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Abstract. The observation that in some cases tumors un-
dergo spontaneous regression concomitantly with au-
toimmune manifestations has been interpreted as an indi-
cation of the involvement of the immune system in tumor
rejection. This raised the conceptual possibility that the
immune system could be used against the tumor. How-
ever, since tumor cells are poorly immunogenic by them-
selves, early attempts to develop immune-based ap-
proaches for cancer therapy saw the use of tumor cells
transduced with genes coding for cytokines or costimula-
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tory molecules to enhance in vivo immunity. The identifi-
cation of cytotoxic T lymphocyte (CTL)-defined tumor-
associated antigens has allowed the development of new
strategies for cancer immunotherapy. Novel adjuvants
have been identified, and different modes of antigen de-
livery were devised which aim at inducing efficient CTL
responses in patients. This review will discuss some of
what is currently considered as relevant aspects of anti-
tumor immunization.
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Introduction

Over the past 2 decades, the field of cancer immunother-
apy has exploded. Countless labs have devised countless
techniques and approaches which aim at turning the pa-
tient’s immune system against the tumor. The choice of
antigen, adjuvant and mode of administration was found
to be crucial. Moreover, in humans immune evasion oc-
curs, which may partly explain why many tumor vaccina-
tion protocols have been validated in animal models but
few have been successful in human clinical trials. An in-
tegrated approach to cancer immunotherapy is therefore
necessary, which capitalizes on our everexpanding under-
standing of what turns the immune system on and off in
vivo.

Tumor antigens

Specific tumor immunotherapy requires molecularly
defined Tumor-Associated Antigens (TAAs)
Specific immunotherapy relies on the recognition of anti-
gens by specific immune effector cells. In the case of tu-
mors, evidence suggests that in mice as well as in humans,
specific protection is conferred mainly by T cells, both of
the CD4 and of the CD8 types. It is the recognition at the
tumor cell surface of tumor-specific antigen-derived pep-
tides presented by major histocompatibility molecules
(MHC) molecules which permits their selective destruction
by T cells. However, specific T cells must first be primed by
the recognition of the peptides presented by non-tumor anti-
gen-presenting cells, mainly by dendtritic cells (DCs). 
Although some approaches aim at using tumors them-
selves as the primary source of TAAs in vivo, it may be ar-
gued that the amount of specific TAAs presented by tumor
cells is insufficient to prime or to boost a robust T cell re-
sponse, but sufficient for recognition and killing by cyto-
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toxic T lymphocytes (CTLs). Therefore, during the last 10
years, in a search for antigens to immunize patients, sev-
eral hundred human candidate TAAs were identified.
Many of those TAAs have been validated at the epitope
level in a variety of tumors expressing different MHC hap-
lotypes. Several recent reviews have been published which
describe in detail the different TAAs and their potential
use for tumor immunotherapy [1–5]. The purpose of this
section is therefore (i) to give a general overview of the
types of TAAs which have been identified and which
could possibly be used for tumor immunotherapy, (ii) to il-
lustrate through examples different approaches that can be
used to identify TAAs, (iii) to evaluate criteria for select-
ing TAAs, and (iv) to examine how to optimize the trans-
lation from the identification of TAAs to the design of im-
munogen.
An updated list of all the T-cell-defined epitopes encod-
ed by human tumor antigens that have been published 
has been assembled by G. Parmiani and colleagues and 
is accessible at the Istituto Nazionale Tumori website
(www.istitutotumori.mi.it). 

Overview of the identified human TAAs
Functionally, two types of TAAs may be distinguished:
those which are self, and those which are nonself. Self-
antigens raise two major issues: tolerance and autoimmu-
nity. Self-antigens have been recognized by immune cells
during development but have led to tolerance either
through deletion (for antigens recognized with high avid-
ity), or through anergy (for antigens recognized more
loosely). Raising a protective immune response against
such antigens necessitates first breaking the tolerance. An
effective antitumor immune response is expected to elim-
inate all the cells which efficiently present peptides
against which effector T cells have been raised. In the case
of self-antigen, the risk of autoimmune destruction of nor-
mal tissues has been documented in animal models, and
suggested by melanoma patients who have developed vi-
tiligo. It follows that self-antigens should be considered as
appropriate targets if they are expressed only by ‘dis-
pensable’ normal tissues such as prostate or ovary, but not
by ‘vital’ tissues, like the lung.
Non-self TAAs can be either of exogenous (i.e. viral) or
endogenous origin: endogenous non-self TAAs are pro-
duced as a result of mutation of genes in tumors, or by ex-
pression of unmutated proteins which have not been rec-
ognized as self because they were never presented
efficiently to the immune cells before (i.e. antigen ex-
pressed only during fetal life). Non-self TAAs obviate the
drawbacks of both tolerance and autoimmunity, and they
have been shown to generate more easily high-avidity T
cell responses in mouse models.
Currently, human TAAs whose recognition at the tumor
cell surface by specific T cells has been established can be

grouped according to the nature and origin of the protein,
and to the mode of presentation to the T cells, into the fol-
lowing categories.

Exogenous viral antigens expressed by virus-induced
human cancers 
Viruses are known to be involved in the transformation of
many cell types which then express viral antigens recog-
nised by specific T cells. These include antigens encoded
by Epstein-Barr virus (EBV) (LMP-1, LMP-2a, LMP-2b,
EBNA2, EBNA 3) and expressed by some B cell lym-
phomas and nasopharyngiomas; human T lymphotropic
virus (HTLV)-1 (gag, envelope, tax) expressed by T cell
leukemias; hepatitis B virus (HBV) (HbcAb-core, HbsAg-
surface, polymerase) or hepatitis C virus (HCV): (core,
envelope 1 and 2, NS2, NS3, NS4, NS5) in virus-induced
hepatomas; and human papilloma virus (HPV) (E6, E7) in
cervical cancers.

Neoantigens as TAAs; Class I HLA-restricted 
tumor-specific antigens
These antigens result from point mutations in normal
genes whose molecular changes often accompany neo-
plastic transformation or progression. They are either 
restricted to individual tumors or shared (i.e. generated 
by tumor-specific alternative splicing). Examples in-
clude AFP, b-catenin, caspase-8/m, CDK-4/m, ELF2 M,
GnT-V, G250, and HSP70. Fusion proteins that result 
from chromosomal translocation can also give rise to
TAAs that are weakly immunogenic (in leukemia pa-
tients). These include both human leucocyte antigen
(HLA) class I-restricted epitopes (bcr-abl, ETV6/
AML) and HLA class II-restricted epitopes (bcr-abl, 
Dek-cain, LDLR/FUT, Pml/RARa, p190 minor bcr-abl,
TEL/AML1).

