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Rational numbers with small denominators in short intervals

Igor E. Shparlinski

Abstract. We use bounds on bilinear forms with Kloosterman fractions
and improve the error term in the asymptotic formula of Balazard and
Martin (Bull Sci Math 187:Art. 103305, 2023) on the average value of the
smallest denominators of rational numbers in short intervals.
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1. Introduction. Given an integer N � 1, and j = 1, . . . , N, we denote by
qj(N) the smallest integer q such that, for some a, we have

a

q
∈

(
j − 1
N

,
j

N

]
.

Next, we consider the average value

S(N) =
1
N

N∑
j=1

qj(N).

Recently, Balazard and Martin [2] have confirmed the conjecture of Kruys-
wijk and Meijer [10] that

S(N) ∼ 16
π2

N3/2

and in fact established the following much more precise asymptotic formula

S(N) =
16
π2

N3/2 + O
(
N4/3(log N)2

)
, (1.1)

see [2, Equation (1)]. Note that the asymptotic formula (1.1) improves on
previous upper and lower bounds of Kruyswijk and Meijer [10] and Stewart
[13], for example on the previous inequalities

1.35N3/2 < S(N) < 2.04N3/2
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in [13] (note that 16/π2 = 1.6211 . . .). For other related results, see [1,4,5,7,
11,12] and references therein.

The bound on the error term in (1.1) is based on the classical bound of
Kloosterman sums, see, for example, [9, Corollary 11.12].

Here, we use bounds on bilinear forms with Kloosterman fractions due to
Duke et al. [6], and improve the error term in the asymptotic formula (1.1) as
follows.

Theorem 1.1. We have

S(N) =
16
π2

N3/2 + O
(
N29/22+o(1)

)
,

as N → ∞.

2. Preliminary reductions. As usual, we use the expressions U � V and U =
O(V ) to mean |U | ≤ cV for some constant c > 0 which throughout this paper
is absolute.

We have

S(N) =
16
π2

N3/2 + R(N), (2.1)

where by [2, Equations (19), (20), and (21)], we can write

R(N) � T11(N) + T12(N) + T2(N) (2.2)

for some quantities T11(N), T12(N), and T2(N) which are estimated in [2]
separately. In particular, by [2, Equations (23) and (26)], we have

T12(N) � N5/4(log N)2 and T2(N) � N5/4(log N)2. (2.3)

Therefore, the error term in (1.1) comes from the bound

T11(N) � N4/3(log N)2 (2.4)

given by [2, Equation (22)].
We now see from (2.1), (2.2), and (2.3) that in order to establish Theo-

rem 1.1 we only need to improve (2.4) as

T11(N) � N29/22+o(1). (2.5)

We first recall the following expression for T11(N) given in [2, Section 5.3]:

T11(N) =
∑

s�
√
N

∑
1�r�Rs

gcd(r,s)=1

rB1

(
Nr−1

s

)
(2.6)

with the Bernoulli function

B1(u) =

{
0 if u ∈ Z,

{u} − 1/2 if u ∈ Z,

where {u} is the fractional part of a real u, the inversion r−1 in the fractional
part {Nr−1/s} is computed modulo s, and Rs is a certain sequence of positive
integers, satisfying

Rs � N/s (2.7)
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(we refer to [2] for an exact definition, which is not important for our argu-
ment).

It is more convenient for us to work with the function

ψ(u) = {u} − 1/2,

which coincides with B1(u) for all u �∈ Z.
In particular,

B1

(
Nr−1

s

)
= ψ

(
Nr−1

s

)

unless s | N.
Using the classical bound on the divisor function

τ(k) = ko(1), (2.8)

for a positive integer k → ∞ (see, for example, [9, Equation (1.81)]), we infer
from (2.6) that

T11(N) = U(N) + E(N), (2.9)

where

U(N) =
∑

s�
√
N

∑
1�r�Rs

gcd(r,s)=1

rψ

(
Nr−1

s

)
, (2.10)

and, using (2.7),

E(N) �
∑

s�
√
N

s|N

R2
s � N2

∑
s�

√
N

s|N

s−2 � N1+o(1). (2.11)

3. Vaaler polynomials. For a real z, let e(z) = exp(2πz). By a result of Vaaler
[14], see also [8, Theorem A.6], we have the following approximation of ψ(u).

