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Abstract Evidence from ultraslow spreading mid-ocean
ridges and both fossil and present-day Ocean—Continent
Transitions (OCT) demonstrates that mantle serpentiniza-
tion resulting from the interaction of mantle rock and water
during tectonic exhumation is widespread. Observations at
white smokers in modern ocean settings suggest that
methane produced by serpentinization can support methan-
otrophic bio-systems, which use methane as the only source
of carbon. An important question is whether such bio-sys-
tems are more generally pervasive in their association with
serpentinized mantle in the subsurface. In this study, we
examined whether there is evidence for such a methan-
otrophic system in exhumed serpentinized mantle at a
magma-poor rifted continental margin, by probing for
characteristic biological markers in these and associated
sedimentary rocks in the Totalp unit of SE Switzerland. This
unit represents a remnant of the former OCT of the southern
Alpine Tethyan margin and was chosen because of its mild
Alpine tectonic and low-grade metamorphic overprint dur-
ing Alpine orogeny, hence giving potential for the preser-
vation of indigenous organic matter (OM). Totalp samples
are characterized by low organic carbon contents of
11-647 ppm. The majority of the samples contain hydro-
carbons in the form of n-alkanes in the range C;7,—Cs¢. Some
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sediments contain isoprenoids, for example pristane and
phytane and a suite of steranes that are consistent with a
marine origin for the OM preserved in the rocks. Traces of
marine planktonic and bacterial OM are preserved in the
serpentinized mantle and overlying sediments of this ancient
Tethyan OCT, but there is no evidence that the OM has been
generated from methanotrophic bio-systems.
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1 Introduction

Serpentinization is an important metamorphic exothermic
hydration process potentially contributing chemical energy
for anaerobic life, as well as thermal energy at oceanic
hydrothermal vents (e.g. Shock et al. 2002; Jamtveit and
Hammer 2012). Serpentinization converts olivine and
pyroxene to serpentine, other Fe-Mg minerals (magnetite,
brucite, talc) and free molecular hydrogen (Eq. 1). The Mg
component of olivine may hydrate as follows:

2Mg,Si04 + 3H,0 — Mg;Si,05(OH),+ Mg(OH),
(1)

The Fe component of olivine contributes to forming
serpentine by an analogous reaction and/or by reducing
water

6Fe,Si04 + 7TH,O — 3Fe3Si,05 (OH)4+FC3O4 + H, (2)

It has been proposed (e.g. McCollom 2013) that molecular
hydrogen can then reduce CO, derived from carbonate and
hydrogen carbonate in sea-derived pore waters to methane
(CH,4) at high pressure and temperature, via a Fischer—
Tropsch-like reaction (Eq. 3).

) Birkhauser
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Serpentinized mantle rocks exposed along slow to ultra-
slow-spreading Mid-Ocean Ridges (MOR) show positive
anomalies of methane and hydrogen in the overlying water
column above active tectonic zones (Rona et al. 1987,
Charlou et al. 1988; Rona et al. 1992; Bougault et al. 1993;
Charlou and Donval 1993; Charlou et al. 1998; Gracia et al.
2000; Kelley and Shank 2010). The abiotically produced
methane can be anaerobically oxidised by methanotrophic
bacteria using sulphate as the electron acceptor (Eq. 4).

CH, + SO}~ — HCO; +HS™ + H,0 (4)

Sulphate reducers are one of the dominant bacterial popu-
lations at hydrothermal vents (McCollom and Shock 1997).
Furthermore, methanotrophic bacteria have been identified
at Lost City (mid-Atlantic Ocean), a low-temperature alka-
line hydrothermal vent supported by energy derived from the
formation of serpentinite (Hinrichs et al. 2000; Kelley et al.
2001; Orphan et al. 2001; Kelley et al. 2005). Recently,
bacterial anaerobic nitrate oxidation of methane has been
demonstrated in the laboratory (Haroon et al. 2013; Arshad
et al. 2015), using two different microorganisms (Raghoe-
barsing et al. 2006); this may also occur at the MOR methane
sources, but is likely to be a minor pathway as nitrate con-
centrations in seawater are significantly lower than sulphate
(UM vs. mM, respectively).

Recent studies have focussed on the relationship between
serpentinization and organic compounds, mainly methane in
the laboratory (e.g. McCollom and Seewald 2013; Etiope
and Ionescu 2014), at present-day serpentinite-hosted
hydrothermal vents (e.g. Kelley et al. 2005; Delacour et al.
2008; Proskurowski et al. 2008), mud volcanoes (e.g. Mottl
et al. 2003; Holm et al. 2006), and exhumed serpentinite
mantle domains with high H, concentrations and high pH
(e.g. Cardace et al. 2013). High concentrations of OM found
at the Mid-Atlantic Ridge (MAR; 4-6°N) were associated
with serpentinized peridotite rather than with the
hydrothermal vents (Ménez et al. 2012).

Hence, the present study uses an organic geochemical
approach to quantify OM in the exhumed mantle from an
OCT in order to better understand the relationship between
OM and mantle serpentinization. We selected the Totalp
unit exposed in the Eastern Swiss Alps, which represents a
remnant of the fossil Tethyan OCT emplaced during the
Alpine orogeny (Fig. la; Weissert and Bernoulli 1985;
Manatschal et al. 2003; Picazo et al. 2013). We searched
for biomarkers or molecular remains of former living
organisms, specifically hydrocarbons with an origin con-
sistent with anaerobic methane oxidation (e.g. crocetane;
Blumenberg et al. 2004). A wider suite of biomarkers was

used to determine source and thermal maturity of OM
preserved in the rocks.

2 Regional geological setting of the Totalp unit

The Totalp unit is located north of Davos in SE Switzer-
land. It is part of the Tethyan OCT (Fig. 1b). The pecu-
liarity of the Totalp unit is that it experienced little Alpine
deformation and only a low grade Alpine metamorphic
overprint, not exceeding 100-150 °C, i.e. prehnite-
pumpellyite grade (Peters 1968; Friih-Green et al. 1990).
The Totalp unit consists of two Alpine tectonic units
namely the Upper and Lower Ultramafic Totalp sub-units
(e.g. Picazo et al. 2013). These are mainly composed of
serpentinized peridotite exhumed at the seafloor during
Jurassic times and ophicalcites that occur at the top base-
ment; they can be found re-worked into the overlying
Jurassic marine sediments (Fig. Ic). In addition, the pri-
mary contacts between the exhumed serpentinized mantle,
the ophicalcites and the oceanic sediments are well-pre-
served (Weissert and Bernoulli 1985).

2.1 Pre-Alpine and Alpine geological and thermal
history

The serpentinized peridotites of the Totalp unit were
exhumed to the Jurassic seafloor during final late Middle
Jurassic rifting (Peters and Stettler 1987; Bernoulli et al.
2003). Later, during the Alpine orogeny, the exhumed
mantle rocks were first tectonically emplaced within a Late
Cretaceous E-W directed nappe stack before being thrusted
during the Tertiary collision over the European units
forming the present-day Alpine orogen (Weissert and
Bernoulli 1985; Friih-Green et al. 1990; Manatschal et al.
2003). The serpentinized peridotites in Totalp are inter-
preted as derived from fertile subcontinental lithospheric
mantle (Manatschal et al. 2001; Miintener et al. 2010; van
Acken et al. 2010), similar to other described remnants of
fossil OCTs from the Alps (e.g. Platta; Desmurs et al. 2002;
Malenco in the Italian Alps; Miintener et al. 2004).
Extensional faults and unroofing of their footwalls are
responsible for the mantle exposure at the seafloor (Picazo
et al. 2013).

