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Minimal periods for semilinear parabolic equations

Gerd Herzog and Peer Christian Kunstmann

Abstract. We show that, if −A generates a bounded holomorphic semi-
group in a Banach space X, α ∈ [0, 1), and f : D(A) → X satisfies
‖f(x) − f(y)‖ ≤ L‖Aα(x − y)‖, then a non-constant T -periodic solution
of the equation u̇ + Au = f(u) satisfies LT 1−α ≥ Kα where Kα > 0 is
a constant depending on α and the semigroup. This extends results by
Robinson and Vidal-Lopez, which have been shown for self-adjoint oper-
ators A ≥ 0 in a Hilbert space. For the latter case, we obtain - with a
conceptually new proof - the optimal constant Kα, which only depends
on α, and we also include the case α = 1. In Hilbert spaces H and for
α = 0, we present a similar result with optimal constant where Au in the
equation is replaced by a possibly unbounded gradient term ∇HE (u).
This is inspired by applications with bounded gradient terms in a paper
by Mawhin and Walter.
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1. Introduction and main results. In this paper, we study periodic solutions
of equations

u̇(t) + Au(t) = f(u(t)), t ∈ R, (1.1)

where −A is the generator of a bounded analytic semigroup in a complex
Banach space (X, ‖ · ‖), X �= {0}, with domain D(A) and f : D(A) → X is a
function which is Lipschitz continuous in the sense that

‖f(x) − f(y)‖ ≤ L‖Aα(x − y)‖, x, y ∈ D(A), (1.2)

for a fixed α ∈ [0, 1) and some constant L ≥ 0. Here Aα denotes the fractional
power of A of order α. We shall relate the minimal period of a non-constant
T -periodic solution u of (1.1) to the Lipschitz constant L in (1.2).
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The ODE case A = 0 and α = 0, i.e.,

u̇(t) = f(u(t)), t ∈ R, where ‖f(x) − f(y)‖ ≤ L‖x − y‖, x, y ∈ X,

(1.3)

has been addressed in several papers: If u is a T -periodic solution to (1.3) and
LT < 6, then u has to be constant [2]. The constant 6 is known to be optimal
in general Banach spaces [10]. In a Hilbert space, a T -periodic solution u is
constant if LT < 2π and 2π is optimal [2,8,17]. These results rely on the
estimates in Lemma 3.1 below, in particular, the Hilbert space result uses
Wirtinger’s inequality in Lemma 3.1(a). Lp-versions of Wirtinger’s inequality
with optimal constants have been established in [4]. They have been used in
[11] to improve the constant 6 in case X = Lp(Ω) for p in a certain symmetric
interval around 2, which is strictly contained in (4

3 , 4). For further details on
the Lp-case, we refer to Remark 4.1(c) below. In strictly convex Banach spaces
X, a T -periodic solution u to (1.3) is constant if LT ≤ 6; see [11].

For the special case that X = H is a Hilbert space and A is self-adjoint with
A ≥ 0, the problem has been studied in [13] under the additional restrictions
α ∈ [0, 1

2 ) and A invertible with A−1 compact. These additional restrictions
have been removed in [14]. It is shown in [13,14] that there exists a constant
Kα > 0 only depending on α such that LT 1−α < Kα implies that a T -periodic
solution u to (1.1) is constant. The proofs given there rely in an essential way
on properties of spectral projections for A provided by the spectral theorem
and study the mild formulation (4.1) of the abstract Cauchy problem corre-
sponding to (1.1), also known as Duhamel’s principle or variation-of-constants
formula. In a remark [14, p. 4286], conditions are given that allow to extend
this method of proof to Banach spaces. These conditions involve existence and
certain estimates for spectral projections of the operator A and seem rather re-
strictive. Hence, the extension to the situation “when A is a sectorial operator,
as treated by Henry [7]” ([13, p. 402]) is still missing.

The new contributions to the problem in the present paper are the follow-
ing.

• We modify the argument in [14] in such a way that it works in arbitrary
Banach spaces X under the sole assumption that −A generates a bounded
analytic semigroup. In particular, no assumptions on spectral projections
are needed; see Theorem 1.1. We thus provide the extension conjectured
on [13, p. 402].

• In case X = H is a Hilbert space and A is self-adjoint with A ≥ 0, we
present a new argument, which yields the optimal constants for the result
in [14]. Our proof is based on refined energy type estimates, inspired by
the applications in [9], and we can also include the limit case α = 1. See
Theorem 1.2 and Sect. 2.