Functionally non-self TAAs; The HLA Class I-
restricted cancer/testis antigens
These genes are expressed in histologically different hu-
man tumors, in spermatocytes/spermatogonia of testis (no
expression of MHC I by testis cells) and occasionally in
placenta and ovary. Four MAGE gene major subfamilies
have been identified and located on chromosome X: the
MAGE A, B and C genes are all retrogenes which either
encode tumor-specific transplantation antigens, or are
pseudogenes; the four members of the MAGE D genes are
expressed in normal adult tissues. Interestingly, several
mouse MAGE A and B orthologues are also expressed in
testis and tumors only. Recently, SSX-2 has been identi-
fied as another cancer/testis antigen.

Class I tumor-specific HLA-restricted differentiation
antigens that are restricted to specific normal 
and cancer tissues 
These antigens are shared between tumors and the normal
tissues from which the tumor arose. Most of these tissue-



restricted TAAs have been described in melanomas and in
normal melanocytes, and are involved in the biosynthesis
of melanin. Thirty-nine epitopes derived from eight anti-
gens have been described: MART-1/Melan-A, MC1R,
Gp100, PSA, PSM, tyrosinase, TRP-1 and TRP-2.

Class I HLA-restricted widely expressed antigens
that are over expressed by cancer cells
These genes are expressed in many normal tissues and in
histologically different types of tumors, with no preferen-
tial expression in some types of cancer. Alterations of
transcription or of translation underlies the generation of
T-cell-defined epitopes: overexpression in tumors, use of
alternative open-reading frame (ORF) carcinoembryonic
antigen (CEA), reverse transcription (RU2), and so on.
These include ART-4, CAMEL, CEA, Cyp-B, HER-2/
neu, HTERT, iCE, MUC1, MUC2, PRAME, P15, RU1,
RU2, SART-1, SART-3, WT1, and the anti apoptotic pro-
tein surviving. Loss or downregulation of some of these
antigens compromises the growth potential of tumor cells,
therefore limiting the possibility of generating escape mu-
tants [6].

Strategies for identifying TAAs
Although several strategies have been designed to identify
TAAs, they can be separated into two categories, depend-
ing on the starting material: (i) the approaches which start
from the T cell response of the patients and which thereby
guarantee that the TAAs which will be identified are by
definition T-defined antigens; (ii) the strategies based on
what the tumor cells express can start from information
regarding the messenger RNAs (mRNAs) or the proteins,
or from the peptides that are presented by MHC mole-
cules. These approaches provide only putative TAAs,
which have to be validated for recognition at tumor cell
surface by human CTL.
Increasing understanding of the rules that govern the ef-
ficiency of presentation of protein-derived peptides by
MHC class I and II molecules has been gained recently.
These involve (i) the role of subcellular protein localiza-
tion, (ii) sensitivity to ubiquitination, (iii) specificity of
proteosomal (for class I) and lysosomal (for class II)
cleavage, (iv) of transporter-associated protein (TAP)
transporter and (v) of N-terminal aminopeptidase, (vi)
participation of each amino side chain to the binding avid-
ity within the MHC grooves and (vii) to the recognition by
the T cell receptor (TCR). Special algorithms have been
designed for predicting T cell epitopes from protein se-
quence. 
Confirmation and determination of the affinity of peptide-
MHC fixation can be performed with an enzyme-linked
immunosorbent assay (ELISA)-based large scale assay.
Alternatively, the presentation by tumor cells of peptides
derived from candidate TAAs can be confirmed directly

by analyzing the peptides eluted from tumor MHC mole-
cules. 
In all cases, definitive TAA validation relies on generation
of peptide-specific T cells and the demonstration that they
can be activated by tumor cells. Generation of specific
CTL has been facilitated by immunizing HLA transgenic
mice. However, the final demonstration that the human T
cell repertoire has not been deleted for epitope specificity
requires the generation of specific human T cell clones.

Specific T-cell-based identification of TAAs
Using CTL derived from peripheral blood of melanoma
patients, human TAA were initially characterized by
screening tumor-derived complementary DNA (cDNA) li-
braries for genes which would convert transfected cells
into targets for these tumor-specific CTLs. T-cell-epitope
specificity was next determined using a series of antigen-
derived synthetic peptides. Most of the cancer/testis TAAs
have been identified following the CTL-based approach,
including members of the MAGE, BAGE, GAGE and
DAM families. The main advantage of the T-cell-based
strategy is that it specifically and directly identifies anti-
genic peptides that are naturally processed by tumor cells
and recognized by T cells. Furthermore, this strategy has
been the most efficient at isolating the HLA class I-re-
stricted cancer/testis antigens which are shared by many
tumors. However, this method is best suited for tumors
that are relatively easy to grow in culture, such as
melanomas. 

Antibody-based identification of TAAs 
Serological analysis of recombinant cDNA expression li-
braries of human tumors with autologous serum (SEREX)
has been used to isolate several putative human tumor
antigens. Interestingly, many of the TAAs identified by
SEREX had previously been known as T-cell-defined
TAAs. Up to now, 1549 public sequences have been com-
piled and are accessible through the SEREX homepage
(http://www-ludwig.unil.ch/SEREX/), which is run by the
Ludwig Institute for Cancer Research. 
Among the T-confirmed TAAs are the cancer/testis anti-
gens NY-ESO-1 and cTAGE-1 expressed by cutaneous T
cell lymphomas. Putative TAAs include SOX1, SOX3 and
SOX21 (expressed during early development and in small
cell lung cancer), hsp105 in pancreatic ductal and colon
adenocarcinoma and HOM-MEL-40 (melanoma).
SEREX takes advantage of the humoral immune response
that cancer patients often develop against the tumor and
only requires a patient’s serum and tumor cDNA library as
starting material. Several previously T-cell-defined TAAs
have been identified through the SEREX approach. Re-
ciprocally, some TAAs that were first found through the
SEREX approach were secondarily confirmed as T-
defined TAAs. However, most of the genes identified by
SEREX remain candidate TAAs, as they have not yet been
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shown to lead to the recognition of tumor cells by specific
T cells. Furthermore, information regarding the tumor
specificity must be confirmed (and is still lacking) for the
vast majority of those genes.