2.2 Lithologies

The Totalp unit consists mainly of serpentinized peri-
dotites, ophicalcites and post-rift sediments (Figs. 1 and 2;
Table 1). This association is typical of an OCT across
magma-poor margins where magmatic rocks are often
either very rare or absent. Three types of serpentinized
mantle rocks were identified:
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Fig. 1 Maps showing location and geology of the Totalp area.
a Location of the Totalp area in the tectonic map of the Alps (from
Schmid et al. 2004; modified by Mohn et al. 2010). b Location of
Totalp as a part of the South Penninic units in Grisons (Manatschal
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(i) Massive serpentinized peridotites, which preserve
mantle textures and mainly consist of serpen-
tinized spinel-lherzolite. Locally these rocks also
contain pyroxenite and amphibole- and chlorite-
rich layers (Picazo et al. 2013).

(ii) During exhumation, the serpentinized peridotites
are affected by localization of the deformation and
intensive fluid circulation leading to complete
serpentinization of fault-rocks, including serpen-
tinite gouges, serpentinite cataclasites and foliated
cataclasites (Picazo et al. 2013). These rocks are
best exposed in the Obersasstilli area, and they
occur in the uppermost 150 m of the exhumed
mantle in the footwall of a Jurassic extensional
detachment fault (Figs. 1 and 2; Picazo et al.
2013).

(iii))  Veins of serpentine that have been interpreted to
result from later serpentinization during low-grade
Alpine metamorphism, as suggested by the oxy-
gen isotopes (Friih-Green et al. 1990). Some
serpentine veins may result from the percolation
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et al. 2003). ¢ Geological map of Totalp (modified from Picazo et al.
2013) showing location of the analysed samples as well as the
distribution of the major lithologies and samples described in this
study (for description of samples see Table 1)

of meteoric water associated with regional meta-
morphism (Burkhard and O’Neil 1988).

Ophicalcites are complex rocks that are made of serpen-
tinite and calcite and represent the result of different pro-
cesses (Bernoulli and Weissert 1985; Lemoine et al. 1987).
They either result from the total to partial in situ replace-
ment of serpentine by carbonate, tectonic processes related
to exhumation and hydrothermal systems, and/or cemen-
tation and filling of fractures by sediments (e.g. neptunian
dykes of Bernoulli and Jenkyns 2009). These processes
occur at or near the seafloor and are often associated with
hydrothermal fluid circulation at temperatures of
100-150 °C (Friih-Green et al. 1990; Picazo et al. 2013).
Most ophicalcites are formed under static (non tectonic)
conditions within 20 m of the paleo-seafloor (Picazo et al.
2013).

Sedimentary ophicalcites at Totalp include neptunian
dykes and debris-flows (Fig. 2). The neptunian dykes are
carbonate veins filled with pink or grey carbonate (pelagic
sediments or mechanically reworked cements), filling
fractures in the exhumed mantle. These dykes are typically
located in the tectonized, serpentinized peridotites forming
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Fig. 2 Sketch showing the lithologies and the stratigraphy of the Totalp area (Weissert and Bernoulli 1985; Friih-Green et al. 1990; Manatschal

et al. 2003; Picazo et al. 2013)

the uppermost few meters of the exhumed mantle (Ber-
noulli and Weissert 1985; Picazo et al. 2013). The second
main type, the tectono-sedimentary ophicalcites, include
cemented clasts of serpentinite, gabbro and continental
basement (Manatschal and Bernoulli 1999; Bernoulli et al.
2003; Picazo et al. 2013).

The sediments overlying the ophicalcite are mainly
pelagic deposits of Late Jurassic to Early Cretaceous age,
some of which have been reworked (most likely by ocean

bottom currents) (Weissert and Bernoulli 1985). Red shales
are overlain by radiolarian cherts and grey micritic lime-
stones intercalated with claystones (e.g. Radiolarite For-
mation and Calpionella or Aptychus limestone Formation
of Weissert and Bernoulli 1985). The top of the sequence is
formed by black siliceous shales that are characteristic of
poorly oxygenated bottom waters during the Early Creta-
ceous (Weissert et al. 1985; Weissert and Bernoulli 1985).



461

Preserved organic matter in a fossil Ocean Continent Transition in the Alps: The example...

SUIOA 9[NOSAIYO
[rews pue (auaxo1Ad)
[exourw nopriad ysiead

-3)IyM [RIPSYUER PIpUNOI Y00L8TS 81198 8L wanunuadios
USON  dYX 10 uonosas uly) oN -qns yim anunuadias yoerg yoolynyssom  #00L81S 8199 LL QAISSEIN
UOTBIUALIO
paiajaxd ou Suimoys syse[o
srunuadias remsueqns J)Ise[orILd
pouleIs QUL  (YX 10 UOTDSS UIy) ON i runuadios yoerg I[[eIssesoqO  CSILBIS 6C619¢ 0L anunuadiog
(auo[ed $9[NOSAIYD) SIo[UIoA
JI0ys auy pue A[eonewo)sAs
panqLusip pue
Suimorjoy ureid aunuadios
juenbs ym unuadias
poureid sur] (TYX IO UOMOAS UIY} ON  PAULIOjop paureId-ouy yoe[g T[[eIssesIoqO  7ST/81S 626195 69 a8nog ayunuadiog
(%) ameway 0) nunuadios
anp SI INO[0d PaI Ay} UQ2IS YIep Urejuod
BI002Iq £9)I0[ed puE O[E} OS[e OS[E ‘SUIQA 9)I0[ED SNOISWNU edjuuasreq
uonerauad unuadias Surureyuod JJIpIezZI| UM SUIDA/SISB[O PIULIOJIP -1[[BISSBSIq0
[ LET IST ‘UreA AR Py st oyunuadios oy, Joe[q-{Iep im XLNeW poy W THye  S60881S 886196 IL aunuadios pay
SUTOA
9[NOSAIYD JO SUIOA 9O[BD YA JO UONLIOUIT LTY88I1S 0¥S19¢ Ly
1oe] ‘ureid aynouSew puo0d3s & £q Aremnorpuadiad eRInjuuAsIEg
[eIpayue pasiadsip JSOW[. INJSSOID SUIA -lessesoqO SIv88Is 815198 44
LB10031q A[wopue: ‘aImyxa) S10[BD PAULIOJIP YsIAaIF Weyye 010881 Y0S19¢ 9¢ suroA
uoneIouad payoddns uoqqu IeI YIIm JO uoneIoudd 11y & Woly 9)I0[Ed snorowNu
SLTT— €00 IST “UIRA II[RD Ise[D QIMIX9) ysowr AJurejn sise[o ayunuadios uayolg I[[eISsesIaqO  600881S 15195 ¥ ym runuadiog
Suimoid [eiskio
Jo a3e3s auo A[uo
IIM SUTQA 9)IO[D
‘UTOA Q)JBUOQIED SIO[UIQA QJBUOGIED JIYM
Iaye[ ‘gyneusewr puE SJo[UIaA J[NOSAIYD
‘ouoxoIkd Jo U021S [[eWS ‘S[eIoUI eRInjuuasIeg
uorneIouaz3 swojueyd ‘serounu amopuadxa ay) Suruyep “HIBssesIvq0
co1— [1°0 18T “UdA 2[R sunuadias £q aoerdar SI0pI0q Ie[nSue AYM [IIM WTYYe  66£881S ccs19s 91 anunuadias
LUSOIN A1ore1dwod auiATjQ oyuruadios yoe[q oAssely  e33anjuussied  799881S S6819S S QAISSBI
Aunuadiog
SUIOA SUIA (w) x (w) ¥
eD) (09) B) (09) AIN)X9) uondrrosap (ANLN) Iequnu
4adag, @ qddAy @ 9JeUO0qIe)) AIMIXA, [eo130[RIUIIA uonduosap ordodsororiy Aeso sojeuIpioo) odwes adAy ooy

(84dAQ, @ HAdAY Q) sosATeue 01dojost 9y} J0J pasn SAJIO[BD AY) UO AINJXd) 9y} pue suswidads puey ul paAIdsqo 21mxd) pue AJorerourw Surpnour K300y Aq synsAy [ d[qeL



Ts. Mateeva et al.

