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Abstract. The semaphorin proteins were identified orig-
inally as axonal guidance factors functioning during neu-
ronal development. In addition to this function, several
semaphorins play diverse roles outside the nervous sys-
tem. The class 4 semaphorin CD100/Sema4D, which uti-
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lizes plexin-B1 and CD72 as receptors, exerts important
biological effects on a variety of cells, including the neu-
ronal, epithelial and immune cells. Here, we review re-
cent advances exploring the molecular mechanisms gov-
erning the biological functions of CD100/Sema4D. 

Key words. CD100/Sema4D; semaphorin; plexin-B1; CD72; Met; SHP-1.

Introduction

The semaphorin family comprises more than 30 phyloge-
netically conserved proteins [1–3]. These proteins are
categorized into eight subclasses based on sequence sim-
ilarity and distinctive structural features (fig. 1) [4]. The
semaphorin subclasses 1, 2 and 5 contain the sema-
phorins identified in invertebrate species, while sub-
classes 3–7 contain the vertebrate semaphorins. In addi-
tion, the genomes of certain DNA viruses contain the
subclass 5 semaphorin genes. Several semaphorins act as
chemorepellents for axonal pathfinding during neuronal
development [3, 5, 6]. Cumulative findings to date, how-
ever, suggest that semaphorins play diverse roles unre-
lated to axon guidance, function in organogenesis, vascu-
larization, angiogenesis, apoptosis and neoplastic trans-
formation [7–10]. In addition, several semaphorins,
particularly the class 4 members, are crucially involved in
the regulation of immune responses, performing roles as
‘immune semaphorins’ [11–13]. 
Two receptor families, plexins and neuropilins, have been
implicated in mediating many semaphorin functions [14–
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Figure 1. The semaphorin family. The semaphorin family contains
a large number of phylogenetically conserved secreted and trans-
membrane proteins. Based on structural features, the members have
been divided into eight classes, which include a unique viral class.
The members of the semaphorin family all share a common sema
domain. 
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19]. Two neuropilins and nine plexins have been identi-
fied in the mammalian genome. A population of mem-
brane-bound semaphorins and two viral-derived secreted
semaphorins interact directly with the plexins [16–19].
The class 3 secreted semaphorins, however, utilize neu-
ropilins as ligand-binding obligate receptors [14, 15],
which form a signaling receptor complex containing a
semaphorin, neuropilin and plexin [18]. Studies using
truncated forms of plexins lacking the intracellular do-
mains conclusively demonstrated the requirement of the
plexin cytoplasmic domain for semaphorin signaling
[17–19]. The short cytoplasmic domains of neuropilins,
however, are dispensable for the repulsive functions of
semaphorins [20]. In addition to plexins and neuropilins,
five additional surface molecules have been implicated as
either semaphorin receptors or components of a sema-
phorin receptor holoreceptor complex. Off-track, a pro-
tein similar to receptor tyrosine kinase lacking a catalyti-
cally active kinase domain, associates with plexin-A to
mediate repulsive functions of Sema1a in Drosophila
melanogaster [21]. L1, a cell adhesion molecule belong-
ing to the immunoglobulin superfamily, transduces the
repulsive responses induced by the class 3 semaphorin
Sema3A as part of a neuropilin/plexin receptor complex
[22, 23]. Met, a scatter factor/hepatocyte growth factor
receptor with intrinsic kinase activity, is required to trans-
duce CD100/Sema4D signals promoting epithelial cell
invasive growth; this receptor forms a receptor complex
with plexin-B1 [24]. CD72, a type 2 transmembrane pro-
tein belonging to the C-type lectin family, acts as a
CD100/Sema4D receptor in the immune system [25].

Tim-2, a member of the T cell immunoglobulin domain
and mucin domain (Tim) protein family, interacts with
Sema4A to enhance T cell activation [26].
As this complex range of receptor usage suggests, sema-
phorins have diverse biological functions in various tis-
sues. Thus, the pleiotropic functions of semaphorins may
be partially explained by a differential usage of ligand
binding receptors and signal-transducing components.
One such example is CD100/Sema4D, which utilizes two
types of receptors, plexin-B1 and CD72. 