Identification of TAAs by the reverse genomic 
approach
Identification of TAAs by reverse genomics involves a
comparative analysis of mRNA expression by cancer ver-
sus normal tissues. Methods include cDNA library sub-
traction, representational differential analysis (RDA) or
serial analysis of gene expression (SAGE). MAGE-B5,
MAGE-B6, MAGE-C2, MAGE-C3, SAGE, HAGE,
CT10 and CTp11 are all cancer-testis antigens that were
first identified by RDA.
Recently, comparison of expressed sequence tag (EST)
cDNA libraries derived from cancer versus normal tissues
through bioinformatics or genomic microarray analysis
has opened novel opportunities for identifying genes
specifically expressed by tumor cells. The reverse ge-
nomic approach takes advantage of the huge amounts of
information contained in public and proprietary databases
for selection of tumor specificity to predict peptides which
could be used as immunogens. Both the quality and size
of the sequence database are critical, as they set the level
of tumor specificity. Predicted proteins for which cancer-
restricted patterns of expression are confirmed (e.g.
through microarray or Taq-man analysis) can be consid-
ered as putative TAAs. Computational algorithms for pro-
tein sequence analysis allow the prediction of candidate
TAA peptides. 

Identification of TAAs from the analysis of proteins
expressed by tumors 
Starting from the identification of the proteins that are
specifically expressed or overexpressed by tumor cells, it
is possible to test whether those proteins could be the
source of peptides allowing the destruction of the tumor
by specific T cells. Proteins are classically resolved by
two-dimensional (2D) gel electrophoresis. Single spots
are automatically picked from the gel and enzymatically
digested, and the peptides are analyzed by mass spec-
trometry. Masses are compared with databases for se-
quence identification. Sequences of peptides of interest
can be confirmed by tandem mass spectrometry. Through
a proteomic approach, b-tubulin isoforms have been iden-
tified as potential tumor antigens that are recognized by a
neuroblastoma patient’s antibodies [7]. 
In contrast to the reverse genomic approach, proteomics
starts with direct quantitative and qualitative informa-
tion about the proteins present in tumor cells. How-
ever, accuracy of the data relies on the amount and 
purity of the cells analyzed. While this may be less of 
a problem for cell lines, purity is more critical for fresh 
tumors. 

Use of proteomics for TAA identification requires com-
parison of proteins expressed in cancer cells versus nor-
mal tissues. The quality of such subtraction is highly de-
pendent on technical considerations, including: (i) the
relative difficulty of purifying some proteins (i.e. mem-
brane-bound proteins) (ii) the resolution capability of the
preparative gels (which often excludes proteins with 
extreme immunoprecipitation), (iii) the reproducibility
and sensitivity of the procedures, (iv) the absence of con-
tamination and (v) well-defined criteria for data com-
parison. 
Identification of proteins from peptide mass analysis re-
lies on the size and quality of the databases to which these
can be matched. Protein identification can sometimes be
hampered by the superposition of several proteins on the
same 2D gel spot. Also, the limited amounts of peptide
available do not always allow the confirmation of the se-
quence.
Again, proteins specifically expressed by tumor cells re-
main putative TAAs as long as their immunogenicity and
antigenicity have not been confirmed (see above). 

Identification of TAAs by analysing peptides eluted
from tumors 
In order to be recognized by T cells, TAAs have to be con-
verted by tumor cells into peptides presented at their sur-
face in the context of MHC molecules. In this protocol,
MHC molecules are immunopurified from tumor cells,
and the acid-eluted peptides are fractionated [e.g. by high-
performance liquid chromatography (HPLC)]. Pools of
fractionated peptides are next analyzed by mass spec-
trometry. The masses are then compared with those of
peptides predicted to be generated from proteins ex-
pressed by the tumor and to be able to bind to MHC mol-
ecules. Any mass match can be experimentally confirmed
by coelution experiments. Alternatively, collision-acti-
vated dissociation (CAD) mass spectra databases can be
assembled with peptides eluted from the MHC molecules
of cancer cells. This allows direct verification whether any
protein expressed by this tumor can give rise to peptides
presented by the MHC molecules.
Until now, only a few novel TAAs have been identified
through this approach: a peptide derived from a mutated
elongation factor 2 has been characterized after elution
from squamous cell lung carcinoma [8]. The same strat-
egy also led to identification of a natural HLA-A31-re-
stricted CTL epitope presented by human gastric carci-
noma [9].
Compared with other tumor-based approaches, analysis of
MHC-bound peptides provides information that is more
directly relevant for tumor T cell recognition. This strategy
does not rely on the uncertain assumption that gene 
transcription, protein expression and peptide genera-
tion are quantitatively linked. Furthermore, posttrans-
lationally modified peptides (e.g. phosphorylated, glyco-
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sylated or cysteinylated peptides) or peptides differentially
processed by the tumor can be characterized after elution.
Therefore, antigens identified through this method are
most likely to satisfy the criteria of immunogenicity and
antigenicity, although final proof depends on recognition
of tumor by peptide-specific T cells. 
Limitations of this method include (i) its limited sen-
sitivity, which allows identification of about only 70% 
of the peptides presented by a given HLA haplotype and
(ii) correlation between the repertoire of peptides that are
presented by tumor cells versus the repertoire of peptides
that can be eluted from MHC molecules. In particular, the
absence of several well-characterized tumor antigen-
derived epitopes among the peptides eluted from tumors
raises the possibility that peptides bound to MHC mole-
cules with high affinity may not be efficiently recovered
by elution, and (3) the number of cells needed for the
analysis (>1010), which can be a limitation for fresh 
tumors. 

Optimization of TAAs for tumor immunotherapy
While natural TAA-derived T cell epitopes represent po-
tential targets for tumor immunotherapy, they may still be
suboptimal immunogens. Peptides which differ from nat-
urally processed proteins may (i) bind to a broader spec-
trum of MHC molecules without changing TCR recogni-
tion, (ii) increase the affinity for MHC binding, which
correlates usually with increased immunogenicity and (iii)
be recognized with higher avidity by specific TCRs.
Moreover, technology is available to produce polypeptides
with multiple TA peptides to significantly enhance the
probability of covering different types of cancer (i.e. with
multiple TAAs) or multiple MHC molecules, to limit the
consequences of tumor escape variants, and to associate
both MHC class I and class II epitopes in the same vac-
cine.