462

SUIOA 9JI0[8D

uonerauad BI002Iq £q uayoi1q A[[eoruo)od) edmjuuasied B10021q
pauruI)apun payoddns unuadies udaId -1[[BISSBSIqO Amunuadiros
9°01— 091 ‘uRA ) UA  (YX 10 UONDSS UMY ON  JO SISB[O Ie[NTue dLIoWNua) ‘W Tyye  TSILBIS 626195 L pouoddns utop
SUIOA 9JI0[BD SNOIAWINU
‘(9yeuoqied + runuadios)
auoreorydo
JO JsE[0 pA)EIUO[2 PIJBIUALIO anyuuasIeq oreoydo
LPO[IOMAI  (TYX 10 UOTOas Uy ON  AJWOpURI [IIM JeUOGIRd Yulg -eSanjuussied  §/6881G 98679¢ 6 P3S-03) PIOMAY
uorneIouad
pauruId)epun
79— 98’1 ‘UuIA AI[ED uloyuanin IeoN - Z0¥061S 09¢¥9s 99
8178816 0¥S19¢ 9
10ud3 pug pue
98— €0l— LOTTP0  PU ‘URA AR 90¥881¢ CLST9S w
uorneIouad
I'L- 8L'1 pug ‘ureA ey :S9JeUqOIEd A eSmyuuossTeq 90¥881¢ CTLST9S i%
uoneIouad Toj Sunmoid [E1SL1d -1[[BISSESIAq0
601 850 ISI “UIA AMDE) Joomens [eionds y WTHPT  65H88IS SIS19S 6¢
{SUIAA 9)BU0QIBD SUTOA J)I0[BD AQ PININISSOID
uoneILuas JO uoneIouas 15810 UA01q Aunuadios aopesrydo
LT1- (424 IST URA AV qispp0 M [e19A9s £q uadoIq [RIpaYUE YOB[q YIIMm 600881 11S19¢ §C £rejuowrpas
poureisd sur] sise[o sojunuadiog XIJeW 9JeUOGIRD QUL POy T[[eIssesIoqO  ST0881S 02S19S 1T -0U03I3
XLjew
Y ur Ajwopues
Suneoy pusjquioy
Um surerd
351809 IR[N3UE 0)
papunoz jo pasodwod SUISA PUE SISB[D H[eIssesoqo - 6008815 vIS19S €C
Xujew 9y} ‘Furmoird se s[erourw aunuadios e3Injuuasied (soyAp
uoneIauad Lonse [B1SA10 9)BUOQIRD ‘ouoysawry drdefad -1[[BISSBSIOqO uerunyday])
¥9— 9¢'1 pug ‘ureA ARE)H -o1&ydiod Jo sadfy earyy, par pue yurd onLoI UL weyye  80¥881S EePS196 I QuosawIg
auoreosrydo Arejuowipog
SUTOA SUToA (w) X (w) X
e) (99%) D) (9%) IMIXa) uondrosap (NLN) Toqunu
4adAg, @ 8adAy o Jreuoqre) AMXa, [ed13o1eIauIN uondrosap o1dodsoIdRA Aneoso sjeurpioo)  o[dwes ad£y ooy

ponunuod | Jqel,



463

Preserved organic matter in a fossil Ocean Continent Transition in the Alps: The example...

PAAIdSqo St ASo[oy[ dyl Jo uondas ulyfp, .

(8L ‘1L sopdures) oyunuadios aArsseuwt ay) Jo uondooxa ay) yIm Jun-qns I9Mof ) woly are A3o[oy| [V «

sorduwres [[e sso1oe de[a110o jou Aew pue d[dwexa oyroads oy} WO} Pauyap ST UONLIAUIT UIA Y],

Kysorod 191013

yim opdures parmoery A1 A £6£061S °STyos S9
SUTOA Q)IO[ED
ukd pue zyuenb ay) ur 3dooxe
wouﬁucuw pue (%71) MLI0[Yo Q1oymAIoA AIAdjo urerd
99— ¥ Pug uloA aIdEyH onserd ‘zarenb m (9€6) ordoosoronu ‘surea zyenb 980615 CIeyos 9 (doxono you
-o1Aydiog AIo[ed AQ PAJRUNLIO(  POWLIOJOP M YOOI JJeuoqIe)  UIOYUINID) JBAN  98€061S 212H9S €9 opmydins) geuoqre)
OIL88IS Yr1€9¢ 8¢
sooeld ur (meway) OIL88IS r1€9¢ LS
quojsou d13ead -
yurd Y SuIoA SYIO[20 HOYS LOLBBIS 0r1€9¢ 9¢
QIBI pUR SIO[UIOA USIKQIS anyuuasIeg LOL88IS Ov1€9¢6 143
poure1s aury (@YX IO UOTI3S UTY) ON Quy M duolsew] KoI1n woIj yInos  97/881S H1€9S €S Quojswr|
uoneIoua3 aopes Areds 19410 Yyoea 01 Te[norpuadiad
S9— 960 IS] ‘UIA A[ED £q pa[[y swistuesio jsour[e uoneIouas JeISEUYISIOD  $69681S 06L£9S 61
[1SSOJ JO QOUIPIAD 0M] JO SUIOA 9)I0[Ed anyuuesied
paureis our{ QU0JSoWI| O1Se[od  SNOISWNU [JIM UO)SIUWI] KID) -eSmjuuosied 866887 $6179S 01 quojsowry
QeWway Jo ooen} pue
QLIOTYD “@TA0ISNW
‘asepoorderd SUIQA Z)Ienb pawojop yym
o (%68) S[eYS SNOIJIIS PAIR[BIINUL YrS681S €1Tr9s 81
paureI3 aurj zyenb £q payeuroq poutei3 auy £a13 pue poy jeISeuydsjon  £1S681S 670795 S
Aneway pue
9)IA0OSNUW ‘QJLIO[YD saImoeIy doxono
‘(9 0¢)eseoorderd snorowinu pue Ajsoiod you aprydins
“(%9t) z1enb 18213 Y001 SNOI[IS woiy 98€061¢ TITy9s 19
paureid aurj Aq Aurewr pesodwo)  poureid auy YSIppAI-YsIAID uwIoyuanin) IeAN  98¢061S 21249 09 9[eys SnoAdI[IS
uonisodop jo Anowoad doiono
oy 01 Teopnipuadiod uroa you aprydns £6£061¢S TSTYos 89
UIQA 9)I0[BD zyrenb uonisodap jsod (yo01 wouy
¥9— 6L0— 1isodap-isod pourers ouL{ (TYX 10 UONJSS UIY) ON  SNOSDI[IS PAI pauresd duy prey  WIOYUINID 1N  98€061S CIey9s 9 QLe[oIpEy
SJUQWIPOS
SUTOA SUToA (w) X (w) X
) (%) ) (°%) QINIXa) uonduosop (NLN) Tequnu
4adAg, @ 8adAy o Jreuoqre) AMXa, [ed13o1eIauIN uondrosap o1dodsoIdRA Aneoso sjeurpioo)  o[dwes ad£y ooy

ponunuod | Jqel,



464

Ts. Mateeva et al.

