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Abstract. Epithelial cells which line mucosal surfaces
(e.g. lung, intestine) play a central role in the coordina-
tion of the inflammatory response. In both the healthy
and diseased mucosa, epithelia lie anatomically posi-
tioned in close proximity to a number of other cell types,
including leukocytes, fibroblasts, smooth muscle cells
and vascular endothelia. This complex architecture sup-
ports a unique microenvironment for biochemical cell-
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cell crosstalk. Our previous studies and work by others
have elucidated lipid mediator signaling networks ema-
nating from epithelial cell-cell interactive pathways, and
have defined a number of targets for development of ef-
fective therapeutics. This short review will focus on re-
cently defined pathways of lipid mediator function in the
mucosa, particularly with regard to the role of the epithe-
lium.
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Introduction

Epithelial cells of the mucosa are a dynamic cell popula-
tion which serve critical and diverse functions. This
monolayer of cells provides regulated barrier function
and serves as a conduit for vectorial ion movement, the
transport event responsible for mucosal hydration [1]. By
secreting solutes and actively transporting fluid across
the epithelium, epithelia are able to coordinate composi-
tional changes of the luminal compartment. A number of
paracrine mediators, including bioactive lipids, hor-
mones, neurotransmitters and cytokines have been shown
to directly regulate epithelial responses [2].
In intact mucosal tissues, epithelia lie anatomically posi-
tioned adjacent to a number of subepithelial cell types, in-
cluding leukocytes, fibroblasts, smooth muscle cells and
vascular endothelia. These subepithelial cell populations
contribute significantly to epithelial function through
paracrine crosstalk pathways. Locally generated media-
tors bind to epithelial surface receptors, and mediate both
physiologic and pathophysiologic functional responses.
Important in this regard, both epithelial and subepithelial
cell populations express enzymes (e.g. lipoxygenases,
cyclooxygenases) capable of utilizing arachidonic acid
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substrates to generate bioactive lipid mediators. Such
lipid mediators can signal via autocrine or paracrine path-
ways (see recent review by Eberhart and Dubois) [3] and,
depending on the tissue microenvironment, can convey a
pro- or anti-inflammatory message. This review will
highlight recent studies defining cellular responses medi-
ated by lipids derived from epithelial interactions with
subepithelial populations.

Epithelial-leukocyte interactions

Basic aspects
Neutrophils (polymorphonuclear leukocytes, PMN) have
a demonstrated role in mucosal inflammation. At mu-
cosal surfaces, PMN migration into the epithelium  is a
first line of defense against infectious agents, and defects
in such PMN-epithelial interactions contribute to fulmi-
nate microbial infections, mucosal ulcerations and de-
layed tissue healing [4, 5]. The protective aspects of PMN
in mucosal disease are objectively exemplified by the
clinical observation that patients with primary defects in
PMN function support ongoing mucosal infections, in-
cluding neutropenic patients and patients afflicted with
genetic PMN immunopathologies [e.g. leukocyte adhe-
sion deficiency (LAD), Chediak-Higashi syndrome,
myeloperoxidase deficiency, and so on] [6–8]. As a
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corollary,  extensive functional defects in PMN have been
observed in these patients with chronic mucosal inflam-
mation.
PMN migration across epithelia is a result of an orches-
trated series of events, ultimately resulting in PMN accu-
mulation at sites of tissue injury. The recruitment signals,
the cell-cell interaction steps and the regulatory pathways
for these events have only recently been explored. It is
now appreciated that adhesion-based interactions, involv-
ing specific cell adhesion epitopes, are the primary means
by which PMNs interact with epithelial cells [4, 9]. For ex-
ample, recent studies have shown that PMN b2 integrins
are required for PMNs to move across oral epithelia, kid-
ney epithelia [10] and intestinal epithelia [11–13]. These
integrins, like others, are heterodimeric glycoproteins
which exist in four forms on the PMN. Each displays a
unique a subunit (CD11a, b, c or d) and an identical b sub-
unit (CD18) [14, 15]. These receptors are best demon-
strated in the genetic disorder LAD, in which patients lack
normal expression of the CD 18 b subunit and, as a result,
show increased susceptibility to infection due to abnormal
leukocyte function [14]. These patients manifest severe
mucosal disease, characterized primarily by severe bacte-
rial infections. PMNs from LAD patients fail to migrate
across intestinal epithelial monolayers [11–13], indicat-
ing the dependence of this event on PMN expression of
CD11/18 integrins. At several levels, studies have re-
vealed that PMN-epithelial interactions are dependent on
CD11b/18, but not CD11a or CD11c/18 [4]. At the present
time, the epithelial ligand for CD11b/18 has not been
identified.  Studies directed at defining specific PMN-ep-
ithelial interactive events have unveiled a functionally in-
hibitory monoclonal antibody (mAb) which blocks PMN
transmigration, but not PMN adhesion, to epithelia
[16–18]. Subsequent experiments revealed that the anti-
gen recognized by this mAb (C5/D5) represents a mem-
brane glycoprotein of ~60 kDa and is expressed in a po-
larized fashion (basolateral). Isolation, purification and
microsequencing identified this antigen as CD47 (also
termed integrin-associated protein), a previously cloned
protein with homology to the immunoglobulin supergene
family [19]. Similarly, others have demonstrated that
CD47 is important in PMN transendothelial migration
[20], suggesting some degree of universality for CD47 in
leukocyte-mediated interactions.