Specific example of TAA usage: NY-ESO-1
The NY-ESO-1 cancer testis antigen (CTA) has been
abundantly analyzed and will serve to illustate several re-
cent aspects of the research pertaining to TAA usage [10].
NY-ESO-1, a member of the cancer/testis family of anti-
gens, is expressed in normal testis germ cells (particularly
spermatogonia) and in a range of human tumor types:
80% of synovial sarcomas, 50% of esophageal carcino-
mas, 20–30% of lung cancers (mostly the small-cell lung
cancers), bladder cancers and melanoma (with statistically
significant correlation between the expression of NY-
ESO-1 in melanoma and advanced stages of disease).
However, NY-ESO-1 is not expressed in colon and renal
cancer. Although NY-ESO-1 protein and mRNA expres-
sion showed a good correlation in a large panel of lung
cancers, there appears to be great variability in NY-

ESO-1 expression in individual tumors, ranging from an
infrequent homogeneous pattern of staining to highly 
heterogeneous antigen expression [11].
The NY-ESO-1 gene is located on chromosome Xq28.
Two closely related genes were subsequently identified on
chromosome X: (i) LAGE-1 (ESO2), which shares simi-
lar biological features and > 80% protein sequence iden-
tity with ESO1, and (ii) ESO3, whose mRNA is ubiqui-
tously expressed in somatic tissues and which has lower
(< 50%) amino acid homology with ESO1.
NY-ESO-1 is regarded as one of the most immunogenic
antigens ever isolated, eliciting both antibody and cell-me-
diated immune responses in 50% of patients with NY-
ESO-1-expressing neoplasms. Both NY-ESO-1 MHC I-
and MHC II-restricted epitopes have been characterized 
in detail. The HLA-A2-restricted epitope, NY-ESO-1 pep-
tide 159–167 (L9L), is strongly recognized by CD8+ T
cells as a result of peptide vaccination of cancer patients.
However, L9L-specific CD8+ T cells fail to recognize tu-
mor cells naturally expressing NY-ESO-1. Processing of
L9L can be rescued after interferon (IFN-g) treatment of
tumor cells or by using dendritic cells pulsed with NY-
ESO-1 protein/antibody immune complexes [12]. A dual
specificity within peptide S11L has been described, with
S9C (peptides 157–165) as the natural antigenic tumor
epitope, and L9L (159–167) as a cryptic epitope with
dominant immunogenicity upon vaccination that diverts
the immune response from tumor recognition. Moreover,
modification of S9C peptide at the carboxy terminus en-
hances HLA-A2.1 binding affinity and stability in solu-
tion (165V) and stimulates in vitro CTL, which recognize
peptide-pulsed target cells and HLA-A2.1+ NY-ESO-1+
tumor cells, suggesting that this peptide may be clinically
valuable for the treatment of patients with NY-ESO-1+ tu-
mors. The NY-ESO-1 119–143 peptide that can be pre-
sented in the context of multiple HLA-DR alleles is also
capable of inducing specific CD4+ T cells in vitro from
peripheral blood lymphocytes of normal donors and pa-
tients with melanoma who express these HLA-DR alleles.
Furthermore, peptide 157–170 contains an HLA-DP4-re-
stricted helper T cell epitope as well as an HLA-A2-re-
stricted cytotoxic epitope recognized by CD4+ and CD8+
T-cell clones that could be efficiently generated from the
peripheral blood of multiple melanoma patients [13].
Dual-specific peptides containing both cytotoxic T cell
and helper T cell epitopes may represent an attractive
strategy of NY-ESO-1 vaccine design. These observations
emphasize the importance of analyzing the fine speci-
ficity of vaccine-induced T cell responses in patients as a
basis for constructing effective cancer vaccines.
Although renal carcinoma and malignant mesotheliomas
cells do not express NY-ESO-1, DNA hypomethylating
agent 5-aza-2¢-deoxycytidine (DAC) induces persistent de
novo expression of several CTAs, including NY-ESO-1,
suggesting that systemic administration DAC may repre-
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sent a promising strategy to enhance the constitutively
poor immunogenic potential cancer cells [14]. Further-
more, the histone deacetylase inhibitor depsipeptide
FR901228 (DP) has been shown to enhance NY-ESO-1
induction mediated by DAC in cell lines established pri-
marily from thoracic cancers. After sequential DAC-DP
treatment, HLA-A*0201 cancer cells were not only rec-
ognized by an HLA-A*0201 CTL specific for NY-ESO-
1 but also induced to apoptosis through as yet undefined
mechanisms. Thus, sequential DAC-DP treatment may be
a novel strategy to augment antitumor immunity in cancer
patients. 

Criteria that may govern the selection of TAAs 
for tumor immunotherapy
In summary, novel cancer vaccine TAAs should have fol-
lowing characteristics: 
– they should have high immunogenicity
– they should preferably be non-self, to avoid the prob-

lems of tolerance and autoimmune destruction of nor-
mal tissues

– they should not be presented efficiently by vital non-
cancer cells: e.g. hepatitis C viral antigen might not be
the best candidate, as nontransformed hepatocytes ex-
press these antigens and could become the target of ef-
fective CTL

– they should be presented by as many types of tumors or
as many individual tumors of a selected type as possi-
ble to offer broad application

– they should include both MHC class I and class II epi-
topes

– they should contain multiple TAAs to broaden the pop-
ulation coverage and to prevent immune escape of 
tumor variants

– they should preferentially correspond to proteins in-
volved in tumor transformation, to prevent immune
counterselection

– they should be homogeneously expressed in a given 
tumor.