Fig. 3 The sulphide bearing outcrop in the Totalp area showing
weathered lithology. Red circles are the sampling location in this
outcrop. In the line-drawing on the right, light red identifies
radiolarian cherts, dark red siliceous shale and yellow sulphate rich
carbonate, rich in silica. a Zoom of outcrop. b Sample 65 is composed

North east of Totalp, exposed on a topographic cliff near
Gotschnagrat (Figs. 1 and 2), is a weathered outcrop with
visible pyrite on the top of the radiolarian cherts and
siliceous claystones (Fig. 3; Weissert and Bernoulli 1985).
This outcrop has been described by Friih-Green et al.
(1990) as a zone of pyrite mineralization associated with
radiolarian cherts. The radiolarites contain quartz, illite,
hematite and chlorite (Weissert and Bernoulli 1985). The
sulphidized outcrop has a bulk chemistry different from its
surrounding and could have been formed during early
diagenesis or metasomatism of amorphous silica or lime-
stone (Berner 1984; Williams et al. 1985). Alternatively,

sample 65

by calcite 50%. 25% quartz and is highly weathered. ¢ Sample shows
visible hematite crystals and calcite as the major mineral. d Sample
60 shows a siliceous rock with 3 different colours composed by 83%
quartz, 10% albite and pyrite, illite and chlorite

the sulphide could be related to a fossil hydrothermal
system (e.g. Styrt et al. 1981, Beard and Hopkinson 2000;
Zeng et al. 2015). Early diagenetic reactions producing
pyrite depend inter alia on a source of OM as electron
donor (Fig. 3b); the high present-day porosity of the rock
(Fig. 3c) could be produced by weathering of calcite
(Berner 1984). Hydrothermal vent systems are character-
ized by pelagic sediment accumulation alongside ferrous
oxides (i.e. radiolarian chert) of hydrothermal origin which
can potentially be preserved (Haymon 1989; Montgomery
and Kerr 2009). The second most common mineral in the
sulphide bearing samples is quartz that may have
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originated from amorphous silica or opal, which are com-
mon in hydrothermal vents (e.g. MAR- mount Saldanha
36°30'N; Dias and Barriga 2006, 25°48'N Rona 1984,
24°21'N; Rona 1984; Kane 23°35'N Fracture zone; Kelley
and Delaney 1987) reflecting a large input of hydrothermal
silica (Dias and Barriga 2006). There is no evidence of
fossilized worm tubes associated with the zone of pyrite
mineralization; these are characteristic of inactive white
smokers (Haymon 1983) and so the origin of this formation
remains unclear.

3 Sample collection, preparation and analysis
3.1 Sample collection

A total of 47 samples were selected from the Totalp unit for
geological and organic geochemical studies (Table 1). We
collected samples from the three main lithologies: ser-
pentinized mantle rock (lizardite, serpentinite gouge and
cataclasite), ophicalcites (neptunian dykes and tectono-
sedimentary breccias) and associated sediments (Figs. 1
and 2; Table 1). Samples were oriented, geo-referenced
and collected using a geological hammer or a hand drill
using water as lubricant. On collection the samples were
wrapped in pre-combusted foil (400 °C) for return to the
laboratory.

3.2 Sample preparation

In order to avoid contamination with modern material the
samples were cleaned with de-ionised water (18 MQ cm ™"
resistivity; Milli-Q) and rinsed with re-distilled dichlor-
omethane (DCM). The outer edges were removed from each
sample, which was then cut into smaller pieces using a small
rock saw lubricated with water. The aim was to get fresh, un-
weathered samples for laboratory analysis. These were then
used for preparing thin sections and for stable isotope anal-
yses of carbonate veins, with 90-110 pg of calcite being
extracted using a small electrical hand drill. For organic
geochemistry selected pieces were washed with Milli-Q
water and DCM, then crushed (to particles <50 pum) using a
tungsten Tema Mill, which was previously thoroughly
cleaned (Decon-90 solution 2% v/v, milli-Q water, methanol
and finally DCM). In order to assess lab contamination,
blanks composed of pre-combusted silica gel (600 °C) were
subjected to the same procedures as the samples.

3.3 Mineralogical analyses
Optical microscopy, cathodoluminescence microscopy

(CL; CITL Mk5-2) and X-ray diffraction (XRD) were used
to identify the mineralogy, chemistry, texture and textural

relations within the samples and to associate the mineral-
ogy with the OM. A Panalytical X’Pert PRO XRD system
(CuK™” radiation, 45 kV, 40 mA) was used to identify the
volume proportions of the minerals associated with ser-
pentinization and the polytypes of the serpentine minerals.

3.4 Geochemical analyses

Analyses of total carbon (TC) and total organic carbon
(TOC) were performed before and after decarbonation
(10% HCL, 25 °C), respectively, using a Carlo Erba
Instrument NC2500 elemental analyser.

Stable isotopic analyses of organic carbon were carried
out on five samples of four different lithologies, prepared
using a “sealed tube” method and injecting the resulting
CO, into a VG Sira 10 dual-inlet mass spectrometer
(Craig 1957; Frazer and Crawford 1963; Sofer 1980). The
standard error for analysis is £0.1%0. The isotope data
was normalized to TAEA-CH7 calibration material and
reported using the VPDB scale. Carbon and oxygen iso-
tope measurements on calcite were performed on material
extracted from veins by conversion to CO, using a VG
SIRA 10 MS Isocarb (common acid bath). The carbon and
the oxygen isotope analyses are referenced to the VPDB
standard with a standard error for each analysis of +0.1%o
(McCrea 1950; Craig 1957; Friedman and O’Neil 1977;
Swart et al. 1991).

Soxhlet extraction was used to extract the bitumen from
the powdered rocks using DCM: methanol (ratio 9:1)
(24 h) (modified after Wolff et al. 1995). Full blank
extractions were conducted in parallel to identify any
possible contamination. After evaporation of the solvent,
the extracts were re-dissolved and passed through short
columns of alumina and sodium sulphate using hexane as
solvent to isolate the hydrocarbons. The eluent from the
alumina column was re-dissolved in hexane (50 pL) and
analysed by gas chromatography (GC) and GC-mass
spectrometry (GC-MS).

For GC-MS we used a GC Trace 1300 and Thermoquest
ISQMS single quadrupole fitted with a split-splitless
injector, GC column (DB-5MS non-polar 5% phenyl and
95% methyl silicone stationary phase, 60 mm x 0.25 mm
i.d., film thickness 0.1 um) using helium as a carrier gas
(2 mL min~"). The GC oven temperature was programmed
from 60 to 170 °C after 1 min at 6 °C min~', then from
170 to 315 °C at 2.5 °C min~" and finally held at 315 °C
for 15 min. GC-MS was carried out in full data acquisition
mode, providing mass spectra of compounds eluting from
20 to 90 min; these were identified by comparison with the
literature and with authentic standards where available
(PAHs-polynuclear aromatic hydrocarbons). 5o(H)-Cho-
lestane was used as an external standard for quantification;
response factors were assumed to be 1, hence data are



Ts. Mateeva et al.

466

jun-qns 19ddn woy st yorym (g, ‘£, sspduwes) anunuadios sarssew ay) 1daoxa Jun-qns 1Mo woly a1e ASo[oyi| [[V .

ordures

K199 Ut Juasaxd a1om [k jou ‘euoreyiydeu [Ayjew-g pue (SJIN 6 PUe 1°7°¢) JIApeuw ‘(L gq) susydorpozuaqiq J1y8g ‘Quajhkrad(rys)ozuag Agpuy ‘ouaikd(po-¢‘z‘1)ouspu] grg ‘ouarkd(e)ozuog
A1qg ‘Quayuerony(q)ozuag yrg ‘ouasenpue(e)ozudg Ly QuasAiy) LLg ‘Qualkd onjy ‘Quaypueion] 4 ‘Ouanpueudyd :21m sordures oyl Ul SHYJ PAYNUIPI » JWI] UONOAIP MO[oq TTg

O1-11 = s PUC (I-1°0] = 54 “(1'0—0] = » I9YM , [OqUIAS IeIs £q S[BAIUI Ul pAjuasaidar are pue wdd ur aIe SUONBIUIIUOD Y} SHYJ pue souedoy ‘soueIols

