell migration, invasion and
metastatic dissemination.

The innate immune system
The innate immune system recognizes and eliminates
many exogenous infectious agents as well as altered host
cells independent of preexisting specific (adaptive) im-
munity. Macrophages, dendritic cells (DCs) and natural
killer cells (NKs) are cellular components of the innate
immune system. Whereas macrophages have been re-
peatedly shown to promote tumor growth and metastasis
by various mechanisms, NKs are usually associated with
suppression of tumor metastasis, and DCs exert both anti-
tumor and tumor immunosuppressive activities.

Tumor-associated macrophages
Macrophages are critical players in inflammation, wound
healing, tissue repair and remodeling. Due to their anti-
gen-presenting activity, they play a central role in cell-
based immunity and can execute cells via cytotoxic
mechanisms [193, 194]. Tumor cell damage and hypoxia
are general attractants for circulating monocytes, and the
presence of leukocytes in hypoxic areas of tumors is a
well-known phenomenon [195–197]. In addition, neo-
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plastic cells, tumoral fibroblasts and smooth muscle cells
produce distinct monocyte-attracting factors, including
monocyte chemoattractant protein-1 (MCP-1), colony-
stimulating factor-1 (CSF-1), granulocyte-colony stimu-
lating factor (G-CSF), VEGF-A, PlGF and VEGF-C
[198–200]. Upon invasion into the tumor tissue, mono-
cytes differentiate into macrophages and are specifically
activated or de-activated, depending on the cytokine mi-
lieu encountered.
Consistent with their antigen-presenting and cytotoxic
role in inflammation, high numbers of macrophages
within or in the periphery of tumors (tumor-associated
macrophages, TAMs) can repress tumor growth and pro-
gression [201, 202]. Surprisingly however, most clinical
and experimental data correlate high TAM counts with
reduced disease-free and overall survival. This discrep-
ancy has been explained by a tumor type-specific para-
crine cytokine crosstalk between tumor cells and TAMs:
tumors secreting granulocyte-monocyte colony stimulat-
ing factor (GM-CSF), IFNg and IL-12 promote the anti-
gen-presenting and cytotoxic activities of macrophages
(reviewed in [198, 203, 204]). In contrast, most tumor
cells secrete VEGF-A, TGF-b, IL-6, CSF-1 and low-dose
TNFa, all factors that inhibit the TAMs’ antigen-present-
ing activities and rather support immunosuppression, an-
giogenesis, tumor cell proliferation and invasion [205–
208]. In turn, these TAMs promote tumor cell prolifera-
tion by secreting a variety of tumor promoting factors, in-
cluding nitric oxide (NO), EGF, FGF-8b, HGF/SF, IGF-I,
TGF-b, VEGF-C and PDGF. Alternatively, activated ma-
crophages can stimulate tumor cells to secrete these fac-
tors in an autocrine fashion [209–214]. Furthermore,
TAMs themselves potently stimulate tumor angiogenesis
and lymphangiogenesis by secreting growth factors, cyto-
kines and chemokines [215–217]. Interestingly, in a cor-
nea model of inflammation-induced lymphangiogenesis,
macrophages transdifferentiate and directly incorporate
into the endothelial layer of nascent lymphatic vessels
[217]. By releasing MMPs, plasminogen activators, hyal-
uronidase and other enzymes involved in the breakdown
of the ECM, TAMs liberate matrix-bound angiogenic
molecules, including VEGF-A and IL-1b, thus further
enhancing angiogenesis and tumor cell migration and in-
vasion (fig. 2) [203, 218, 219]. Notably, TAMs have also
been found to actively associate with tumor cells via ad-
hesion molecules, such as ICAM-1 and sialoadhesin, and
to convey them into efferent blood vessels [220]. Since
macrophage activity is associated with the release of re-
active oxygen and other mutagenic compounds, they
might also indirectly induce additional genetic pro-tu-
morigenic and pro-metastatic alterations [3, 4, 221].