• For X = H a real Hilbert space and α = 0, we replace the term Au(t) in
(1.1) by a possibly unbounded nonlinear gradient term ∇HE (u(t)). This
is inspired by finite-dimensional applications in [9]. We get the same
bound as for the case α = 0 in Theorem 1.2, namely LT < 2π; see
Theorem 1.4.
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We recall that, if −A is the generator of a bounded analytic semigroup,
one can define fractional powers Aγ of A for any γ ≥ 0 and has

cγ := sup
t>0

‖tγAγe−tA‖ < ∞, γ ≥ 0; (1.4)

see, e.g., [6,12]. We denote by [D(A)] the space D(A) equipped with the graph
norm. Our main results read as follows.

Theorem 1.1. Let −A be the generator of a bounded analytic semigroup in a
Banach space X. Let α ∈ [0, 1) and suppose that f : D(A) → X satisfies
(1.2) for some L ≥ 0. If T ∈ (0,∞) and u ∈ C1(R,X) ∩ C(R, [D(A)]) is a
T -periodic solution of (1.1) with

LT 1−α <
(
1 − c1

6k

) (
cα

6kα
+

cαk1−α

1 − α

)−1

(1.5)

for some k ∈ N with k > c1
6 , then u is constant. In a Hilbert space, the

conclusion holds if

LT 1−α <
(
1 − c1

2πk

) (
cα

2πkα
+

cαk1−α

1 − α

)−1

(1.6)

for some k ∈ N with k > c1
2π . Here we understand that the right hand side in

(1.5) or (1.6) is = ∞ if cα = 0.

The proof of Theorem 1.1 is inspired in principle by the approach in [14].
In case X = H is a Hilbert space and A is self-adjoint in H with A ≥ 0,
then c0 = 1 and, for A �= 0, the spectral theorem (see, e.g., [15]) allows us to
calculate

cγ = sup
t≥0,λ∈σ(A)

(tλ)γe−tλ = sup
s≥0

(
sγe−s

)
= γγe−γ , γ > 0,

where σ(A) denotes the spectrum of A, which by A ≥ 0 satisfies σ(A) ⊆ [0,∞).
Hence c1 = e−1 < 1, we can take k = 1, and the condition (1.6) reads

LT 1−α <

(
1 − 1

2πe

)(
ααe−α

(
1
2π

+
1

1 − α

))−1

. (1.7)

But one can do better.

Theorem 1.2. Let X = H be a Hilbert space and A be self-adjoint in H with
A ≥ 0. Let α ∈ [0, 1] and suppose that f : D(A) → X satisfies (1.2) for some
L ≥ 0. If T ∈ (0,∞) and u ∈ C1(R,X)∩C(R, [D(A)]) is a T -periodic solution
of (1.1) with

LT 1−α <
(2π)1−α

√
αα(1 − α)1−α

, (1.8)

then u is constant. The bound (1.8) is sharp.
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Figure 1. Different bounds for LT 1−α for a self-adjoint op-
erator A ≥ 0 in a Hilbert space H as a function of α ∈ [0, 1].
The upper curve is the bound in (1.8), the intermediate curve
is the bound in (1.7), and the lower curve is the bound in (1.9)
from [14]

Remark 1.3. In the situation of Theorem 1.2, one can compare the constants
in (1.7) and in (1.8) with the constant in [14, p. 4286] where (recalling γ from
p. 4285) the corresponding condition reads

LT 1−α <

(
21−2α +

ααe−α

(1 − α)(1 − e−1/2)

)−1

; (1.9)

see Fig. 1.

We can replace Au(t) in (1.1) by a gradient term ∇HE (u(t)). Here, H is
a real Hilbert space, V is a Banach space that is densely and continuously
embedded into H, and E : V → R is continuously differentiable. For the
precise definition of the H-gradient ∇HE and some remarks on existence, we
refer to Sect. 6. We look at periodic solutions of the equation

u̇(t) + ∇HE (u(t)) = f(u(t)), t ∈ R, (1.10)

where f : H → H is Lipschitz continuous, i.e., there exists a constant L ≥ 0
such that

‖f(x) − f(y)‖H ≤ L‖x − y‖H , x, y ∈ H. (1.11)

Then we have the following result.
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Theorem 1.4. In the situation described above, let T ∈ (0,∞) and let u ∈
C1(R, V ) be a T -periodic solution of (1.10). If LT < 2π, then u is constant.
The bound 2π is sharp.