A class 4 semaphorin, CD100/Sema4D
CD100/Sema4D is a transmembrane protein containing
an amino-terminal signal sequence followed by a sema
domain, an immunoglobulin (Ig)-like domain, a lysine-
rich stretch, a hydrophobic transmembrane region and a
cytoplasmic tail (fig. 2) [27, 28]. This protein is ex-
pressed on the cell surface as a homodimer. The extracel-
lular region of CD100/Sema4D contains both potential
N-linked glycosylation sites and conserved cysteine
residues within the sema domain [29, 30]. Mutational
analysis of human CD100/Sema4D demonstrated that
C679 within the sema domain is required for homodimer-
ization [31], which is essential for the semaphorins’ bio-
logical function [32]. Although CD100/Sema4D does not
contain a catalytic domain within the cytoplasmic region,
there are consensus sites for both tyrosine and serine
phosphorylation [29, 30]. 
CD100/Sema4D messenger RNA (mRN)A is expressed
in a broad range of human tissues, including the embry-

Figure 2. The structure of CD100/Sema4D. CD100/Sema4D is a member of the class 4 semaphorin subfamily. CD100/Sema4D contains
an amino-terminal signal sequence, a sema domain, an Ig-like domain, a lysine-rich stretch, a transmembrane region and a cytoplasmic tail.
CD100/Sema4D has several N-linked glycosylation sites. Several consensus sites for serine phosphorylation exist within the cytoplasmic
domain. Although CD100/Sema4D is a transmembrane-type semaphorin, it is proteolytically cleaved from the cell surface to produce a
soluble form. Serine kinase activities associated with the cytoplasmic region of CD100/Sema4D may be involved in the regulation of
CD100/Sema4D proteolytic cleavage.



onic and adult brain, kidney and heart [29]. In mice,
CD100/Sema4D mRNA is detectable throughout embry-
onic neuronal tissues, with strong expression in the corti-
cal plate and dorsal root ganglia [30]. In developing em-
bryos, thymus also exhibits marked expression, while the
lung and kidney demonstrate only moderate expression.
Expression of CD100/Sema4D is detected on the major-
ity of hematopoietic cells, with the exception of immature
bone marrow cells, red blood cells and platelets [28]. In
particular, CD100/Sema4D is expressed abundantly on
resting T cells, but only weakly on resting B cells and
antigen-presenting cells (APCs), such as dendritic cells
(DCs). Upon cellular activation, CD100/Sema4D expres-
sion is significantly upregulated at the cell surface [11,
25, 33].

Receptors of CD100/Sema4D: plexin-B1 and CD72

Plexin-B1
Plexin-B1, a receptor prominently expressed in the fetal
brain and kidney, demonstrates a high binding affinity
(Kd = ~1×10–9 M) for CD100/Sema4D (fig. 3) [19, 34,
35]. Plexin-B1 is a member of the plexin family of trans-
membrane proteins. The extracellular domain of plexin-
B1, with 28% similarity to Met, contains a sema domain
and a cleavage site for subtilisin-like proprotein conver-
tases (PCs), which are proximal to the transmembrane
domain [35, 36].

Proprotein Convertases
In cells and tissues, plexin-B1 exists in a heterodimeric
form, following proteolytic cleavage by PCs, of α and β
subunits [36]. The β transmembrane subunit contains a
short extracellular sequence and the cytoplasmic do-
mains. The α subunit, which includes the majority of the
extracellular domain, remains associated with the cell
surface through weak bonding interactions with the β
subunit. These events appear to occur in a post-Golgi
compartment, likely at the cell surface. The proteolytic
conversion of plexin-B1 into a heterodimeric receptor
significantly enhances the binding and functional re-
sponses to the ligand CD100/Sema4D; thus, the prote-
olytic processing of plexin-B1 by PCs is a crucial regula-
tory step in CD100/Sema4D-mediated functions. 

Small GTPases in CD100/Sema4D signaling
Small GTPases have been implicated as mediators of
semaphorin function. Plexin-B1 associates with active
Rac [37–39]. CD100/Sema4D binding to plexin-B1
stimulates the recruitment of active Rac to the cytoplas-
mic region of plexin-B1, which competitively inhibits the
binding of active Rac to p21-activated kinase (PAK), a
downstream effector of Rac, although this competition
has not been clarified in vivo. 
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Guanine exchange factors (GEFs), which facilitate the
exchange of GDP for GTP, participate in vertebrate class
B plexin (plexin-B1-3) signaling [37, 40–43]. The
RhoGEFs, postsynaptic density protein 95-kDa/Discs
Large/zona occludens-1 (PDZ)-RhoGEF and leukemia-
associated RhoGEF (LARG), associate with the extreme
C-terminal portion of plexin-Bs through interactions of
the PDZ domains. Both binding of CD100/Sema4D to
plexin-B1 and activation of the chimeric plexin-B2 pro-
teins regulate PDZ-RhoGEF/LARG activity, leading to
subsequent RhoA activation [40, 42, 43]. Dominant-neg-
ative forms of both PDZ-RhoGEF and LARG block
CD100/Sema4D-induced growth cone collapse and neu-
rite retraction [42, 43], demonstrating a requirement for
Rho guanine nuclear exchange factors (RhoGEFs) and