NKs and DCs
NKs are a derivative of the CD8+ T-lymphocyte lineage,
but lack the rearrangement of T-cell receptor genes. NKT

cells represent a subtype sharing characteristics with NK
and T cells. It is well-established that NKs and NKTs dis-
play important anti-tumor activity by inducing death of
tumor cells through direct contact or by the secretion of
pro-apoptotic cytokines [222, 223]. In parallel, NKs stim-
ulate the maturation of DCs, which are first-line antigen-
presenting cells, and thereby promote specific anti-tumor
immunity mediated by cytotoxic CD8+ T lymphocytes
(CTLs) and B lymphocytes [224]. In cancer patients, high
peripheral blood NK activity significantly correlates with
longer metastasis-free survival [225]. Experiments using
perforin-deficient mice clearly demonstrate that NK-me-
diated cytotoxicity is one of the essential anti-metastatic
mechanisms performed by the innate immune system
[226–228]. Further details on NK-mediated tumor sur-
veillance and anti-metastatic activity have been recently
summarized [229]. To date, here is no evidence indicating
a potential pro-metastatic role of NKs.
DCs are classical antigen-presenting cells, which can
initiate strong CTL-mediated anti-tumor immune re-
sponses. They are generally divided into myeloid and
plasmacytoid DCs with differences in cell-surface recep-
tors, anatomic localization and function [192]. Recently,
a third type of DCs, vascular DCs (VDCs), was identi-
fied, which simultaneously expresses endothelial and
DC markers. Strikingly, VDCs can assemble into func-
tional blood vessels [230]. Depending on the cytokine
milieu encountered in tumors, DCs can either mediate
anti-tumor activity or support tumor growth and metas-
tasis. In fact, increasing evidence from analyses of hu-
man ovarian, breast, prostate and renal cell carcinoma re-
veals the presence of tumor-promoting rather than tu-
mor-suppressing dendritic cells, and altered dendritic
cell function and differentiation is likely to be one of the
most fundamental mechanisms by which tumors escape
immune responses [231–235]. Pro-tumorigenic den-
dritic cells can favor metastasis by inducing tumor im-
munotolerance and by promoting tumor angiogenesis.
Whereas mature myeloid DCs act as classical antigen-
presenting cells, immature or partially differentiated
myeloid DCs can tolerize T cells to self-antigens by in-
ducing either suppressive T cells or T-cell unresponsive-
ness. This mechanism of immunomodulation is particu-
larly important to counteract autoimmune reactions, but
can be abused by tumors as well [236, 237]. Tumor cells,
TAMs and tumoral immunosuppressive T cells can se-
crete high amounts of VEGF-A, IL-6, macrophage
colony-stimulating factor (M-CSF), COX2, IL-10, TGF-
b and gangliosides, which suppress maturation of DCs
[192]. Most myeloid DCs found in human ovarian, breast,
prostate and renal cell carcinoma are therefore immature
and may induce tumor immunotolerance [231–234].
Tumor-secreted IL-10 and VEGF also induce expression
of B7-H1 on myeloid dendritic cells, a ligand for PD-1
receptor expressed on suppressor T cells [238]. A study
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published this year demonstrates that the metastatic abil-
ity of melanoma and colon cancer cells expressing B7-
H1 is abolished in PD-1-deficient mice and that tumors
also grow more slowly [239]. These and other experi-
ments indirectly show that tumor cell escape from im-
munosurveillance – in this case mediated by modulation
of myeloid DC and suppressive T cell function – is es-
sential for tumor growth and metastasis.
The involvement of dendritic cells in tumor angiogenesis
has recently drawn major attention. It is thought that ma-
ture myeloid DCs suppress tumor angiogenesis and
thereby impede both tumor growth and metastasis by se-
creting or stimulating the production of anti-angiogenic
factors, such as IL-12, IFNg and IL-10 [240]. Conversely,
the tumor-induced suppression of myeloid DC matura-
tion described above therefore enhances tumor angiogen-
esis. Moreover, tumors contain significant numbers of
plasmacytoid and vascular DCs secreting pro-angiogenic
molecules, such as TNFa and IL-8 [230, 240, 241].
Based on this rather complex situation, the involvement
of DCs in tumor angiogenesis and metastasis and their
therapeutic exploitation certainly deserves future investi-
gation.