Adjuvants

The term ‘adjuvant’ is derived from the Latin ‘adjuvare’,
which means to help. If adjuvants have been closely linked
to the succesful history of antiinfectious vaccines, they
will certainly also be a key component of efficient pre-
ventive or curative antigen-specific antitumor therapies.
Adjuvants can help vaccines in a quantitative way, that is
by enhancing the overall response to a given amount of
antigen, but also have a qualitative impact on the immune
response. From this point of view, there are probably dif-
ferent requirements for the adjuvants designed for antiin-
fectious versus anticancer vaccines. The type of immune

system sought in cancer is preferentially a strong MHC
class I-restricted, Th1-type response, while protection
against extracellular pathogens is usually better in case of
a Th2 response.
When considering antiinfectious vaccines, there is a shift
towards the use of synthetic, molecularly defined – and
therefore safer – antigen moieties that makes the use of
adjuvants even more necessary. Yet, the molecular basis of
the biological properties of many adjuvants was still un-
known, and strong adjuvants such as complete Freund’s
adjuvant (CFA) often caused undesirable side effects. On
the other hand, second-generation approved adjuvants
such as the water-in-oil emulsion Montanide, currently
used in cancer vaccine trials [15], may have a much lower
risk of secondary effects but also decreased immuno-
genicity. We shall see that some of the adjuvant signals are
starting to be deciphered and that the modern design of
vaccines will probably combine the right set of molecu-
larly defined antigens together with molecularly and bio-
logically customized adjuvants.
While large-scale cancer vaccines will probably fit into
this definition, there is currently a great enthusiasm in us-
ing DCs as a cellular therapy for cancer. This strategy re-
lies upon the capacity of DCs to capture and present ex-
ogenous antigens in both the MHC class I or MHC class
II pathways to naive T cells, but also upon their key role
in shaping the immune response [16]. Indeed, dendritic
cells have been called ‘nature’s adjuvant’, and this prop-
erty is probably related to the fact that DCs are equipped
to sense proinflammatory signals derived from pathogens,
which are similar to those of vaccine adjuvants [16, 17].
Thus, the numerous experimental models and now clini-
cal trials using DCs [18] represent an interesting oppor-
tunity to select adjuvants based on the intrinsic properties
of such or such DC vaccine. For example, there exist sev-
eral DC subsets in humans which are equipped with dif-
ferent sets of receptors for pathogen-derived molecular
signals [19]. Thus, the relative efficiency of different DC
subsets in cancer vaccines may guide the selection of an
adjuvant that would trigger a particular set of receptors ex-
pressed by one DC subset.
Therefore, as we will see in the following paragraphs, the
required properties for an efficient adjuvant for cancer
vaccines is tightly related to its impact on DC biology.
Moreover, the paradigm of vaccination with DCs suggests
that these different properties should be gathered into one
formulation in order to trigger an optimal immune re-
sponse.

Adjuvants which promote DC recruitment 
DCs form a network of sentinels throughout most tissues,
yet they are mostly abundant at the interface with the ex-
ternal milieu. For example, Langerhans-type cells colo-
nize the epithelium of the skin, lung and intestine, while
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dermal-type DCs are found in connective tissues [16].
Blood represents a critical barrier because it could allow
for the uncontrolled spreading of microbes through the
body. It contains different subsets of immature DCs and in
particular the plasmacytoid subset of DC precursor, which
is the only cell type able to produce large quantities of
type I interferon in response to certain viral infections
[19]. The other DCs are usually referred as myeloid DCs,
although it is increasingly obvious that they also represent
multiple functional subsets.
Immature DCs arise from blood precursors under the in-
fluence of several growth factors. The injection of such
factors could increase the number of DCs either through-
out the body or at the site of tumor antigen delivery. De-
pending upon the specificity of the growth factor, one sub-
set of DCs could be preferentially targeted. For example,
Fms-like tyrosine kinase receptor 3 ligand (Flt3-L) in-
duced an increase of all DC subsets in humans and mice,
including the plasmacytoid DCs [20, 21]. In contrast,
granulocyte-macrophage colony-stimulating factor (GM-
CSF) injection seemed to preferentially induce myeloid
DCs while granulocyte colony-stimulating factor (G-CSF)
induced preferentially plasmacytoid DCs [22]. Recombi-
nant GM-CSF has been used for quite a long time as an
adjuvant of cancer vaccines [23–25], although it is not
proven that this property was only related to the recruit-
ment of DCs. GM-CSF is also an adjuvant for viral-based
cancer vaccines [26], and formulations allowing for its
slow release are probably more efficient [27]. Flt3-L has
been used through a systemic injection to increase the
overall DC number, followed by HER-2/neu peptide vac-
cination [28] or followed by an ex vivo step of DC purifi-
cation and loading with an altered tumor antigen [29]. But
results are too preliminary to conclude the adjuvant po-
tency of Flt3-L. It will certainly be extremely relevant in
the future to define the potential role of the different DC
subsets in antitumor response in order to select the most
suitable DC growth factor [22].
Another strategy developed to recruit DCs at the site of
antigen delivery is to use chemokines, which are small
proteins controlling the navigation of leukocytes. While
chemokines represent a large family of over 30 proteins,
we and others have shown that subsets of DCs respond to
a restricted set of chemokines [30], suggesting that these
chemokines could be used to attract the desired subset. In-
deed, many known adjuvants are probably inducing a va-
riety of so-called inflammatory chemokines, which are
mainly those active on immature DCs. The use of a single
recombinant chemokine in vivo, however, may be insuf-
ficient, since it is possible that DCs require a multiple-step
process involving different chemokines in order to reach
tissues [31].
For both growth and recruiting factors for DCs, an at-
tractive strategy is to include them by gene transfer 
into the tumor cells used as vaccine. This approach is 

at the frontier of the vast domain of cancer gene therapy,
but must still be considered as vaccines since the antigenic
material is of exogenous origin, even though in some 
instances it derives from the patient himself. The best-
known example of such vaccines is modification of an 
allogeneic tumor vaccine with GM-CSF, which gave 
preliminary encouraging results in the clinic [32]. There
are also many reports that the introduction of a chemokine
gene into a tumor cell line induces strong DC recruit-
ment and antitumor immunity, but so far most of this 
work has been done looking at the transfer of modified
live tumor cells, therefore suggesting the use of
chemokines in gene therapy rather than as adjuvants 
for cancer vaccines [33].