Figure 3. Models of CD100/Sema4D signaling through plexin-B1.
Plexin-B1 mediates CD100/Sema4D-induced axon repulsion by
coordinately regulating the activity of the GTPases Rac and Rho;
plexin-B1 binds to Rac-GTP to downregulate its activity by block-
ing access to PAK, while binding to the RhoGEF/PDZ-RhoGEF
and LARG increasing the activity of RhoA. During regulation of
epithelial cell invasive growth, CD100/Sema4D signals through a
plexin-B1/Met receptor complex. Binding of CD100/Sema4D to
plexin-B1 activates Met, resulting in the phosphorylation of Met it-
self, plexin-B1 and the Met target Gab1.
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RhoA activation in CD100/Sema4D-mediated cytoskele-
tal changes.

Coreceptor and tyrosine phosphorylation
In epithelial cells, plexin-B1 forms a functional receptor
complex with Met (the scatter factor-1/hepatocyte growth
factor receptor) [24]. Met is structurally similar to the
plexins and semaphorins, also containing a Sema do-
main. The binding of CD100/Sema4D to plexin-B1 stim-
ulates the intrinsic tyrosine kinase activity of Met, lead-
ing to the phosphorylation of both the receptors and a Met
substrate, Gab1. Activation of Met through plexin-B1 re-
quires the extracellular domains of both receptors. The
phosphorylation of the plexin-B1/Met complex induced

by CD100/Sema4D, which is significantly increased
when both CD100/Sema4D and the Met ligand scatter
factor-1 are present, is crucial for epithelial cell invasive
growth. This evidence suggests that these two ligands
function cooperatively. 

CD72
CD100/Sema4D utilizes CD72 as a functional receptor
(Kd = ~ 3×10–7 M) in lymphoid tissues (fig. 4) [25].
CD72, also known as Lyb-2, is a 45-kDa type II trans-
membrane protein belonging to the C-type lectin family
[44, 45]. CD72 expression is detectable throughout B cell
differentiation from the earliest B cell progenitors to ma-

Figure 4. Models of CD100/Sema4D signaling through CD72. CD100/Sema4D turns off the negative signaling of CD72. Signals from
BCR, CD40 and TLR4 are homeostatically regulated by Sema4D-CD72 interactions. In the absence of Sema4D, SHP-1 is associated with
the ITIMs of CD72. SHP-1 induces tyrosine dephosphorylation and inactivation of several signaling proteins, including syk and lyn. Bind-
ing of Sema4D to CD72 dephosphorylates CD72 ITIMs, resulting in the dissociation of SHP-1 from CD72.