Remark 1.5. (a) The regularity assumptions on u in our results are made for
simplicity. We do not say much on existence in this paper. From the proofs,
one can see that the natural assumption in Theorem 1.1 is u ∈ W 1,1

loc (R;X) ∩
L1

loc(R; [D(A)]) for the statement in Banach spaces. For the Hilbert space
statement in Theorem 1.1, the natural assumption here is u ∈ W 1,2

loc (R;X)∩L2
loc

(R; [D(A)]), and in Theorem 1.2, it is u ∈ W 1,2
loc (R;H) ∩ L2

loc(R; [D(A)]). In
Theorem 1.4, we can relax the condition to u ∈ W 1,2

loc (R;V ), provided the
derivative E ′ : V → V ′ maps bounded sets into bounded sets; we refer to
Remark 6.1.

(b) A special case of the situation in Theorem 1.4 is given by E (v) =
‖A1/2v‖2

H where A is a self-adjoint operator in H with A ≥ 0 and V =
D(A1/2). However, in this case neither the regularity assumptions on u in
Theorem 1.2 and Theorem 1.4 nor their respective relaxations in part (a) are
comparable.

We remark that in [13,14], applications are given to the two-dimensional
Navier–Stokes equation with periodic boundary conditions. In this context, we
also refer to the recent existence results on time-periodic solutions in [1,5].

The paper is organized as follows. In Sect. 2, we show optimality of the
bounds in Theorems 1.2 and 1.4. In Sect. 3, we collect the basic inequalities
we shall use. Then we present the proofs of Theorem 1.1, Theorem 1.2, and
Theorem 1.4 in Sects. 4, 5, and 6, respectively.

2. Optimality in Theorem 1.2 and Theorem 1.4. We start with examples for
the cases α = 0 and α = 1 in Theorem 1.2.

Example 2.1. (Case α = 0) Let A = 0 in X = H = C, f(x) = 2πix. Then
f is Lipschitz continuous with L = 2π and the ordinary differential equation
u̇(t) = 2πiu(t) has the 1-periodic solution u(t) = e2πit, t ∈ R. Hence, for α = 0,
the condition LT < 2π in Theorem 1.2 is optimal.

Example 2.2. For α = 1, the condition L < 1 in Theorem 1.2 is optimal: Let
X = H = C and Ax = ax where a > 0. Let f(x) = (a+ ib)x where b = εa and
ε > 0. Then the ordinary differential equation

u̇(t) + au(t) = f(u(t)) = (a + ib)u(t) ⇐⇒ u̇(t) = ibu(t)

has the solution u(t) = eibt, which is T -periodic for T = 2π
b = 2π

εa , and f

satisfies (1.2) for α = 1 with constant L =
√

a2+b2

a =
√

1 + ε2 which tends to
1 as ε → 0. Observe that, by adjusting a for fixed ε > 0, we can arrange for
any period T > 0. It seems unclear what happens for L = 1.

As a preparation for our examples on optimality in Theorem 1.2 for α ∈
(0, 1), we note the following consequence for linear f .
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Corollary 2.3. Let X = H be a Hilbert space, A be self-adjoint with A ≥ 0, U
be unitary in H, and L > 0. If α ∈ (0, 1) and T > 0 are such that (1.8) holds,
then purely imaginary eigenvalues of A + LUAα belong to i(− 2π

T , 2π
T ).

Proof. The linear operator B : D(A) → X given by B = −LUAα satisfies
(1.2) in place of f . Let λ ∈ R be such that iλ is an eigenvalue of A − B
with eigenvector x. We may assume that λ �= 0. Then u(t) = e−iλtx is a non-
constant 2π

|λ| -periodic solution of u̇(t) + Au(t) = Bu(t). By Theorem 1.2 and
(1.8), we infer that 2π

|λ| > T , i.e., |λ| < 2π
T . �

Example 2.4. Let α ∈ (0, 1), X = H = C, Ax = ax where a > 0, L = a1−α√
α

,

f(x) = −Leiϕaαx, and λ = a
√

1−α
α . Then, f satisfies (1.2) and we have

|a − iλ|2 = a2 + λ2 = a2

(
1 +

1 − α

α

)
=

a2

α
= (Laα)2,

and we find ϕ ∈ R such that a−iλ = −Leiϕaα which means that a+Leiϕaα =
iλ. But then u(t) = e−iλt defines a 2π