Regulation of epithelial-PMN interactions
by lipoxins
Leukocyte-epithelial interactive pathways are signifi-
cantly influenced by locally generated lipid mediators. Of
particular interest are a group of lipid mediators termed
the lipoxins [21]. Lipoxins are tetraene eicosanoids de-
rived from membrane arachidonic acid through the com-
bined action of 5-lipoxygenase (LO) and 12-LO or 15-

LO [22] (see fig. 1). A number of recent in vitro and in
vivo studies have revealed that lipoxins, and specifically
lipoxin A4 (LXA4), function as an innate ‘stop signals’,
acting to control local inflammatory processes [23–26].
At nanomolar concentrations, LXA4 has been demon-
strated to inhibit PMN transmigration across confluent
epithelia and endothelia [24, 25]. It is likely that the ac-
tion(s) of LXA4 are on leukocytes and involve the activa-
tion of protein kinase C, since original studies revealed
that LXA4 inhibition required PMN preexposureand such
responses were sensitive to the protein kinase C inhibitor
staurosporine [24]. Additional mechanistic studies have
revealed that LXA4 inhibit PMN b2 integrin (CD11/18)
expression [27]. Importantly, compared with LXA4 (hy-
droxyl groups at carbon positions 5S, 6R and 15S), the
positional isomer LXB4 (hydroxyls at carbon positions
5S, 14R and 15S) is not active in PMN transepithelial mi-
gration [24], but potently inhibits PMN transendothelial
migration and potentiates monocyte adhesion to endothe-
lia [28]. Such studies define an important structure-func-
tion relationship with these eicosanoids and highlight the
significant differences between endothelial and epithelial
cells and within leukocyte subpopulations.
Lipoxins are rapidly (within minutes) converted to inac-
tive compounds by myeloid cells [29]. For this reason,
stable lipoxin analogs have be synthesized and biochem-
ically and functionally studied in detail [25] (see fig. 1).
Strategies to alter in the native LXA4 molecule have pri-
marily utilized substitutions (methoxy, cyclohexyl or
phenoxy groups) at the carbon 15 and/or carbon 20 posi-
tions. As a general finding, synthetic lipoxin analogs ex-
hibit greater potency for these counter-regulatory actions
than the native compound, likely due to decreased me-
tabolism to inactive compounds [25, 28]. A particularly
potent  LXA4 analog is 15 (R/S)-methyl-LXA4. This syn-
thetic molecule resembles that of 15-epi-LXA4, a native
lipoxin generated in vivo in the presence of aspirin [23],
which may contribute in part to the antiinflammatory ac-
tions of aspirin. 15 (R/S)-methyl-LXA4 inhibits PMN
transmigration across epithelia and effectively blocks
PMN adhesion to vascular endothelia at concentrations
as low as 10 pM [25]. Structure-function analyses have
revealed that 16-phenoxy-LXA4 and 15-cyclohexyl-
LXA4 (see fig. 1) are also potent inhibitors of PMN
transendothelial and transepithelial migration [EC50’s
(effective concentration for 50% response) 1–5 nM]
[25]. The 15-deoxy-LXA4 compound, lacking a position
15 hydroxyl (see fig. 1), is not metabolized by leuko-
cytes and carries no bioactivity [25]. In vivo, both the
native compound and analogs to LXA4 have been
demonstrated to block PMN diapedesis within the mi-
crocirculation of the hamster cheek pouch [30], depress
contraction of the guinea pig ileum [31] and inhibit in-