The adaptive immune system and metastasis
After a primary contact with an antigen, the adaptive im-
mune system confers longterm antigen-specific immuno-
logical memory. Its basic mediators are T and B lympho-
cytes. CD8+ cytotoxic T cells (CTLs) together with NKs
are the fundamental effectors of immune response-medi-
ated tumor cell elimination via the release of cytokines
that activate death receptors on the tumor cell surface.
CD4+ T helper cells are central to the development of im-
mune responses by activating antigen-specific effector
cells and recruiting cells of the innate immune system
[242, 243]. As mentioned earlier, suppressor T cells play
an important role in inducing tumor immunotolerance,
which might not only allow tumor growth but also metas-
tasis [237, 244]. Nevertheless, stimulation of anti-tumor
T cell response has been shown to be a promising strategy
to counteract tumor growth and metastasis in mouse tu-
mor models and in human cancer [245–247].
B lymphocytes are antigen-presenting cells which can
differentiate into antibody-producing plasma cells. There-
by they can stimulate both cytotoxic and humoral anti-
tumor immune responses. On the other hand, there is
mounting evidence that B cells can also promote tumor
cell invasiveness and metastasis. In one study, tumor
cells producing antigenic Secreted/shed Tumor Glyco-
Proteins (STGPs) were transplanted into immune-com-
petent mice or mice deficient in T cells [248]. In both
mouse lines, increased tumor cell invasion correlated
with an increase in serum anti-STPG IgG levels and tu-
moral infiltration of cells of the innate and adaptive im-
mune system. Experimental infiltration of specific anti-

STGP-IgG-secreting plasmocytoma cells further pro-
moted tumor invasion, angiogenesis and metastasis. Ap-
parently, the humoral anti-STGP response stimulated the
tumor infiltrating stromal cells to release proinflamma-
tory cytokines and VEGF, thereby promoting invasion
and metastasis.
Recent work with a transgenic mouse model of multi-
stage skin carcinogenesis (K14-HPV16) demonstrated a
similar surprising pro-tumorigenic role of B but not T
lymphocytes in the development of inflammation-asso-
ciated de novo epithelial cancer. Upon crossing K14-
HPV16 mice with T and B lymphocyte-deficient RAG–/–

mice resulted in reduced tumor progression [249]. Con-
versely, adoptive transfer of B lymphocytes or serum
from K14-HPV16 mice restored the infiltration of innate
immune cells into premalignant tissue and the progres-
sion to malignancy. These studies indicate that B cells
and even antibodies produced by B cells contribute to tu-
mor progression and metastasis. Of course, these sur-
prising results raise an important caveat for the applica-
tion of vaccination-based cancer therapies that aim to
stimulate B cell responses in patients with pre-malignant
disease.

Conclusions

Apparently, cancer needs to be treated at an early tumor
stage or grade in order to prevent the formation of metas-
tases. Nevertheless, even when cancer may have already
spread throughout the body, targeting the growth of pri-
mary and secondary tumors as well as further tumor cell
spread may significantly improve quality of life and over-
all survival of patients. Although ‘curing cancer’ may be
an unrealistic notion in advanced-stage tumors, a signifi-
cant fraction of patients may nevertheless profit from a
cocktail of drugs inhibiting tumor progression at different
levels. Most of the experimental results presented here
highlight many pathways and mechanisms that may be
appropriate targets for the development of such therapeu-
tic interventions. Prevention of further metastatic dissem-
ination, in addition to the reduction of tumor load, is cer-
tainly a prerequisite to convert a rapidly fatal disease into
a chronic illness.
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