λ -periodic solution of (1.1), and for

T = 2π
λ = 2π

a

√
α

1−α , we have

(LT 1−α)2 =
a2(1−α)

α

(2π)2(1−α)

a2(1−α)

(
α

1 − α

)1−α

=
(2π)2(1−α)

αα(1 − α)1−α
. (2.1)

Thus the bound in (1.8) is sharp.
The example can be modified to work in the real Hilbert space R

2. We
simply use the representation of complex numbers x + iy as matrices

(
x
y

−y
x

)
.

To be more precise, let I ∈ R
2×2 denote the identity matrix and set A := aI

where a > 0. Let L, λ be as before and f(x) = −LUϕ(aαx), x ∈ R
2, where

Uϕ =
(

cos ϕ
sin ϕ

− sin ϕ
cos ϕ

)
. Then f satisfies (1.2) and we have

A + LUϕ(aαI) = a(I +
1√
α

Uϕ), σ(A + LUϕ(aαI)) =
{

a

(
1 +

1√
α

e±iϕ

)}
.

As before, we find ϕ such that a(1 + 1√
α
eiϕ) = ia

√
1
α − 1 =: iλ. Finally,

u(t) =
(

cos(λt)
− sin(λt)

)
is a 2π

λ -periodic solution of (1.1), and (2.1) holds as before.

Finally, we present an example for sharpness of the bound in Theorem 1.4.

Example 2.5. We rephrase Example 2.1 in H = R
2, a real Hilbert space. Let

V = R
2, E (x) = 0, f(x) =

(
0
2π

−2π
0

)
. Then f satisfies (1.2) for α = 0 and

L = 2π. We have ∇HE (x) = 0 for all x ∈ R
2. Hence u(t) =

(
cos(2πt)

− sin(2πt)

)

defines a 1-periodic solution of (1.10).
Concerning the context of Remark 6.1, observe that E ′ maps bounded sets

of V = R
2 into bounded sets of V ′ = R

2.
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3. Basic inequalities. The following lemma is a basic tool in the proofs.

Lemma 3.1. Let v : R → X be continuously differentiable and T -periodic.

(a) If X = H is a Hilbert space and
∫ T

0
v(r) dr = 0, then

⎛
⎝

T∫

0

‖v(r)‖2 dr

⎞
⎠

1/2

≤ T

2π

⎛
⎝

T∫

0

‖v̇(r)‖2 dr

⎞
⎠

1/2

.

(b) In the general Banach space case, we have

T∫

0

T∫

0

‖v(t) − v(s)‖ ds dt ≤ T

6

T∫

0

T∫

0

‖v̇(t) − v̇(s)‖ ds dt.

We include a proof for (a), which is called Wirtinger’s inequality, and refer
to [2] or [10] for the proof of (b).

Proof. (a): By scaling, it is sufficient to study the case T = 1. We expand v in
a Fourier series

v(t) =
∑

j∈Z\{0}
cje

2πijt, v̇(t) =
∑

j∈Z\{0}
2πijcje

2πijt,

and use Plancherel in H, e.g.,
∫ T

0
‖v(r)‖2 dr =

∑
j �=0 ‖cj‖2. �

Remark 3.2. If, in the situation of Lemma 3.1, X = H is a Hilbert space, we
also have

⎛
⎝

T∫

0

T∫

0

‖v(t) − v(s)‖2 ds dt

⎞
⎠

1/2

≤ T

2π

⎛
⎝

T∫

0

T∫

0

‖v̇(t) − v̇(s)‖2 ds dt

⎞
⎠

1/2

.

This follows easily from Lemma 3.1(a).