creases in vascular permeability elicited by acute in-
flammation [32].
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Role of chemokines in PMN-epithelial interactions
During both acute and chronic inflammatory processes,
mucosal epithelial cells orchestrate the active recruitment
of leukocytes, particularly PMN. Epithelia are demon-
strated sources of PMN chemotactic cytokines (chemo-
kines), including interleukin-8 (IL-8), GRO-a, GRO-g
and ENA-78 [17, 33, 34]. Epithelia produce and release
chemokines in response to multiple activation stimuli, in-
cluding cytokines [35, 36], infectious agents [34, 37, 38]
and cellular hypoxia [17]. Detailed studies have revealed
that chemokine release occurs predominantly through the
physiologically relevant basolateral surface [17, 39].
Such polarized chemokine targeting ‘imprints’ the ep-
ithelial matrix [39] and selectively recruits PMN to the
basolateral epithelial surface [17, 39]. Indeed, selective
inhibition of hypoxia-induced IL-8 using antisense
oligonucleotides specifically inhibits PMN migration
into, but not across, the epithelium [17]. Levels of these
chemokines positively correlate with mucosal disease
status [40], and for this reason much recent attention 
has been paid to defining strategies of ‘dampening’
chemokine generation at mucosal sites. Lipoxins have

been studied in this regard. Previous studies have demon-
strated that quiescent epithelia lack a functional LXA4 re-
ceptor (e.g. with regard to ion transport and barrier func-
tional responses) [24]. However, recently it was shown
that lipoxins [and the stable lipoxin analog 15 (R/S)-
methyl-LXA4] act directly on epithelia to inhibit cy-
tokine-induced release of IL-8 [41]. Expression of a func-
tional LXA4 receptor on epithelia required preexposure
to cytokines such as interferon-g and IL-13 [41], of which
epithelia express well-characterized receptors. Such find-
ings reveal important counter-regulatory roles for LO-de-
rived lipid mediators in the mucosa.
While LO-derived lipid mediators serve as downregula-
tory signals for epithelial chemokine release, it appears
that cyclooxygenase-derived prostaglandins may en-
hance chemokine release. For example, PGE2 induces
colonic epithelial IL-8 release through a posttranscrip-
tional mechanism involving elevated cyclic AMP
(cAMP) (similar responses were observed with other
cAMP agonists) [42]. Induction of IL-8 by PGE2 paral-
leled increased messenger RNA (mRNA) stability, and
this effect mapped to a cis-acting PGE2 responsive ele-

Figure 1. Model of lipoxin targets during active mucosal inflammation. The structure of native lipoxin A4 (LXA4) and stable analogs de-
rived from the parent compound [25] are shown in the left panel. The 15-deoxy-LXA4 compound (bottom structure) is not active. The right
panel depicts defined targets for LXA4 or stable analogs to LXA4, and include (i) inhibition of PMN-endothelial adhesion and transmigra-
tion [25, 73]; (ii) chemokine release from epithelia [26, 41] and (iii) PMN transepithelial migration [24, 25].
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ment in the 3¢ untranslated region of the IL-8 gene [42].
We have similarly demonstrated a cAMP-dependent in-
duction of IL-8 by hypoxia [43, 44]. Whether such re-
sponses are similarly regulated by lipid mediators are not
known at the present time.