Y} 10 "UMOYS I8 (#DJA) IoqUINU UOQILD UBSW PUE (saneA [dD)) Xopur aduardfaId uoqied ‘(xeur)) Iaquinu UoqIed WNWIXew ay) ‘(a8uel auey[e-1) 95uel Ioquinu uoqIed ) :Souey[e-u Y 10
NNU
sk sk ok c0'9¢— 9C—¢€C  SS'1-€60 0D ge-Ll ! LY9—€S1 00¥06—Chy S9 ¥9 ‘€9 doxomo yotr apryding
i) 8¢
w5 * * €C—CC 0I'1-T80 € Le91 8€T—¢ 61 00S¥6-00S9% ‘LS “9G ‘¥ €S mnyuudsIed woly SuoIsOWI]
hNU
skl sokek 1ag w99t~ LT-€T  ¥6'0-C6°0 D ge91 IL1-6L 8—¥L  0006C1-00C86 61°01 SouO)SAWIT
doxono your oprydins
1ag * * Y€ 61'1-66'0 DD €€91 L€l Sr1-9¢1 81¢-68C 81 ‘S1 Teau o[eys snoadIIg
doxono your oprydins
ok £ £ ST-€T TSI-SO'T DD Lg91 PP1-7C erv61 TL918E 19 ‘09 Woly o[eys snodIIg
doono your
* - 1ad 8TV¥C L8T6I'T DD pe-Ll L1-1 L81-99 00TE1-1L9 8979 opwdins woy ALe[OIpEY
SJUQWIPAS
1ag 1ad 1ad 8C 060 ) 9¢-0C 4! 0¢ 00969 <L sutoA €D ur sise[o-diog
anopeorydo
sk ® 1ag 1'9¢— ¥ S} “ 9691 0s 98 000901 6 "PIs-09) parIoMIY
8D 99 ‘9% ‘v SureA e
ok ok ok VLT~ 1€-€T TWI-180 08D 8e-L1 0LYT—C 9TI-IT  00LIOI-09¢€E ‘TF “6€ ‘ST 1T pue Ase[o "dIos ‘Xinew poy
oeorydo AIR)UWIPas-ou0Id ],
o ok £ 90°LT— 6C—LT SOl D ge-Ll 121-€0°0 €01-ST  00SLOT—009S6 €T °1 soyAp uerumdoN
Aoeoydo
1ag * 1ag 0€-6C L60-¥8°0 D ovLI =500 061~ 1454 8L LL LNunuadios OATSSe
w5 1ag 1ag 1'vc 760 < 9¢-Ll 9 69¢ 9L8 0L anseorIed AunuadIog
1ag * 1ag 09¢ ¥6'0 D ge-Ll € ¥8¢ 6¢S 69 93no3 ayunuediog
(meway
*% 1ag 1ag £7C LTl % Se-Ll 1 89C S0T88 1L im) aunuadios pay
9t SUIOA BD)
® ® 1ad 8¢—tt  SO'1-80 0D ge91 YCI-1 SeI-61  00STH—00¥0T LY ‘¥¥ ‘9T ‘T snorownu yim Amunuadiog
mNU
* 1ag 1ag 80T 6T 1-9L0 0D 6691 006—¢€C 9L1-2T01 Se1e—56¢ 91 ‘S anunuadios OATSSEA
Aunuadiog
Ioquinu
uoqIEd UBIIA dD Wy oSuey (wdd)
D0OL uo (wdd) (OH) orue3100 (wdd) _quinu
«HVd souedoy soueralg  (0%) 4dday 0 souey[e-u Su0qIed0IpAH [e10], UOQIed [BIO], ordureg

uEmmEUm_w 3001 Y[nq jo uonisodwods ordojost uoqred owesdio pue (uorfru 1od sured) wdd ur uonenuesuod DH [e10) pue DOL ‘DL Surpnpour K300y £q SINSAY T dqel



Preserved organic matter in a fossil Ocean Continent Transition in the Alps: The example... 467

semi-quantitative. Data were processed using XCalibur 1.2
software (ThermoScientific).

The mean carbon numbers, MC# (Peltzer and Gagosian
1989) and the carbon preference index (CPI) of n-alkanes
(Peters et al. 2005a) were calculated over the carbon
number range C,;—C3; (Egs. 5 and 6; Table 2).

MC# = ([Ci]xC))/ > [Cl] (5)

where [C;] = concentration of the n-alkane with C; carbon
number

CPI=0.5x Y ([odd Cyy— Css])/
([even Cyo— Cay] + Z [odd C23—C37VZ [even C, — C36]>

(6)

|E| Range of carbon isotopes

+5 . .
Aerobic oxidation
Range found in common marine sediments
-5
e Influenced by
g CO, generated by
O hydrocarbon destruction
e}
-20
Sulphate reduction
-30
Methanogenesis

Fig. 4 a Global range of carbon isotopic composition of carbonates
precipitated during early diagenetic processes (modified after Cole-
man et al. 1993; Kiriakoulakis 1997; Heydari 1997). b Carbon and

m Our results from Totalp

4 Carbon and hydrocarbon distributions
in the analysed lithologies

The TOC and TC results are summarized in Table 2 and
vary considerably. The TOC values are low, while TC
reflect carbonate contents. The stable isotopic composition
of carbonate varied from —0.78 to 1.86%0VPDB and —11.7
to —6.2%0VPDB for 8'°C and §'%0, respectively (Table 2;
Fig. 4). Five decarbonated samples (sample 1: neptunian
dyke; samples 9 and 39: reworked tectono-sedimentary
ophicalcite; sample 19: limestone; sample 69: specimen
from the sulphide-rich outcrop) have similar values for
8" CypDB organic Of between —27.4 and —26.2%, (Table 2).

Hydrocarbons (HCs) identified in Totalp samples
include n-alkanes, steranes, polynuclear aromatic hydro-
carbons (PAHs), hopanes and isoprenoids, namely pristane
and phytane. Samples of the same lithology do not nec-
essarily have similar distributions of HCs (Table 2). This
may reflect the heterogeneity of the samples collected, for

@® Limestone
@® Radiolarian chert A
@ Sulphide rich outcrop
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oxygen isotopic composition of calcite veins in Totalp samples.
¢ Limestone (sample 19) showing two generations of calcite veins



468 Ts. Mateeva et al.

3 n-alkanes
©3 (m/z 85)

85
80 v

75

Limestone
(sample 10)

C30
C32

C29
3

70

CZB

65 <«
&

60 o
55 N
N

50 v

Relative Abundance

b bl

s d
\vvvvyvvvvyvvvvy"vvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyvv
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min)

b *;Z Steranes

o k. (m/z217,218)

85

Siliceous rock
(sample 60)

Ba20S
C,,0BB20R

C
C,,aBB20S

80

C,,Ba20R
/ C,Ba20s
\ C,Ba20R
,aaa20S
C,,00a20R
C,,00020S
C,,aPB20R
C,,aBp20S
C,,a0020R

C,,aaa20R

Relative Abundance
& 3

w
G

30

L R R R R R R R R R R e R R A ST T e R
50.0 50.5 51.0 515 52.0 525 53.0 535 54.0 545 55.0 555 56.0 56.5 57.0 575 58.0 58.5 59.0 59.5 60.0 60.5 61.0

Time (min)

3 PAHs
*3 (m/z178,192,202,228)

Fluo

Siliceous rock
(sample 60)

Py

o
a

Relative Abundance
O
38 88 8 & 8
BaA

3-MP
2-MP
Chry

[a Sy
=3

O\ —

10
5

_—

— 2-PN

N I . N i "
o et e e pertr gl Wttt bttt it oot sembpuandi oo e el

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Time (min)

e
TPt



Preserved organic matter in a fossil Ocean Continent Transition in the Alps: The example... 469

«Fig. 5 Representative mass chromatograms of the HCs of a typical
sample of limestone (sample 10) and a siliceous rock from the
sulphide rich outcrop of Totalp (sample 60). a n-alkanes (m/z 85) of
sample 10 (limestone) b sterane distribution (m/z 217, 218) of sample
60 ¢ PAH distribution (m/z 178, 192, 202, 228) of sample 60. For
abbreviations see appendix

example in the relative amount of carbonate, calcite veins
and serpentinite clasts.