4. The general Banach space case. We recall the well-known fact that a solu-
tion u ∈ C1(R,X) ∩ C(R, [D(A)]) of the abstract Cauchy problem

u̇(t) + Au(t) = f(u(t)), t ∈ R,

satisfies, by Duhamel’s formula, the equation

u(t) = e−tAu(0) +

t∫

0

e−(t−s)Af(u(s)) ds, t ≥ 0. (4.1)

Proof of Theorem 1.1. Suppose that u ∈ C1(R,X)∩C(R, [D(A)]) is a solution
of (1.1) that is T -periodic. We write, for s, t ∈ [0, T ],

Aα(u(t) − u(s)) = Aαe−kTA(u(t) − u(s)) + Aα(I − e−kTA)(u(t) − u(s))

=: v1(t, s) + v2(t, s),
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where k ∈ N is such that c1
6k < 1. Observe that the operator Aαe−kTA is

bounded. We shall give an estimate on

dT (u) :=

T∫

0

T∫

0

‖Aα(u(t) − u(s))‖ ds dt (4.2)

from which our result will follow. Clearly,

dT (u) ≤
T∫

0

T∫

0

‖v1(t, s)‖ ds dt +

T∫

0

T∫

0

‖v2(t, s)‖ ds dt =: I1 + I2,

and we start by applying Lemma 3.1(b) to v(t) = Aαe−kTAu(t). By (1.1), we
then obtain

6
T

I1 ≤
T∫

0

T∫

0

‖Aαe−kTA(u̇(t) − u̇(s))‖ ds dt

≤
T∫

0

T∫

0

‖Aαe−kTAA(u(t) − u(s))‖ ds dt

+

T∫

0

T∫

0

‖Aαe−kTA(f(u(t)) − f(u(s)))‖ ds dt

≤ c1

kT

T∫

0

‖Aα(u(t) − u(s))‖ ds dt

+
cα

kαTα

T∫

0

T∫

0

‖f(u(t)) − f(u(s))‖ ds dt

≤
(

c1

kT
+

cαL

kαTα

) T∫

0

T∫

0

‖Aα(u(t) − u(s))‖ ds dt.

Hence, we have shown

I1 ≤
( c1

6k
+

cα

6kα
LT 1−α

)
dT (u).

In order to get an estimate on I2, we use (4.1) and the T -periodicity of u to
write

u(t) = u(t + kT ) = e−kTAu(t) +

kT∫

0

e−(kT−r)Af(u(r + t)) dr.

Hence, we have

(I − e−kTA)(u(t) − u(s)) =

kT∫

0

e−(kT−r)A (f(u(r + t)) − f(u(r + s))) dr.
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For I2, we thus obtain, by Minkowski’s inequality,

I2 =

T∫

0

T∫

0

‖Aα(I − e−kTA)(u(t) − u(s))‖ ds dt

≤
T∫

0

T∫

0

∥∥∥∥∥∥

kT∫

0

Aαe−(kT−r)A(f(u(r + t)) − f(u(r + s))) dr

∥∥∥∥∥∥
ds dt

≤
kT∫

0

T∫

0

T∫

0

∥∥∥Aαe−(kT−r)A(f(u(r + t)) − f(u(r + s)))
∥∥∥ ds dt dr

≤ cα

kT∫

0

(kT − r)−α

T∫

0

T∫

0

‖f(u(r + t)) − f(u(r + s))‖ ds dt dr

≤ cαL

kT∫

0

r−α dr

T∫

0

T∫

0

‖Aα(u(t) − u(s))‖ ds dt

=
cαk1−α

1 − α
LT 1−αdT (u).

Hence, we have proved

dT (u) ≤
(

c1

6k
+

(
cα

6kα
+

cαk1−α

1 − α

)
LT 1−α

)
dT (u),

and conclude dT (u) = 0 if
(

cα

6kα
+

cαk1−α

1 − α

)
LT 1−α < 1 − c1

6k
. (4.3)

We see that (4.3) implies that Aαu is constant. Then Au = A1−αAαu is
constant and, by (1.2), f(u) is constant. Hence (1.1) implies that also u̇ is
constant. But since u is periodic, it has to be constant, too.

In case X = H is a Hilbert space, we can run a nearly identical argument,
letting

dT (u) =

⎛
⎝

T∫

0

T∫

0

‖Aα(u(t) − u(s))‖2 ds dt

⎞
⎠

1/2

and using Remark 3.2 to obtain that u is constant if
(

cα

2πkα
+

cαk1−α

1 − α

)
LT 1−α < 1 − c1

2πk
. (4.4)

Of course, we have to take k ∈ N with c1
2πk < 1 here. �



568 G. Herzog and P.C. Kunstmann Arch. Math.

Remark 4.1. If X = Lp(Ω) for a σ-finite measure space (Ω, μ) and p ∈ (1,∞),
it is tempting to use

dT (u) =

⎛
⎝

T∫

0

T∫

0

‖Aα(u(t) − u(s))‖p
Lp(Ω) ds dt

⎞
⎠

1/p

=

∥∥∥∥∥∥∥

⎛
⎝

T∫

0

T∫

0

∣∣Aα(u(t) − u(s))(·)∣∣p ds dt

⎞
⎠

1/p
∥∥∥∥∥∥∥

Lp(Ω)

and an analogue of Lemma 3.1(a) or (b) in Lp for scalar-valued T -periodic
functions in order to improve the constant T

6 .
The best constant of the Lp-analogue of Lemma 3.1(a) is known (see [4]).