ture B cells, but is downregulated upon terminal differen-
tiation into plasma cells. CD72 is also expressed by
APCs, such as macrophages and DCs [46, 47]. 
Crosslinking of anti-CD72 monoclonal antibodies
(mAbs) on B cells can transform a subset of small resting
B cells into blast cells and can induce the proliferation of
activated B cells [48–51]. Anti-CD72 mAbs have also
been shown to block B cell receptor (BCR)-mediated cell
death, promote B cell survival and proliferation, increase
major histocompatibility complex (MHC) class II ex-
pression, and enhance the production and shedding of
CD23 from B cells [48, 52, 53]. Anti-CD72 mAbs also in-
duce interleukin (IL)-12 production by DCs [33]. Soluble
CD100/Sema4D and CD100/Sema4D-expressing trans-
fectants exhibit similar biological functions; CD100 syn-
ergistically enhances CD40-induced B cell and DC re-
sponses [33, 54, 55], while human CD100/Sema4D stim-
ulation enhances the shedding of CD23 from B cell
plasma membranes [29]
Studies of CD72 signaling pathways demonstrated that
anti-CD72 mAbs induce the tyrosine phosphorylation of
phospholipase C-γ and CD19 [56, 57]. These antibodies
activate Lyn, Blk and Btk kinases, providing positive sig-
nals for B cell activation. Cumulative evidence suggests a
potential role for CD72 as a negative regulator of B cell
responses. The cytoplasmic domain of CD72 contains
two immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) [58, 59]. Crosslinking of the BCR induces tyro-
sine phosphorylation of CD72, inducing the association
of CD72 with SHP-1, an SH2-containing protein tyrosine
phosphatase. SHP-1 induces tyrosine dephosphorylation
and inactivation of multiple signaling proteins. SHP-1 as-
sociates with many inhibitory receptors, such as CD22
and killer inhibitory receptors, through these ITIM motifs
[60–62]. Not surprisingly, B cells from CD72-deficient
mice are hyperproliferative in response to various stimuli,
exhibiting more rapid Ca2+ responses following BCR
stimulation [63]. 
The mechanisms by which CD100/Sema4D regulates B
cell responses through CD72, a negative regulator, have
remained elusive. Intriguingly, both agonistic anti-CD72
mAbs and CD100/Sema4D block tyrosine phosphoryla-
tion and SHP-1 association of CD72, both of which are
normally induced by anti-BCR stimulation [25, 64, 65].
These findings suggest that CD100/Sema4D enhances B
cell responses by shutting off CD72-mediated negative
signaling; thus, agonistic anti-CD72 mAbs likely mimic
the effects of CD100/Sema4D. CD72 is constitutively ty-
rosine phosphorylated and associated with SHP-1 in
CD100/Sema4D-deficient mice [65], supporting our
model of B cell activation. A current paradigm in immune
regulation states that positive outputs are generated from
positive receptors, while negative outputs originate from
negative receptors. The CD100/Sema4D-CD72 interac-
tion, therefore, is a unique example of ligand binding to a

negative regulator yielding a positive output [11, 12]. It is
therefore logical that the immunological phenotype of
CD100/Sema4D-deficient mice is the opposite of that of
CD72-deficient mice; CD100/Sema4D-deficient B cells
and CD72-deficient B cells are hyporesponsive and hy-
perresponsive to various stimuli, respectively.
Although cumulative evidence indicates strongly that
CD72 is involved in B cell activation, several questions
remain: (i) Is CD72 the exclusive receptor for
CD100/Sema4D in the immune system? (ii) Does
CD100/Sema4D require additional proteins to generate
immune responses? (iii) Can CD72 function also as a
positive regulator? Further comprehensive studies are re-
quired to answer these questions. 

Biological functions of CD100/Sema4D 

As a ligand
CD100/Sema4D exerts a wide variety of biological activ-
ities on neuronal cells, epithelial cells and immune cells
(B cells, DCs and monocytes) as a ligand through the re-
ceptors plexin-B1 and CD72 [24, 25, 31, 33, 43, 54, 55,
65]. This next section reviews the additional functions of
CD100/Sema4D throughout these different systems.

Neuronal cells
Immunohistochemical analysis indicates that plexin-B1
is expressed in the brain, distributed over neuronal cell
bodies as well as in the neuropil. In the axonal growth
cone of chick retinal ganglion neurons, plexin-B1 colo-
calizes with LARG [43]. As with retinal ganglion neu-
rons, both somata and the growth cones of hippocampal
neurons express plexin-B1, to which the binding of
CD100/Sema4D can be detected. CD100/Sema4D in-
duces growth cone collapse in hippocampal neurons,
which can be completely blocked by Rho-kinase in-
hibitors. This evidence suggests the involvement of Rho
or other Rho family kinases in growth cone collapse. In
PC12 cells, which display neuritis, contacts with
CD100/Sema4D-expressing cells induce cell rounding
and the retraction of neuritis [42]. These results suggest
that CD100/Sema4D-plexin-B1 interactions help to
guide developing neuronal cells. 

Epithelial cells
Liver progenitor cells (MLP29 cells) endogenously ex-
press plexin-B1 and Met, but not CD72. These cells form
tight epithelial monolayers with junctional complexes.
Giordano et al. recently demonstrated that purified solu-
ble CD100/Sema4D, as well as scatter factor, triggers
MLP29 cell ‘invasive growth’ [24]. This phenomenon is
a complex program, including cell-cell dissociation, an-
chorage-independent growth and branching morphogen-
esis, in which cells acquire polarity and form tubules
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arranged like the branches of a tree. These findings sug-
gest that CD100/Sema4D functions as a ligand via the
plexin-B1/Met receptor complex in the control of inva-
sive growth. As both scatter factor and Met have been im-
plicated in cancer and metastasis, this observation also
suggests the involvement of CD100/Sema4D in these
processes.