Aliphatic compounds (>C15), mainly in the form of n-
alkanes dominate (Fig. 5a). The CPI (carbon preference
index) for the n-alkanes are in the range 1 £ 0.3, except for
two samples that were visibly weathered, having
CPI = 2.6-2.87, i.e. an odd over even ratio for the n-
alkanes confirming contamination from modern material,
such as soil (e.g. Villanueva et al. 1997). Steranes included
20R and 20S o isomers from C,7 to Csg, as well as 20 R
and S diacholestane and pseudohomologues (Fig. 5b). The
steranes were dominated by C,; compounds with a lower
abundance of C,g and C,9 pseudo-homologues (Fig. 5b).
The ranges of values for the thermal maturity parameters of
the C,5 steranes are between 0.41 and 0.69 for ST1 = oo
20S/00020S + oo 20R and 0.37 and 0.59 for
ST2 = afp/aca + aff (Fig. 6; Seifert and Moldowan
1980; Peters et al. 2005b). PAHs having molecular masses
<276 were identified in some of the bitumen extracts
(Table 2; Fig. 5c).

4.1 Serpentinite
All serpentinite samples contain n-alkanes, and several

PAHs in the form of phenanthrene (P) and fluoranthene
(Fluo); steranes and hopanes were largely absent (Table 2).

4.1.1 Upper ultramafic sub-unit

4.1.1.1 Massive serpentinite The massive serpentinites
collected from the Weissfluhjoch (samples 77, 78; Fig. 1c;
Table 1) area have HC concentrations between 0.05 and
4 ppm while the Cy9 n-alkane dominates their distribution
(Crax = 29; Table 2). Total carbon (454 ppm) and total
organic carbon (TOC) (=180 ppm) concentrations are
both very low.

4.1.2 Lower ultramafic sub-unit

4.1.2.1 Massive serpentinite XRD analysis shows a
lizardite polytype 1 (Bailey 1969) (87%), garnet (andra-
dite) (7%) and pyroxene (clinopyroxene) (5%). In thin
section olivine is completely replaced by serpentine min-
erals, with phantoms of pyroxene, euhedral magnetite,
spinel and several calcite and carbonate veins not visible to
the naked eye (Table 1).

HC concentrations vary from 23 ppm for the serpen-
tinite from Parsenfurgga (sample 5) to 900 ppm from an
outcrop with ophicalcite in Obersasstilli (sample 16;
Fig. Ic; Table 2). The TOC values range from 102 to
176 ppm and TC from 395 to 3134 ppm; steranes and
hopanes are below detection limits (BDL) (Table 2). Ser-
pentinite samples showing numerous calcite veins (sample
24, 26, 44 and 47) have higher amounts of TC
(2040042500 ppm). They show variable TOC
(19-135 ppm) and low HC concentrations (1-124 ppm). In
the lower ultramafic sub-unit a red coloured serpentinite
was identified by XRD to contain hematite (4%) (Table 1).
The serpentine mineral is a lizardite polytype 1 (59%), also
containing talc (18%) and calcite (19%). The isotopic
composition of the calcite in the veins is 0.03 and

Fig. 6 Thermal maturity 0.70 7
parameters of C,; steranes for
Totalp samples. The
classification is from Peters 0.60 7
et al. 2005a. The brown shaded ®
area represents the range of 0.50 ® ® @
complete isomerization for the = ) ] o
20S/(20S + 20R) aoor Cyy S ®
steranes (ca. 55%) and ofjp/ 4 040 -
(oot + afff) C,7 steranes (ca. 8
68%) 5

& 030

L;

x

0.20 91 ® Serpentinite
® Ophicalcite
Limestone
0.10 1 Sulphide rich outcrop
@ Siliceous shale
0 T T T T T T T
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—11.75%0 for 82Cyppg and 8°0vppg, respectively
(Fig. 4).

4.1.3 Serpentinite cataclasite and gouges

The serpentine cataclasites and gouges have TC of
540-875 ppm, n-alkanes with a carbon number range of
C,7—C36 and no detectable steranes or hopanes (Tables 1
and 2). The serpentine cataclasites (sample 70), which are
less deformed than the serpentine gouge (sample 69),
contain more hydrocarbons (46 and 3 ppm, respectively
Table 2) but similar TOC contents (284 and 269 ppm,
respectively).

4.2 Ophicalcite

The ophicalcites from the Totalp unit all contain n-alkanes
and the PAHs (P, Fluo and Pyr, see glossary; Table 2).
Steranes and hopanes are also present in the majority of
samples.

4.2.1 Neptunian dykes

Samples of neptunian dykes have a red micritic limestone
matrix with millimetre-scale serpentinite clasts and calcite
veins (samples 1, 23) (Fig. lc; Table 1). The 3%
CvpPDB organic Of one of the samples (sample 1) was
—27.1%0 (Table 2). There are high amounts of TC with
variable TOC (15-103 ppm) and HC concentrations
(0.3-121 ppm) (Table 2).

4.2.2 Tectono-sedimentary ophicalcites

The tectono-sedimentary ophicalcite has various sub-
lithologies from a reworked tectono-sedimentary breccia
with folded serpentinized and carbonate clasts in a red
carbonate matrix crosscut by calcite veins (sample 9) to
centimetre scale serpentinite clasts in a carbonate vein
(sample 72) (Fig. 1c; Table 1). The stable isotopic com-
position 83 CyppB organic Of one of the samples was
—26.1%0 (sample 9) (Table 2). A second type of ophical-
cite, a serpentinite breccia composed only of serpentinite
clasts fragmented by calcite veins has low TOC (30 ppm)
and HCs concentrations (124 ppm) including only n-alka-
nes (sample 72) (Table 2). The isotopic compositions of
the calcite veins surrounding the serpentinite clast are
1.60%0 and —10.6%0 VPDB for 8'°C and 8'®0, respec-
tively. The third most common ophicalcite is composed of
anhedral serpentinite clasts, carbonate veins, calcite vein-
lets in a reddish pelagic matrix and has a low amount of
TOC (11-116 ppm), but high concentrations of HCs
(2-2470 ppm) (samples 21, 25, 39, 41, 42, 44, 66; Fig. 1c;
Tables 1 and 2). The isotopic composition of the samples

varies from 8"°Cyppp = 0.32%0, 0.42%0 and 0.58%0 with
8" 0yppp = —11.75%0, —10.28%0 and —10.9%o (for sam-
ples 25, 42 and 39 respectively) to 53 Cvppr = 1.07 and
1.78%o with 8'"®Oyppg = —11.7 to —7%o for samples 42
(second generation calcite vein) and 41 (Fig. 4; Table 1).
Isotopic analysis of organic carbon (sample 39) gave §'*"
CvpDB organic = —27.4%0 (Table 2). The ophicalcite out-
crop near the Gotschnagrat NE Totalp has isotopic values
for calcite veins of 1.86%o for 8'*Cyppg and —6.2%. for
5" 0yppp (sample 66).

4.3 Sediments

Limestones are, together with radiolarian cherts, the most
common sediments in the Totalp unit. All of the sediment
samples contain detectable levels of HCs including PAHs.

4.3.1 Radiolarian cherts

The radiolarian cherts are situated mostly around the
Gotschnagrat NE Totalp (samples 62, 68) and along small
distributed outcrops some of which are 1-2 m in length and
located between Parsennfurgga and Parsenhiitte (sample 6;
Fig. 1c). Except for the weathered sample, they have very
low concentrations of HCs (1-17 ppm) and low TOC
values (66—187 ppm) (Table 2). The radiolarian cherts are
hard, fine grained siliceous sediments that are transected by
post—depositional quartz and calcite veins, the latter having
isotopic compositions of 8"*Cyppg = —0.79%0 and &'*
Ovpps = —6.4%0 (Sample 62; Table 1; Fig. 4).