This has been used in [11] to give estimates on minimal periods, but only leads
to an improvement over the constant T

6 for p in an interval I � 2, which is
strictly contained in (4

3 , 4) and is symmetric in the sense that p ∈ I ⇔ p
p−1 ∈

I. For example, the best constant in the L1-analogue of Lemma 3.1(a) is T
4 .

To the best of our knowledge, the best constant in the Lp-analogue of
Lemma 3.1(b) is not known apart from the cases p = 1, 2,∞. Here, it is
tempting to resort to interpolation. However, for such an inequality, one has to
interpolate closed subspaces of Lp, which is possible in this case by a retraction-
coretraction argument (see [16, 1.2.4]). The corresponding operators will bring
in other constants which do not seem to lead to improvements over the Lp-
result in [11].

5. Self-adjoint operators in a Hilbert space.

Proof of Theorem 1.2. We take a T -periodic solution u ∈ C1(R,H) ∩ C(R,
[D(A)]) of (1.1) and put

v(t) := u(t) − u(t − τ), t ∈ R,

where τ ∈ (0, T ) is arbitrary. Then r �→ g(r) := 〈Av(r), v(r)〉 is T -periodic and
differentiable with

d

dr
〈Av(r), v(r)〉 = 2Re 〈Av(r), v̇(r)〉 , r ∈ R.

For a proof, observe that, by the self-adjointness of A,

g(r + h) − g(r)
h

=
〈

Av(r + h),
1
h

(v(r + h) − v(r))
〉

+
〈

1
h

(v(r + h) − v(r)), Av(r)
〉

,

and take the limit as h → 0.
Hence, we have

∫ T

0
Re 〈Av(r), v̇(r)〉 dr = 0, and we obtain
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T∫

0

‖v̇(r)‖2 + ‖Av(r)‖2 dr =

T∫

0

‖v̇(r) + Av(r)‖2 dr

=

T∫

0

‖f(u(r)) − f(u(r − τ))‖2 dr.

Thus, by (1.2), we have
T∫

0

‖v̇(r)‖2 + ‖Av(r)‖2 dr ≤ L2

T∫

0

‖Aαv(r)‖2 dr. (5.1)

We shall exploit (5.1) for the different cases of α.
If α = 0, we obtain, by Lemma 3.1(a),

dT (v) :=

T∫

0

‖v̇(r)‖2 + ‖Av(r)‖2 dr ≤
(

LT

2π

)2
T∫

0

‖v̇(r)‖2 dr.

Hence, if LT < 2π, then v̇ vanishes and, since τ was arbitrary, u̇ is constant.
Since u is periodic, u̇ has to vanish and u is constant.

If α = 1 and L < 1, we see from (5.1) that Av vanishes, and then also v̇
vanishes. Again, u has to be constant. In other words, if α = 1 and L < 1, any
periodic solution has to be constant.

In case α ∈ (0, 1), we use the following two lemmata.

Lemma 5.1. Let v ∈ C1(R,H)∩C(R, [D(A)]) be T -periodic with
∫ T

0
v(r) dr = 0

and α ∈ (0, 1). Then

‖Aαv‖L2((0,T );H) ≤
(

T

2π

)1−α

‖v̇‖1−α
L2((0,T );H)‖Av‖α

L2((0,T );H).

Proof. We have the moment inequality ‖Aαx‖ ≤ ‖x‖1−α‖Ax‖α for x ∈ D(A)
(using the spectral theorem (see, e.g., [15]) write ‖Aβx‖2 =

∫ ∞
0

λ2β dμx for
β ∈ {0, α, 1}, where μx is the spectral measure for x and use Hölder’s inequality
with exponent 1

α and dual exponent ( 1
α )′ = 1

1−α ). Thus we have

T∫

0

‖Aαv(r)‖2 dr ≤
T∫

0

‖v(r)‖2(1−α)‖Av(r)‖2α dr.