Immune cells
Exogenous expression of CD100/Sema4D or treatment
with recombinant soluble CD100/Sema4D proteins both
promote B cell activation, as measured by both prolifera-
tion and immunoglobulin production [25, 54, 55]. Ad-
ministration of soluble recombinant mouse CD100/
Sema4D in vivo accelerates the production of antigen-
specific antibodies [25]. Soluble recombinant CD100/
Sema4D enhances CD40-induced DC maturation, mea-
sured by the upregulation of CD40 and CD80 expression
and enhanced IL-12 production [33]. The immunological
activities of CD100/Sema4D on B cells and DCs have
been confirmed by the phenotypes of CD100/Sema4D-
deficient mice, in which both antibody production and T
cell priming against specific antigens are impaired [65].
CD100/Sema4D also appears to play a role in monocyte
and macrophage activation. Either recombinant soluble
human CD100/Sema4D or agonistic anti-human CD72
monoclonal antibody (mAb) can induce monocyte pro-
duction of proinflammatory cytokines, such as IL-6 and
IL-8 [66]. Boumsell et al. have also reported that soluble
human CD100/Sema4D inhibits both the spontaneous
and MCP-3-induced migration of either freshly isolated
monocytes or a monocytic cell line [31]. It remains un-
clear, however, whether CD72 or plexin-B1 is involved in
the inhibitory activity of CD100/Sema4D in immune cell
migration.
Collectively, these findings indicate that CD100/Sema4D
plays crucial roles as a ligand functioning via plexin-B1
and CD72 in nonlymphoid and lymphoid tissues, respec-
tively. Although the abnormalities in deficient mice have
only been observed in lymphoid, but not nonlymphoid
tissues, it remains possible that compensatory mecha-
nisms lacking in lymphocytes may function outside lym-
phoid tissues [65]. Further studies will be required to
evaluate the roles of CD100/Sema4D as a ligand in both
physiological and pathological conditions. 

As a receptor
Several findings also suggest a role of CD100/Sema4D
as a cell surface receptor. In early studies using mAbs
specific for human CD100/Sema4D, antibody crosslink-
ing of human CD100/Sema4D enhanced T cell prolifera-
tion in the presence of submitogenic doses of anti-CD3 or
anti-CD2 mAbs [27]. Thus, CD100/Sema4D was thought
to mediate signals through its cytoplasmic domain. Fur-

thermore, in human T cells, CD100/Sema4D is associ-
ated with serine/threonine kinase and protein tyrosine
phosphatase (PTP) activity [67]. In addition, it has been
reported that PTPs are differentially associated with hu-
man CD100/Sema4D during the terminal stages of B cell
differentiation [68–70], suggesting that CD100/Sema4D
may function as a receptor transmitting signals to lym-
phocytes. Granziero et al. recently reported that human
plexin-B1-expressing transfectants sustain the prolifera-
tion of normal and leukemic CD5+ cells, both of which
express human CD100/Sema4D [71]. This evidence sug-
gests that human CD100/Sema4D functions as a receptor
for human plexin-B1. Although the physiological signif-
icance of CD100/Sema4D as a receptor remains to be de-
termined, it is plausible that CD100/Sema4D possesses
bidirectional functions in cognate cell-cell contacts.