Epithelial-parenchymal cell interactions

In the healthy mucosa, subepithelial cell populations con-
sist of parenchymal and stromal cells intercalated to pro-
vide a structural matrix to the tissue. These cell popula-
tions are also active in liberation of potent bioactive sub-
stances, including lipid mediators. To this end, some
studies have suggested that prostaglandin synthesis in the
intestine is derived almost exclusively from these subep-
ithelial populations [45]. Prostaglandins are derived from
free arachidonic acid through the cyclooxygenases
(COX-1 and COX-2), enzymes which bear both cy-
clooxygenase and peroxidase activity [46]. The role of
cyclooxygenase-derived lipid mediators has been widely
studied in mucosal tissue, given their clinical relevance to
nonsteroidal antiinflammatory therapy [3]. In particular,
epithelial cells bear surface receptors for a number of

prostaglandins [47]. These receptors are G-protein-cou-
pled, seven-transmembrane-spanning proteins linked to a
number of different signaling pathways [48]. The com-
plexity of the intestine and other mucosal tissues compli-
cates identification of individual cell types responsible
for such prostaglandin synthesis. Thus, cells grown as 
cocultures incorporating two distinct cell types have 
been an effective strategy to define the generation of 
prostaglandins and elucidate signaling pathways. For in-
stance, studies utilizing intestinal epithelial-fibroblast 
cocultures have revealed that fibroblast-derived pros-
tanoids, especially PGE2, promote agonist-stimulated 
epithelial Cl– secretion [49], the ion transport event re-
sponsible for mucosal hydration [2]. Such enhanced re-
sponses to prosecretory agonists were effectively blocked
with COX inhibitors. Further studies using cocultures of
epithelia with intestinal myofibroblasts revealed that such
responses were specific for Ca2+ agonists, paralleled
COX-2 activation and were fully explained by myofi-
broblast generation of PGE2 [50]. These results define a
paracrine function for the intestinal fibroblastic sheath
and identify this subepithelial layer as an immunophysio-
logic regulator of the inflammatory response.

Figure 2. Model of  vascular endothelial-mucosal epithelial biochemical crosstalk during inflammation [54]. Proinflammatory conditions
which induce endothelial COX-2 (e.g. cytokines, endotoxin, hypoxia) activate liberation of prostacyclin (PGI2). Prostacyclin is unstable
and rapidly hydrolyzes to 6-keto-PGF1a . Epithelia bear basolaterally localized receptors for 6-keto-PGF1a , the ligation of which activates
Ca2+-dependent electrogenic chloride secretion (see inset), the transport event responsible for mucosal hydration.