Adjuvants which promote MHC class I delivery
As mentioned above, one main goal of cancer vaccines is
to promote the development of a strong MHC class I-
restricted CTL response. If special antigen-delivery 
vehicles, and in particular viral vectors, can efficiently
promote CTL (see next section), certain adjuvant formu-
lations seem to also favor CTL induction. In most cases,
their effect is to bypass or reduce the degradation of ex-
ogenously acquired proteins in lysosomal compartments.
Certain proteins such as listeriolysin from Listeria mono-
cytogenes can allow exogenous proteins to be delivered
into the cytosol by forming pores in the cell membrane
rather than by a receptor-based mechanism [34]. This
property is rather similar to that of several oil or lipid-
based formulations which contain detergents allowing for
direct cytosolic delivery, such as immunostimulating com-
plexes (ISCOMs), QS21 and AF [35]. These compounds,
however, have no specificity and therefore cannot direct
the antigen into an antigen-presenting cell (APC). Similar
targeting of exogenous antigens to the MHC class I path-
way might also be achieved with liposomes, which are 
initially internalized in the endosomal pathway but could
deliver their antigen load in the cytosol [36]. The use of 
liposomes could provide some selectivity since they 
are preferentially engulfed by macrophages, but their 
optimal composition for cancer vaccines is still being 
debated [35].
Intracellular trafficking of certain toxins may make them
useful in targeting proteins or peptides to the cytosol. The
B fragment of the Shiga toxin from Shigella Dysenteriae
could present human or mouse tumor-associated antigens
in the context of MHC class I molecules in vitro [37] and
induced CTL in vivo [35]. Similarly, the adenylate cyclase
toxin CyaA could deliver CTL epitopes directly into the
cytosol [38] and induce a protective antitumor response
when fused to the model tumor antigen ovalbumin [39].
The fact that the B fragment of Shiga toxin binds to the
glycolipid Gb3 [35] and that Bordetella CyaA binds to
CD11b [40], both molecules being highly expressed by

1302 T. Renno et al. Advances in cancer immunotherapy



DCs, might explain a good adjuvant effect through cell
specificity.
More recently, the outer membrane protein A from Klebe-
siella pneumoniae (kpOmpA) was also shown to be able
to deliver exogenous ovalbumin into the cytosolic MHC
class I pathway and subsequently induce antitumor im-
munity against ovalbumin-expressing tumors [41]. An in-
teresting feature of kpOmpA is that it binds to the toll-like
receptor 2 (TLR-2), providing a strong activation signal in
addition to its antigenic package to APCs, and especially
immature DCs [41]. It seems that CpG immunostimula-
tory sequences could have similar dual-adjuvant proper-
ties, since they are also able to facilitate the presentation
of exogenous protein via the MHC class I pathway [42]
and to activate cells expressing the TLR-9 receptor, in-
cluding DCs [43].

Aduvants which promote dendritic cell activation
and Th responses
In infectious diseases, traditional vaccines included in-
flammatory components, which are strong activators of
the immune response. For example, the whole-cell diph-
teria-tetanus-pertussis, typhoid and cholera vaccines all
contained lipopolysaccharide (LPS), and the BCG vaccine
took advantage of the immunostimulatory properties of
mycobacteriae [44]. One of the challenges of adjuvant de-
sign in the past decades was to break down microorgan-
isms and isolate their adjuvant component, while trying to
eliminate as much as possible undesirable side effects. For
example, the adjuvant-added effect of CFA versus IFA is
derived from mycobacterial cells, and it was discovered
that the cell-wall skeleton fraction of mycobacteria re-
tained the main immuological properties of CFA, with
some effects probably related to the muramyldipeptide
(MDP) and trehalose dimycolates [45]. Interestingly, al-
though microorganisms show an enormous diversity, their
components stimulating the immune system of mammals
seem to belong to a restricted family of conserved struc-
tures such as LPS for Gram-negative bacteria, peptido-
glycan (PGN), lipoteichoic acid (LTA) for Gram-negative
bacteria, lipoarabinomannan (LAM) for mycobacteria,
unmethylated CpG DNA and bacterial lipoproteins
[46, 47]. These structures are now acknowledged as
pathogen-associated molecular patterns (PAMPs) [47]. In
the last decade, the molecular nature of the interaction of
PAMPS with host cells was partly unveiled. In particular,
the family of the TLRs encompass 10 members which are
specialized in the recognition of PAMPs and trigger sev-
eral activation pathaways related to Myd-88 and/or mito-
gen-induced protein (MAP) kinases [46, 47]. In parallel,
the role of TLRs in the development of innate [47] but also
adaptive [17, 48] immunity is being unraveled. Interest-
ingly, it seems that DC interaction with PAMPs is a key
event in the intiation of both types of immune responses,

although it seems that TLRs preferentially drive a Th1-
type response [48]. Together with the understanding of the
function of particular subsets of DCs [19] and the distri-
bution of TLRs in those subsets [49], this recent advance
could lead to the development of more efficient, more spe-
cific and less toxic cancer vaccines. As an example, there
is now a vast literature on the use on CpG sequences as an
adjuvant of immune responses [50], in particular cancer,
and TLR9 was recently described as a receptor for CpG
sequences [43].
Beside PAMPs, endogenous signals can also trigger DC
activation and thus be applied, in theory, to adjuvant de-
sign. These signals mainly originate from dying or
stressed cells [51]. Interestingly, it seems that some of
these endogenous signals, namely heat-shock proteins
(HSPs), could also stimulate the immune system via the
TLR-4 [52]. HSPs have recently been shown to chaperone
antigenic peptides, including tumor-associated antigens,
as well as to promote the maturation of DCs [53]. Thus,
HSPs in recombinant form or purified from tumor extracts
could be a promising adjuvant for antitumor therapy.
If PAMPs or other types of danger signals seem to be a
prerequisite for an optimal adaptive immune response,
several other pathways will amplify or bias the immune
response, and those could be harnessed for designing an-
ticancer vaccines. Most strategies aim at stimulating a pro-
ductive cross-talk between T helper cells, CD8+ effector
T cells and antigen-presenting cells, namely DCs. The ad-
dition of an exogenous immunogenic protein such as key-
hole limpet hemocyanin has been known for a long time
to provide help for a response to otherwise poorly im-
munogenic tumor-associated antigens, and this approach
is being tested in the clinic [54–56]. Nowadays, the cog-
nate and soluble molecules involved in T cell help are also
being tested in experimental cancer vaccines, especially
members of the tumor necrosis factor (TNF) TNF-R fam-
ilies such as OX-40 [57] and CD40 [58], as well as the lig-
and for 41-BB, CD137 [59].