Lemma 3.1. For any integer H � 1, there is a trigonometric polynomial

ψH(u) =
∑

1≤|h|≤H

ah

−2iπh
e(hu)

for coefficients ah ∈ [0, 1] and such that

|ψ(u) − ψH(u)| � 1
2H + 2

∑
|h|≤H

(
1 − |h|

H + 1

)
e(hu). (3.1)

4. Bilinear forms with Kloosterman fractions. Here we collect some estimates
on bilinear forms with exponentials e

(
hr−1/s

)
where, as before, r−1 in the

argument is computed modulo s.
For U � 1, we also use u ∼ U to indicate U � u < 2U.
We start with recalling the following bound of Duke et al. [6, Theorem 1].
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Lemma 4.1. For sequences α = {αr}∞
r=1, β = {βs}∞

s=1 of complex numbers, a
nonzero integer K, and real positive R and S, we have∣∣∣∣∣∣∣

∑
s∼S

∑
r∼R

gcd(r,s)=1

αrβs e
(
Kr−1/s

)
∣∣∣∣∣∣∣

� ‖α‖‖β‖
(

(R + S)1/2 +
(

1 +
K

RS

)1/2

min{R,S}
)

(RS)o(1),

where

‖α‖ =

(∑
r∼R

|αr|2
)1/2

and ‖β‖ =

(∑
s∼S

|βs|2
)1/2

.

Next, given two sequences of complex numbers

α = {αr}∞
r=1 and β = {βs}∞

s=1,

a sequence of positive integers

R = {βs}∞
s=1,

and an integer h, for S � 1, we define the bilinear form

BK(S;R,α,β) =
∑
s∼S

Rs∑
r=1

gcd(r,s)=1

αrβs e
(
Kr−1/s

)
.

Note that in the sums BK(S;R,α,β) the range of summation over r depends
on s and hence Lemma 4.1 does not directly apply.

We observe that for

αr = r, βs � 1, Rs � min{N/s, s}, r, s = 1, 2, . . . , (4.1)

the argument in [2, Section 3] (in which we also inject the bound (2.8)) imme-
diately implies that for

0 < |K| = NO(1) and 0 < S � N,

we have

BK(S;R,α,β) �
∑
s∼S

gcd(K, s)1/2Rss
1/2 log s

� N1+o(1)
∑
s∼S

gcd(K, s)1/2s−1/2

� N1+o(1)S−1/2
∑
d|K

d1/2
∑
s�2S
d|s

1

� N1+o(1)S−1/2
∑
d|K

d1/2 
2S/d�

� N1+o(1)S1/2
∑
d|K

d−1/2
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� N1+o(1)S1/2. (4.2)

Note that one can also derive (4.2) via [6, Lemma 8] and partial summation.
In fact, using the bound (4.2) for S � N2/3 and the trivial bound

BK(S;R,α,β) �
∑
s∼S

R2
s � N2S−1

in our argument below, one recovers the asymptotic formula (1.1). However,
using some other bounds, we achieve a stronger result.

We also remark that for us only the choice of α = {αr}∞
r=1 satisfying (4.1)

matters. However we present the below results for a more general α (but still
they admit even more general forms).

Using Lemma 4.1 together with the standard completing technique, see,
for example, [9, Section 12.2], we derive our main technical tool.

Lemma 4.2. For sequences α = {αr}∞
r=1, β = {βs}∞

s=1, and R = {Rs}∞
s=1, a

nonzero integer K and real S with

αr � A, βs � B, Rs � min{N/s, s}, r, s = 1, 2, . . . ,

and

N1/2 � S � N,

we have

|BK(S;R,α,β)| � AB(RS)1/2
(
S1/2 + R + K1/2S−1/2R1/2

)
No(1),

where

R = max{Rs : s ∼ S}.

Proof. Note that

R � N/S � S. (4.3)

Using the orthogonality of exponential functions, we write

BK(S;R,α,β)

=
∑
s∼S

Rs∑
r=1

gcd(r,s)=1

αrβs e
(
Kr−1/s

)

=
∑
s∼S

R∑
r=1

gcd(r,s)=1

αrβs e
(
Kr−1/s

) 1
R

R−1∑
u=0

Rs∑
t=1

e(u(t − r)/R)

=
1
R

R−1∑
u=0

∑
s∼S

R∑
r=1

gcd(r,s)=1

αr e(−ur/R)βs e
(
Kr−1/s

) Rs∑
t=1

e(ut/R).

Using that
Rs∑
t=1

e(ut/R) � R

min{u,R − u} + 1
,
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see [9, Equation (8.6)], we derive

BK(S;R,α,β) � 1
R

R−1∑
u=0

R

min{u,R − u} + 1

×

∣∣∣∣∣∣∣
∑
s∼S

R∑
r=1

gcd(r,s)=1

αr e(−ur/R)βs e
(
Kr−1/s

)
∣∣∣∣∣∣∣
.