4.3.2 Siliceous shales

The siliceous shales are located mostly above Parsennhiitte
and around the Gotschnagrat (samples 15, 18, 60, 61;
Fig. 1c). XRD analysis of the siliceous shales (sample 61)
above the pyrite rich area revealed a mineralogical com-
position consisting of quartz (83%), albite (10%), pyrite
(2%), illite/muscovite (4%), chlorite and hematite. This
composition is similar to the siliceous shale (samples 15,
18) found nearby, which consists of quartz (89%), pla-
gioclases (6%), illite/muscovite (4%), chlorite and trace of
hematite (Fig. 1c; Table 1). They have low concentrations
of HCs (13-144 ppm) and variable amounts of TOC
(194-433 ppm) (Table 2).

4.3.3 Limestone

Samples (53-57) are pelagic grey limestones that contain
visible calcite veinlets and fine greyish veinlets (serpen-
tinite) from the syncline in the Parsennhiitte (Fig. lc;
Table 1). They contain a low amount of TOC (14-92 ppm)
and variable concentrations of HCs (Table 2).
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The pelagic limestones with higher amount of calcite
veins (samples 10, 19) are also poor in TOC (74-82 ppm)
and contain HCs from 79 to 171 ppm (Fig. 1c; Tables 1
and 2). Isotopic analyses of the first generation of calcite
veins in sample 19 show 8"*Cyppp = 0.56%0 and &'
Ovpps = —6.5%0 and 8> Cyppp organic = —26.6%o (Fig. 4;
Table 1).

4.4 Silica-rich carbonate (sulphide-rich outcrop)

The mineralogy of the pyrite rich rocks is dominated by
calcite (53%) with quartz (24%), chlorite (12%) and pyrite
(6%) being the other main minerals (sample 63, 64, 65;
Figs. 1c and 3; Table 1). The samples were on the top of the
radiolarian chert and red shale sequences where the contact
between these rocks are weathered and not affected by
deformation (Fig. 3). Isotopic composition of organic car-
bon is 8" Cyvppp organic = —26.02%o (sample 64) and that of
the calcite veins in the same sample 1.4%o for 313Cyppp and -
6.6%o for 8180VPDB (Table 1). The samples are characterized
by a TOC contents from 153 to 647 ppm and low HC con-
centrations (1-24 ppm) (Table 2); bitumen extracts are

10.0

dominated by elemental sulphur, but HCs include n-alkanes,
PAHs (P, Fluo, MPs) and steranes (Table 2).

5 Interpretation and discussion

Traces of OM with a composition consistent with a marine
origin were found in the serpentinized exhumed mantle.
The generally low and variable amounts of TOC reflects
the large lithological diversity of the Totalp area, and the
distributions of hydrocarbons are consistent with the tem-
perature history of the Totalp unit (i.e. no metamorphic
overprint) (Table 2; Fig. 5).

5.1 Source of OM

A cross-plot of Pristane (Pr) to n-C;; versus phytane (Ph)
to n-C;g is commonly used to determine the depositional
environment of OM in sedimentary rocks (Peters et al.
2005b). For the Totalp samples (Fig. 7), this cross-plot
implies a reducing (anoxic) depositional environment for
the OM, with a marine source of planktonic algal/bacterial
OM consistent with a marine mixed transitional

Pristane/n - C,
5

0.1

- TERRIGENOUS ORGANIC MATTER

- PEAT-COAL ENVIRONMENTS

- MIXED ORGANIC SOURCES

- AQUATIC ORGANIC MATTER (ALGAL/BACTERIAL)

gaw>

@ Serpentinite
M Radiolarian chert
Ophicalcite: neptunian dyke
Opbhicalcite: tectono-sedimentary
Sulphide rich outcrop

0.1

1.0 10.0

Phytane/ n-C

Fig. 7 Plot of pristane/n-C,7 versus phytane/n-C g for Totalp samples used to identify depositional environment and OM type (after Peters et al.

1999)
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Fig. 8 Sterane ternary
distribution of the analysed
samples for the af3p steranes of
Totalp samples. The
interpretation of depositional
environment is from Patrycja
Wjcik-Tabol and Slaczka
(2015)
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environment that might be expected at this fossil OCT.
Sterane ternary diagrams are also commonly used to pro-
vide information on the source of OM in sedimentary rocks
(Peters et al. 2005a). Comparison of Totalp steranes with
predicted distributions of source materials (Fig. 8) are
consistent with a mixed marine source of planktonic algal
and bacterial OM (Gongalves et al. 2013; Wéjcik-Tabol
and Slaczka 2015) and are similar to OM deposited in
marine settings during and since the Jurassic (Grantham
and Wakefield 1988; Wjcik-Tabol and Slaczka 2015).
Such a source for OM in the radiolarian cherts reflects the
dominant planktonic signature of coccoliths and nanoco-
nids (Manatschal et al. 2003). The variability in the sterane
distributions most likely reflects spatial and temporal
variability in environmental conditions during OM
deposition.

In five samples (ophicalcite, limestone and samples
from the sulphide bearing outcrop) with enough TOC to
allow measurement of its stable isotopic composition, the
determined values of 8" °Cyppp organic Of ca. —26.2 to
—27.4%o (Table 2) are again consistent with an origin from
marine OM (—26 £ 7%o) (Schidlowski 1988; Hayes et al.
1990) and are similar to those found in hydrothermal sys-
tems from the Galapagos (8'°C = —27.4%0) and the
Guaymas Basin (813C = —25 to —21%0) (Orem et al.
1990). Orem et al. (1990) argued that the OM in these
hydrothermal systems derived from chemoautolithotrophic
bacterial production. The carbon isotopic composition of
methane in modern hydrothermal vents ranges from —8.8

C29 (%)

to —19.6%o (e.g. TAG 26°N —8/—9.5%0, Rainbow 36°14'N
—15.8%o, see Charlou et al. 2002; Lost City 30°N —13.6 to
—8.8%0, Kelley et al. 2005; Bradley and Summons 2010).
Fixation of hydrothermal methane by methanotrophs would
be expected to lead to OM more depleted in '*C by
15-30%0 (Summons et al. 1994; Schidlowski 2001; Tem-
pleton et al. 2006), i.e. in the range —23.8 to —34.6%o
assuming the most conservative fractionation. Hence, iso-
topic data from the Totalp samples suggests that there
could be a contribution from methanotrophic biomass;
however the values are also consistent with marine-derived
OM. Taken together with the molecular data and in the
absence of specific methanotrophic biomarkers (e.g. croc-
etane), we consider that the Totalp hydrocarbons derive
from marine OM.

5.1.1 Thermal history of OM

The distributions of PAHs are in part consistent with a high
temperature origin (e.g. Killops and Massoud 1992), for
example with pyrolytic residues (e.g. Geissman et al. 1967)
arising from OM alteration by hydrothermal activity
(Kawka and Simoneit 1990) or low-grade metamorphism
(Heymann et al. 2003). Hence, the methyl-PAH/PAH ratios
of <0.8 observed in our samples are consistent with a
pyrogenic source (Saha et al. 2009). However, the Fluo/Pyr
ratio <0.6 of all the samples is lower than what would be
expected of an exclusively pyrolytic source and indicates
that lower temperature pathways of PAH formation also
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contribute to the HCs (Fabianska et al. 2016). The bio-
marker maturation parameters of C,; steranes fall within
values that might be expected within a temperature
envelope consistent with a moderate thermal history
(Fig. 6; ca. 80-150 °C; Mackenzie et al. 1980; Peters et al.
2005a) and are therefore consistent with the temperature
history of the basin (Friih-Green et al. 1990; Peters et al.
2005b). This suggests that where steranes are present, their
degree of isomerisation reflects gradual maturation over
time, rather than the pyrogenic process that may have
yielded PAHs at the contact of hot rock with seawater OM.