Antigen delivery

Protein antigens
To increase antitumor immune responses, tumor-derived
proteins can be fused with other proteins. For instance, 
a better response against cervical intraepithelial neo-
plasia was obtained using a fusion protein consisting 
of HPV L2, E6 and E7 in a protein-based vaccine than
with a vaccinia-based vaccine, as studied previously in a
phase I trial [60]. In vitro, the fusion protein obtained by
the association of a renal cell carcinoma antigen and GM-
CSF induced DC maturation, and CD4 and CD8 T cell 
response [61]. These results suggest that fusion proteins
could be used either directly or for DC transduction in
DC-based vaccines.
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Tumor-derived proteins can also be protected by chaper-
ones. Among these, HSPs are overexpressed in a wide va-
riety of cancer cells and virally transformed cells. It was
demonstrated that HSPs derived from tumor cells were ex-
cellent immunogens capable of inducing a robust host im-
mune response against the tumor [62, 63]. The success of
preclinical animal studies in which HSP-peptide com-
plexes directly purified from tumor were used led to clin-
ical phase I/II trials of tumor-derived HSP preparations
[64]. HSPs (particularly HSP 110) can also bind to and
stabilize large proteins. In preclinical studies in which re-
combinant HSP 110 was noncovalently associated with
the recombinant tumor protein antigen HER2/neu, the ac-
tivation of a robust immune response was observed [65].
Among proteins used in immunotherapy, immunoglobu-
lins have been used as tumor antigens or delivery systems.
In one study, B-cell lymphoma patients were immunized
with immunoglobulin expressed by their own tumors and
chemically coupled to the foreign carrier protein KLH and
emulsified in adjuvant [66]. Forty-nine percent of the
treated patients generated a specific immune response
against the idiotype of their tumor immunoglobulin (Ig).
Importantly, the extent of the immune response was cor-
related with a favorable clinical outcome. The main limi-
tation of this approach is the need to prepare tumor Ig pro-
tein for each patient. Antibody can also be used for the
delivery of immunogenic peptides to APCs such as DCs.
Recently, Lunde and colleagues described the construc-
tion of recombinant, APC-specific antibodies that have
antigenic peptides integrated into their constant regions.
They demonstrated that when these recombinant antibod-
ies were internalized and degraded by APC, the T cell epi-
topes were efficiently loaded onto MHC molecules and
presented to T cells [67, 68]. The targeting of MHC class
I-restricted epitopes to APC via APC-specific antibodies
could be a promising approach to elicit specific T cell re-
sponses.

DNA vaccines
Naked DNA with its simplicity, stability and inexpen-
siveness is another vaccination strategy being explored for
immunotherapy. In addition, plasmid DNA is easily mod-
ifiable, and many genes or combinations of genes or DNA
encoding epitopes can be engineered ([69] for review).
Vaccination with DNA leads to uptake into cells including
APC and sustains expression of the antigen. In a phase
I//II trial, half of the prostate cancer patients administrated
with DNA encoding PMSA antigen and the costimulatory
molecule CD86 developed delayed-type hypersensibility
to PMSA. Boosting with a replication deficient viral vec-
tor encoding PMSA induced immunity in all of the pa-
tients [70].
An elegant DNA-based approach consisting of recombi-
nant chimeras composed of ligands of APC cell surface

molecules fused to TAA sequences has been recently in-
vestigated. For instance, a chimeric recombinant construct
encoding a MAGE-3/IgG Fc fusion protein mediated ef-
ficient presentation by MHC class I and class II [71, 72].
In other studies, the inclusion of HSP70, CTLA-4 or
FLT3-L into constructs expressing TAA sequences led to
a considerably better presentation than immunization with
TAA sequences alone [73–76]. 
In addition, considerable efforts have been devoted to 
developing formulations that would protect DNA and 
improve cellular uptake. The main destination of lipo-
some-encapsulated macromolecules is intralysosomal
degradation. In this context, one approach to enhance cy-
tosolic delivery through escape from endosomes is the use
of reconstituted envelopes of influenza virus (virosomes),
Sendai virus (fusogenic liposomes) or hemagglutinating
virus of Japan (HVJ liposome). The acidic environment
within endosomes triggers fusion of the viral envelope
with the endosomal membrane, resulting in release of
plasmid into the cytosol of the host cell. Preclinical stud-
ies performed with a plasmid encoding the parathyroid
hormone-related peptide, a protein secreted by prostate
and carcinoma cells [77], or a melanoma-associated anti-
gen [78], demonstrated the induction of specific immune
responses.

Cell-based vaccines
As discussed above, the role of DCs as potent professional
APC able to prime T cell responses in vivo provides a ra-
tionale for using DC for human immunotherapy. In DC-
based vaccine design, the most common approach in-
volves loading MHC class I molecules with exogenous
peptides. Early clinical evaluation of peptide-loaded DCs
was performed in melanoma patients and revealed that
such vaccines were safe and that they induced durable re-
missions in patients with metastatic melanoma [79–82].
Promising results have also been reported in patients with
other tumors such as colorectal and lung carcinoma [83],
hormone refractory prostate cancer [84], breast and ovar-
ian cancer [85], and malignant glioblastoma [86]. Alter-
natively, the use of full-length native or recombinant pro-
tein as antigen allows the induction of responses against
different epitopes restricted by several MHC alleles. An
example of successful vaccination is the use of DCs
loaded with idiotype Ig derived from patients with follic-
ular lymphoma and multiple myeloma [87, 88].
Another strategy which does not require the knowledge of
the patient MHC and antigenic epitopes involves gene de-
livery to DCs by transduction with recombinant viruses or
transfection with DNA or RNA encoding tumor antigen
[83, 89–91]. In the same context, DCs loading with tumor
lysates have been developed [92–94]. Tumor antigens
may also be delivered to DCs by fusing DCs and tumor
cells. This approach has been tested and yielded signifi-
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cant clinical responses in patients with renal carcinoma
[95].
However, as in peptide-based vaccines, data are compli-
cated by reports indicating that immature DCs can induce
tolerance to antigen. Injection of peptide-pulsed immature
DCs but not mature DCs into healthy individuals can re-
sult in antigen-specific inhibition of effector T cell func-
tions in vivo [96]. Therefore, caution should be exercised
when using DC in antitumor vaccination.