Which is the active form of CD100/Sema4D,
a soluble form or transmembrane-form?
Although the semaphorin family contains secreted-type
and transmembrane-type member proteins, most of the
functions, such as axonal guidance cues, have been
demonstrated to be mediated by the secreted-type mem-
bers. CD100/Sema4D, a class 4 semaphorin, is a trans-
membrane-type semaphorin. Both human and mouse
transmembrane-type CD100/Sema4D are proteolytically
cleaved into a 120-kDa soluble form (fig. 2) [31, 54, 55,
68, 72, 73]. It is thus critical to determine the active form
of CD100/Sema4D, either the transmembrane or soluble
form. The generation of soluble CD100/Sema4D appears
to be well regulated; its release from primary T and B
cells is strictly dependent on a proteolytic cascade that
follows cellular activation [54]. Interestingly, significant
soluble CD100/Sema4D is detectable in the sera of both
mice immunized with a T-cell-dependent antigen and au-
toimmunity-prone MRL/lpr mice. In these animals, the
levels of soluble CD100/Sema4D correlate well with
antigen-specific antibody or autoantibody titers, al-
though soluble CD100/Sema4D is below detection levels
in the sera of unimmunized normal mice [54]. The in vivo
profiles of soluble CD100/Sema4D suggest the involve-
ment of soluble CD100/Sema4D in physiological and
pathological immune responses. Indeed, the majority of
CD100/Sema4D biological functions on various cells as
a ligand have been revealed using recombinant or natu-
rally cleaved soluble CD100/Sema4D, suggesting that
soluble CD100/Sema4D released from the cell surface
may be responsible for the observed activities. Although
it remains unclear whether the transmembrane-type
CD100/Sema4D requires conversion into a soluble form
to exert its functions, it is reasonable to state that soluble
CD100/Sema4D is active. In this context, the transmem-
brane-type CD100 may thus exist as a reservoir for solu-
ble CD100/Sema4D, facilitating a broader spectrum of
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biological activities. If so, the proteolytic cleavage of
CD100/Sema4D may be a critical step for regulating the
functions of CD100/Sema4D throughout a broad range of
tissues. However, it has been demonstrated that
CD100/Sema4D-expressing transfectants have activities
on B cells and neuronal cells [29, 42], indicating their
functional importance. Further studies will be required to
know whether the biological activity of the transmem-
brane-type CD100/Sema4D is qualitatively different
from that of soluble CD100/Sema4D. 
Although the cleavage site has not been determined, the
cleavage of transmembrane-type CD100/Sema4D on the
cell surface relies on an enzymatic process, as it is inhib-
ited by either azide or incubation at 4°C [72]. In addition,
the light metal chelators EDTA and EGTA inhibit up to
50% of CD100/Sema4D shedding, suggesting that met-
alloprotease activity may facilitate shedding. However,
several metalloprotease inhibitors cannot inhibit this
process, indicating that the mechanism governing
CD100/Sema4D cleavage is likely to be different from
that employed for other surface molecules. The cytoplas-
mic region of CD100/Sema4D also appears to plays a
role in the regulation of soluble CD100/Sema4D produc-
tion. Staurosporine (a cell-permeable, broad-range in-
hibitor of serine kinases) enhances the release of soluble
CD100/Sema4D, suggesting that serine phosphorylation
regulates CD100/Sema4D cleavage [72]. Interestingly,
large quantities of soluble CD100/Sema4D are detectable
in the sera of transgenic mice expressing a truncated form
of CD100/Sema4D that lacks the cytoplasmic region, de-
spite weak cell surface expression of the transgene prod-
uct [55]. These findings collectively implicate the cyto-
plasmic region of CD100/Sema4D in the regulation of
soluble form generation.

Perspectives
While in this article we focus on the current advances
concerning a class 4 semaphorin, CD100/Sema4D, sev-
eral other semaphorins also appear to function outside the
nervous system. In the immune system, Sema4A, a class
4 semaphorin, is crucially involved in in vitro and in vivo
T cell activation through interactions with Tim-2 [13, 26].
The viral semaphorins, A39R (encoded by vaccinia virus)
and AHVsema (encoded by alcelaphine herpes virus),
bind to their cellular receptor, virus-encoded semaphorin
protein receptor (VESPR)/CD232/plexin-C1, to induce
proinflammatory cytokine production in human mono-
cytes [16, 74]. The glycosylphosphatidylinisitol (GPI)-
anchored class 7 semaphorin CD108/ Sema7A/Sema-K1,
a mammalian counterpart of AVHsema, also binds
VESPR/CD232/plexin-C1 to induce proinflammatory
cytokine production [19]. Even Sema3A, the most well
characterized semaphorin identified as an axonal guid-
ance factor, appears to inhibit monocyte migration [31].

Several semaphorins also play crucial roles outside the
nervous and immune systems, functioning in organogen-
esis, vascularization and tumorgenesis. We have reviewed
here that CD100/Sema4D induces neuronal growth cone
collapse through interactions with plexin-B1, invasive
growth of epithelial cells via the plexin-B1/Met receptor
complex and immune responses through CD72. These
findings naturally suggest the directions necessary to
clarify the diverse activities of semaphorins. More com-
prehensive studies to determine receptor usage, including
the presence or absence of additional receptor compo-
nents in a broad range of tissues, will help delineate the
pleiotropic effects of the semaphorin-receptor system. 
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