5.1.2 Origin of calcite veins

The measured carbon and oxygen isotopic composition of
carbonates are 0—2%o and —11.7 to —6.2%o, for 8"*Cyvppg
and 8'"®Ovyppg, respectively and are similar to values pre-
viously reported for calcite veins in ophicalcite and late
calcite veins collected in the Davos-Parsenn and Arosa
areas (Fig. 4) (Friih-Green et al. 1990). The §8"Cyppp
values are consistent with seawater-derived early diage-
netic calcite (Fig. 4a) (Hudson 1977; Coleman et al. 1993;
Heydari 1997). The 8'"80yppe values of the calcite veins

for the majority of samples vary between —11.7 and
—6.2%0 and indicate calcite precipitation during shallow
burial (<250 m), not influenced by organic carbon derived
CO, but typical of Cretaceous calcite (Dix and Mullins
1992; Heydari 1997). One sample (radiolarian chert) has a
negative calcite carbon isotope value perhaps indicating the
influence of CO, delivered from diagenesis of OM (Hey-
dari 1997).

5.1.3 OM in serpentinite—mechanism of emplacement

The occurrence of HCs in the serpentinite rocks of Totalp
is at first sight surprising. Schwarzenbach et al. (2013)
listed the five main sources of organic carbon (OC) that can
be preserved in basement rocks, namely: seawater, mantle,
Fischer—Tropsh-like reactions (F-T), in situ production
from microbial activity in the basement rock, and, ther-
mogenic decomposition of OM. The hydrocarbons recov-
ered from the Totalp serpentinites and the OC have isotopic
compositions consistent with an origin from marine OM,
i.e. from a seawater source rather than from in situ pro-
duction or abiotic F-T reactions. Therefore, the probable
origin of the OC preserved in the rocks is from dissolved

Fig. 9 Conceptual model explaining origin and migration of OM
from the seawater into different lithologies in the Totalp unit. a The
OM is represented by particulate and dissolved organic matter (POM
and DOM, respectively). The OM infiltrates the basement rock by
rock-fluid circulation. b Some OM may be deposited within the

sediments

carbonate veins (e.g. calcite veins). ¢ OM circulates with fluids
through fractures and porosity of sediments to migrate into the
basement rock. d OM is preserved at the surfaces and in the interlayer
surfaces of clay minerals in the sediments
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and particulate organic carbon (DOC and POC) derived
from seawater or thermal alteration of OM in sediments
that then migrated to the basement rock within fluids
(Fig. 9a). However, there could be different pathways of
emplacement of OM in the serpentinites.

The OM could have been deposited within the two types
of precipitated carbonate found in the serpentinite, namely
the mechanically deposited carbonate that fills fractures, or
via pore fluids fuelling the formation of calcite veins
(Fig. 9b; Bernoulli and Weissert 1985; Friih-Green et al.
1990). The latter has an isotopic composition consistent
with seawater carbonate and any DOM transported with the
pore fluids would be trapped within the calcite matrix on
precipitation (Figs. 4 and 9b). The presence of ophicalcite
and the numerous calcite veins from the time of exhuma-
tion indicates a high supply of dissolved inorganic carbon
(Ménez et al. 2012). As the OM clearly has a marine origin,
it could have been emplaced by the first main phase of
fluid-rock interactions at the ocean floor and the tectono-
sedimentary and hydrothermal processes described by
Friih-Green et al. (1990). The OM may have migrated with
seawater through fractures in the sediment into the base-
ment rock (Fig. 9c; Delacour et al. 2008). These fractures
formed by tectonic and crystallization stresses, which are
not reliant on matrix permeability (Farough et al. 2016).
Where initial contact between DOM-containing fluid and
rock was at relatively high temperature, this could have led
to the formation of the “pyrolytic” PAHs.

With respect to the sedimentary facies, organic carbon
preservation is linked to grain size (or mineral surface area)
and oxygen exposure after deposition (Fig. 9d; Hartnett
et al. 1998; Kennedy et al. 2002). Clay minerals, one of the
constituents of shale sediments found in the Totalp unit,
strongly retain DOM both on the external surfaces and
interlayer spaces of clay particles (Kennedy et al. 2002).
However the Totalp sediments have low TOC values and
could been highly oxidised during deposition or diagenesis.
During deposition of shales, OM is also deposited as dis-
crete biogenic particles, but largely these are not preserved;
rather clays, particularly smectites, facilitate the absorption
of DOM and POM from seawater and pore-fluids, and
preserve it during burial (Kennedy et al. 2002).

In summary, OM in the exhumed mantle rocks at Totalp
is of marine origin that migrated into the serpentinite most
likely from the overlying seawater or sediment cover (Si-
moneit et al. 1978; Simoneit and Philp 1982). Our results
are consistent with previous studies that show a lack of, or
only minor formation of the CH4 and H, needed for the
production of OM involving serpentinization at low-tem-
perature (McCollom and Donaldson 2016) and that the
molecules necessary for life at hydrothermal systems are
formed during the abiotic degradation of existing OM at
low temperatures on the ocean floor (Reeves et al. 2014).

6 Conclusions

We provide evidence for the preservation of traces of OM
originally deposited in a reducing marine environment in
serpentinized mantle rocks and overlying sediments, but
with no indication that the OM was generated from
methanotrophic bio-systems. The presence of OM within
serpentinized mantle raises two questions; how much is
there and how is this OM distributed in depth? Drilling to
recover rock cores from the Totalp area would allow
sampling of serpentinized mantle deeper than surface out-
crops and would shed light on the depth distribution of OM
and its composition.
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Glossary

DOM Dissolved organic matter

GC Gas chromatography

GC-MS Gas chromatography—mass spectrometry
HC Hydrocarbon

HCL Hydrochloric acid

OCT Ocean-continent transition

oM Organic matter

PAH Polynuclear aromatic hydrocarbons
P Phenanthrene

Fluo Fluoranthene

Pyr Pyrene

Chry Chrysene

BaA Benzo(a)anthracene

BbF Benzo(b)fluoranthene

BaP Benzo(a)pyrene

IndPy Indeno(1,2,3-cd)pyrene

BghiP Benzo(ghi)perylene

DBT Dibenzothiophene

3,2,1 and 9 3-,2-,1- and 9-methylphenanthrene
MPs

POM Particle organic matter

POC Particle organic carbon

PPM Parts per million (1 ppm = 1 mg/l;

1 mg/kg)
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Steranes

C27Ba20S 20S 13B(H),17a(H)-diacholestane

C27Ba20R  20R 13B(H),17a(H)-diacholestane

C27ap20S 20S 13B(H),17a(H)-diacholestane

C27aB20R 20S 13B(H),17a(H)-diacholestane

C28Ba20S 20S 24-methyl-13B(H),17a(H)-
diacholestane

C28Bo20R  20R 24-methyl-13B(H),17a(H)-
diacholestane

C2700t0:20S  20S S5a(H), 140(H), 170(H)-cholestane

C27aBB20R  20R So(H), 14a(H), 17a(H)-cholestane

C27aBB20S  20S So(H), 14a(H), 17a(H)-cholestane

C2700020R  20R S5a(H), 14a(H), 170(H)-cholestane

C2800:020S  20S 24-methyl-5a(H), 140(H), 170(H)-
cholestane

C28aBfP20R  20R 24-methyl-50(H), 14ou(H), 17a(H)-
cholestane

C28apP20S  20S 24-methyl-5a(H), 140(H), 170(H)-
cholestane

C2800020R  20R 24-methyl-5a(H), 14o(H), 17a(H)-
cholestane

C2900020S 208 24-ethyl-So(H), 14a(H), 17a(H)-
cholestane

C29aBB20R  20R 24-ethyl-5a(H), 14a(H), 170(H)-
cholestane

C290BB20S  20S 24-ethyl-5a(H), 14a(H), 170(H)-
cholestane

C2900020R  20R 24-ethyl-5a(H), 140(H), 17a(H)-
cholestane

TOC Total organic matter

TC Total carbon

XRD X-ray diffraction

%0 Permille symbol
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