Immune evasion 

Despite these considerable advances, it is becoming in-
creasingly clear that negative signals exist that are delete-
rious to the generation of an effective antitumor immune
response. It is largely accepted that many such signals are
the products of the tumor environment. 
It was reported early on that T cells from tumor-bearing
individuals are deficient in one or more aspects of their ef-
fector function. For instance, it was demontrated that tu-
mor-infiltrating lymphocytes (TILs) from patients with
solid tumors had lower proliferation frequencies and cy-
totoxicity than peripheral blood mononuclear cells
(PBMCs) from the same subjects, and that incubation of
PBMCs from normal individuals with tumor cells or tu-
mor supernatants significantly reduced their proliferation
and cytotoxicity ([70, 97, 98]; and reviewed in [99] and
[100]). One frequently observed defect in T cells from
cancer patients is the downregulation of the z chain of the
TCR [101–103]. TCR z is a key signaling molecule in-
volved in T cell activation. Interestingly, a correlation was
established between the absence of z or its low level of ex-
pression and poor prognosis in patients with oral carci-
noma [104] and squamous cell carcinoma of the head and
neck [105]. 
It has been postulated that soluble factors secreted by tu-
mor cells are largely responsible for impaired TIL func-
tion. One such factor that has been extensively studied is
transforming growth factor-b (TGF-b). TGF-b exerts a
wide range of effects on immune cells, including sup-
pression of TCR- and interleukin (IL)-2-mediated T cell
proliferation [106–108], of natural killer (NK) and lym-
phokine-activated killer activity [109], and of  T cell cyto-
toxicity [110], the latter being probably due in part to a de-
crease in expression of perforin by CD8+ T cells [110].
More recently, it has been suggested that in presence of
TGFb, DCs polarize T cell responses toward a T helper
(TH)-2 phenotype [111]. In the context of human cancer,
a correlation was found between serum TGF-b levels and
tumor progression and resistance to immunotherapy
[112, 113]. While lacking in humans, a causal relationship
between local TGF-b expression and tumor immune eva-
sion was clearly established in rodent tumor models. For
instance, highly immunogenic tumor cells that were made

to express TGF-b usually evaded immunosurveillance,
while interference with TGF-b expression in the tumor
micoenvironment often led to eradication of the tumor
[114]. IL-10 is another immunoregulatory cytokine that
has been suggested to be implicated in the modulation of
tumor-specific immune responses. IL-10 is a so-called Th-
2-promoting cytokine in that it downregulates Th-1-type
cytokines such and IFN-g and TNF-a, and promotes the
production of IL-3, IL-4, IL-6 and IL-10 by T cells [115].
Since IL-10 has been found to be produced both by tumor
cells and TIL [116], and since antitumor immune re-
sponses have traditionally been associated with a delayed-
type hypersensitivity (DTH)-type Th1 response, this has
been taken as an indication that IL-10 may be implicated
in the establishment of an immunosuppressive tumor mi-
lieu. However, testing of this hypothesis by providing or
inhibiting IL-10 locally in tumor animal models has
yeilded varying results ranging from tumor rejection to tu-
mor growth enhancement [115], further illustrating the
pleiotropic nature of this cytokine. 
The detection of functional Fas ligand (CD95L) on the
surface of some tumors has led to the so-called Fas coun-
terattack hypothesis, whereby tumor-expressed FasL
would interact with Fas on the surface of activated CTL,
killing the latter and therefore evading a deleterious (from
the tumor’s point of view) immune response [117–120].
Although initially attractive, this hypothesis is now being
seriously challenged [121, 122]. Not only were some
groups unable to detect FasL on the surface of many tu-
mors, but transfection of tumor cells with FasL rendered
them more susceptible to rejection in vivo [123–125].
Similar observations were made in transplantation,
whereby FasL-expressing islet b cells, myoblasts and
other cells were more rapidly rejected than their FasL–

counterparts [126–129]. Some insight into this apparent
paradox could be gained from a recent study in mice us-
ing elegant genetic polymorphism analysis and adoptive
transfer [130]. In this study, Kurooka and colleagues show
that although some tumor cell lines do not express FasL,
in vivo tumors formed by these same cells are FasL+. In-
terestingly, The FasL detected in these tumors does not
come from donor tumor cells but is of host origin, appar-
ently from tumor-infiltrating macrophages. However, the
relevance of this FasL expression is unclear, since tumor
growth into mouse strains that are genetically deficient in
Fas or FasL does not differ from that in wild-type mice. It
is safe to say at this point that the issue of the contribution
of the Fas system to antitumor immunity remains contro-
versial.
Supposing they overcome all of the above obstacles, tu-
mor-specific T cells often face yet another hurdle,
namely their inability to find their specific ligand on tu-
mor cells due to loss of antigen or MHC class I expression
by a variety of tumors. Downregulation of MHC class I
occurs frequently in human tumors, particularly in
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metastatic lesions [131–134]. The observation that resid-
ual cells following immunotherapy express reduced levels
of MHC class I argues for the idea that MHC class I
downregulation is a contributing factor to immune evasion
[135]. Antigen downregulation has also been shown to
modulate CTL recognition of melanoma cells [136–140].
Antigen and/or MHC class I loss or reduction can be the
result of a number of events. Tumor cells may mutate pep-
tide antigens that associate with MHC class I [141–143].
They may develop defects in components of the antigen-
processing machinery such as the proteasome subunits
LMP2 and LMP7 [144]; downregulate [145–147] or mu-
tate [148] the TAP transporter; or lose the expression of
b2-microglobulin [149–151]. It was shown that some of
these effects may be mediated by oncogenes such as RAS
or MYC [152]. Theoretically, loss of MHC class I should
make tumor cells susceptible to NK killing. There is re-
cent evidence that many tumors express the NK-inhibitory
molecule HLA-G [153–155], suggesting that these tu-
mors can evade NK killing. However, this conclusion is
contested by a number of groups who have failed to detect
HLA-G on the surface of tumor cells [156–158].

Summary

As is apparent from the above, cancer immunotherapy car-
ries great promise, but also poses a number of important
challenges. Although clinical trials with the current gen-
eration of cancer vaccines have so far yielded some-
what disappointing results, the increasingly large body of
knowledge being generated in the field of tumor im-
munology will certainly bring us closer to developing the
ideal cancer vaccine, one which will incorporate the best
combination of tumor antigen, adjuvant and delivery 
vector.
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