Pathophysiology of epithelial cell-cell interactions:
Role of COX-2 activation

Under pathological conditions, the influx of inflamma-
tory cells and the liberation of soluble factors can trans-
form mucosal tissue into a phenotypically distinct entity.
Similarly, such a phenotype switch can occur at the cel-
lular level. For several reasons, such phenotypic trans-
formations are predominated by activation of COX-2,
and pathophysiology parallels COX-2 activation. First,
epithelial cells themselves express COX-2 and liberate
lipids which mediate activation of autocrine and pa-
racrine pathaways. Such COX-2 expression in epithelia
is driven by preexposure to proinflammatory agonists
such as transforming growth factor-a in the rat [62] and
tumor necrosis factor-a/IL-1 in human epithelia [41].
Specific overexpression of COX-2 in epithelia results in
alterations in apoptosis, adhesion and adaptive responses
[62–65]. Second, alterations in COX-2 expression man-
ifest at the level of the epithelium. COX-2 null animals
[66] have revealed a phenotype of severe renal epithelial
defects [66], and a number of epithelial-related abnor-
malities in female reproduction [67]. Third, as alluded to
above (see fig. 2), the COX-2 gene can be regulated by a
number of pathways relevant to mucosal disease. The
COX-2 promoter is well characterized and bears consen-
sus motifs for nuclear factor kappa B (NF-kB), cAMP
response element binding protein (CREB),  nuclear fac-
tor of IL-6 (NF-IL-6), PEA-3, substance P and TPA [68].
Moreover, generalized cellular hypoxia is a potent acti-
vator of COX-2 [54, 69], and the cytokines IL-4 and 
IL-13, of which epithelia express functional receptors
[70, 71], have been shown to downregulate COX-2 [72].
Thus, given the complex nature of tissues lined by ep-
ithelia and the multiple inflammatory targets within the
subepithelium, activation of existing pathways rapidly
and efficiently regulates COX-2 expression in one or
more compartments. Ongoing studies to more clearly de-
lineate the role of lipid mediators in mucosal healthy and
disease will define future directions toward targeted
therapeutics. 
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Epithelial-vascular endothelial interactions

The vascular endothelium functions as more than a pas-
sive conduit for blood components, and synthesizes
many compounds which precisely regulate blood vessel
tone, vascular composition and leukocyte movement
[51–53]. Endothelial cells themselves respond to a vari-
ety of pro-inflammatory stimuli, including cytokines,
endotoxin and hypoxia and in turn release inflammatory
mediators such as cytokines and lipid mediators (see fig.
2 model) [52]. The vital role of the endothelium in coor-
dinating inflammation and the proximity of the vascula-
ture to the epithelium provides a potential paracrine
crosstalk pathway between these two cell types. In co-
culture experiments, it was demonstrated that activated
endothelia (exposed to endotoxin, cytokines or hypoxia)
liberate a small (< 500 Da), stable factor which activates
epithelial electrogenic Cl– secretion and concomitant
fluid transport (see fig. 2) [54]. Further experiments
identified this secretagogue as 6-keto-PGF1a, a stable
hydrolysis product of prostacyclin (PGI2). Results 
obtained with synthetic prostanoids indicate that 6-keto-
PGF1a, but not 2,3-dinor-6-keto-PGF1a, activates a baso-
laterally polarized, Ca2+-coupled epithelial receptor (see
fig. 2). While not well characterized, several lines of 
evidence indicate that 6-keto-PGF1a activates a PGI2

receptor (likely the IP receptor), a recently cloned seven
transmembrane-spanning protein [55, 56]. First, epithe-
lial preexposure to the prostacyclin analog carbaprosta-
cyclin resulted in receptor desensitization to subsequent
activation by 6-keto-PGF1a. Second, while iloprost has
also been demonstrated to activate the PGE2 receptor
(specifically the EP1 receptor) [57], PGE2 did not desen-
sitize subsequent activation by 6-keto-PGF1a (see ‘Re-
sults’). Of note, it is possible that epithelial PGI2 (IP) and
PGE (EP1) receptors share a common signaling pathway
since, for example, oocytes expressing EP1 receptors dis-
play a Ca2+-mediated Cl– current, similar to our findings
here [58, 59].  Third, while most evidence indicates that
the PGI2 receptor signals through cAMP [57], the cloned
mouse PGI2 receptor [58] as well as the rabbit cortical
collecting duct [60] also signal through intracellular
phosphatidyl inositol hydrolysis and elevations in intra-
cellular Ca2+. In addition, prostaglandin responses of
porcine intestinal epithelia implicated a role for in-
creased intracellular Ca2+ [61]. Thus, these findings of an
intestinal epithelial PGI2 receptor signaling through ele-
vation in intracellular Ca2+ are not unprecedented in the
literature. Taken together, these results reveal a novel ac-
tion for the prostacyclin hydrolysis product 6-keto-
PGF1a and provide a potential endothelial-epithelial
crosstalk pathway in intestinal  tissue.  
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