It remains to observe that, for each u = 0, . . . , R−1, the bound of Lemma 4.1
applies to the inner sum and implies

|BK(S;R,α,β)|

� AB(RS)1/2
(

(R + S)1/2 +
(

1 +
K

RS

)1/2

min{R,S}
)

No(1).

Recalling (4.3), this now simplifies as

|BK(S;R,α,β)| � AB(RS)1/2
(

S1/2 +
(

1 +
K

RS

)1/2

R

)
No(1)

= AB(RS)1/2
(
S1/2 + R + K1/2S−1/2R1/2

)
No(1),

which concludes the proof. �

Remark 4.3. Instead of using Lemma 4.1, that is, essentially [6, Theorem 1],
one can also derive a version of Lemma 4.2 from [6, Theorem 2], or from
a stronger result due to Bettin and Chandee [3, Theorem 1]. However these
bounds do not seem to improve our main result.

5. Proof of Theorem 1.1. As we have noticed in Section 2, it is enough to only
estimate T11(N), as we borrow the bounds on T12(N) and T2(N) from [2].
Furthermore, we see from (2.9) and (2.11) that it is enough to estimate U(N)
given by (2.10).

We note that it is important to observe that the sum defining ψH(u) in
Lemma 3.1 does not contain the term with h = 0, while the sum on the right
hand side of (3.1) does. Hence, for any integer H � 1, by Lemma 3.1, we have

U(N) � H−1
∑

s�
√
N

Rs∑
r=1

gcd(r,s)=1

r

+
∑

1≤|h|≤H

1
h

∣∣∣∣∣∣∣
∑

s�
√
N

Rs∑
r=1

gcd(r,s)=1

r e
(
hNr−1/s

)
∣∣∣∣∣∣∣
,

+
1
H

∑
1≤|h|≤H

∣∣∣∣∣∣∣
∑

s�
√
N

Rs∑
r=1

gcd(r,s)=1

r e
(
hNr−1/s

)
∣∣∣∣∣∣∣
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� H−1
∑

s�
√
N

R2
s +

∑
1≤|h|≤H

1
h

∣∣∣∣∣∣∣
∑

s�
√
N

Rs∑
r=1

gcd(r,s)=1

r e
(
hNr−1/s

)
∣∣∣∣∣∣∣

� H−1N3/2 +
∑

1≤|h|≤H

1
h

∣∣∣∣∣∣∣
∑

s�
√
N

Rs∑
r=1

gcd(r,s)=1

r e
(
hNr−1/s

)
∣∣∣∣∣∣∣
.

Note that Rs � 1 implies s � N. Therefore, partitioning the corresponding
summation over s into dyadic intervals, we see that there is some integer S
with

N1/2 � S � N

and such that

U(N) � H−1N3/2 + V (N,S) log N, (5.1)

where

V (N,S) =
∑

1≤|h|≤H

1
h

∣∣∣∣∣∣∣
∑
s∼S

Rs∑
r=1

gcd(r,s)=1

r e
(
hNr−1/s

)
∣∣∣∣∣∣∣
.

Now, if S � H1/5N3/5, then we use the bound (4.2) and easily derive

V (N,S) � N1+o(1)S1/2 � H1/10N13/10+o(1). (5.2)

On the other hand, for S > H1/5N3/5, Lemma 4.2 (used with A � N/S
and B � 1), after recalling that R � N/S, implies the same bound:

∑
s∼S

Rs∑
r=1

gcd(r,s)=1

r e
(
hNr−1/s

)

� (N/S)N1/2+o(1)
(
S1/2 + NS−1 + h1/2NS−1

)

� (N/S)N1/2+o(1)
(
S1/2 + h1/2NS−1

)
.

Therefore, recalling that S > H1/5N3/5, we obtain

V (N,S) � (N/S)N1/2+o(1)
(
S1/2 + H1/2NS−1

)

= N3/2+o(1)S−1/2 + H1/2N5/2+o(1)S−2

� H−1/10N6/5+o(1) + H1/10N13/10+o(1)

� H1/10N13/10+o(1).

Therefore, the bound (5.2) holds for any S. Substituting (5.2) in (5.1) yields

U(N) � H−1N3/2 + H1/10N13/10+o(1)

and choosing

H =
⌈
N2/11

⌉
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to optimise the bound, we obtain

U(N) � N29/22+o(1).

Finally, recalling (2.9) and (2.11), we derive (2.5) and conclude the proof.
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