We use Hölder again with exponent 1
α and dual exponent ( 1

α )′ = 1
1−α and

obtain
T∫

0

‖Aαv(r)‖2 dr ≤
⎛
⎝

T∫

0

‖v(r)‖2 dr

⎞
⎠

1−α ⎛
⎝

T∫

0

‖Av(r)‖2 dr

⎞
⎠

α

.

Finally, we use Lemma 3.1(a). �
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Lemma 5.2. For all a, b ≥ 0 and α ∈ [0, 1], we have

aαb1−α ≤ αα(1 − α)1−α(a + b).

Proof. The assertion is clear for α ∈ {0, 1}, so let α ∈ (0, 1). Letting x = a
α ,

y = b
1−α , the assertion is equivalent to xαy1−α ≤ αx + (1 − α)y, which again

is clear if 0 ∈ {x, y}. For x, y �= 0, it is equivalent to

α ln x + (1 − α) ln y ≤ ln(αx + (1 − α)y),

and this holds since ln is concave. �

We continue the proof of Theorem 1.2. For α ∈ (0, 1), we have, combining
(5.1), Lemmas 5.1, and 5.2,

dT (v) ≤ L2

(
T

2π

)2(1−α)

αα(1 − α)1−α dT (v).

Hence, if

LT 1−α <
(2π)1−α

√
αα(1 − α)1−α

,

then v̇ and Av vanish, and we conclude that u is constant as before. �
6. Gradient systems. In this section, we replace Au(t) in (1.1) by a gradient
term. For the setting, we follow [3]. So let H be a real Hilbert space and V be a
Banach space with a dense and continuous embedding V ↪→ H. Let E : V → R

be differentiable with continuous derivative E ′ : V → V ′, where V ′ denotes
the dual space of V . Identifying h ∈ H with the linear functional v �→ 〈h, v〉H ,
we can consider H as a subspace of V ′. Then the gradient ∇HE of E with
respect to H is defined by

D(∇HE ) = {u ∈ V : ∃h ∈ H ∀v ∈ V : E ′(u)v = 〈h, v〉H},

∇HE (u) = h for u ∈ D(∇HE ).

We recall the usual solution concept from [3, Sect. 6] for the equation

u̇(t) + ∇HE (u(t)) = g(t), t ∈ R, (6.1)

where g ∈ L2
loc(R;H): u is a solution of (6.1) if u ∈ W 1,2

loc (R;H) ∩ L∞
loc(R;V )

and

〈u̇(t), v〉H + E ′(u)v = 〈f(t), v〉H for all v ∈ V and almost every t ∈ R.

Observe that this implies u(t) ∈ D(∇HE ) for almost every t ∈ R. One has
existence and uniqueness of solutions to the corresponding initial value problem
on finite time intervals if the following conditions (i)–(iii) on E hold (see [3,
Theorem 6.1]):

(i) E : V → R is convex,
(ii) E : V → R is coercive, i.e., {u ∈ V : E (u) ≤ c} is bounded in V for every

c ∈ R,
(iii) E ′ : V → V ′ maps bounded sets into bounded sets.
Here, we do not go into details as in Theorem 1.4 we are interested in periodic
solutions to (1.10) that are more regular, namely solutions u ∈ C1(R, V ).
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Proof of Theorem 1.4. Let u ∈ C1(R, V ) be a solution to (1.10) that is T -
periodic. Put v(t) := u(t) − u0, where u0 = 1

T

∫ T

0
u(r) dr. Then C1(R, V ) is

T -periodic as well and
∫ T

0
v(r) dr = 0. Since

d

dr
E (u(r)) = E ′(u(r))u̇(r) = ∇HE (u(r))u̇(r)

and u is T -periodic, we have
T∫

0

〈∇HE (u(r)) − f(u0), u̇(r)〉H dr = 0.

Hence we obtain
T∫

0

‖v̇(r)‖2
H + ‖∇HE (u(r)) − f(u0)‖2

H dr

=

T∫

0

‖u̇(r) + ∇HE (u(r)) − f(u0)‖2
H dr

=

T∫

0

‖f(v(r) + u0) − f(u0)‖2
H dr

≤ L2

T∫

0

‖v(r)‖2
H dr ≤

(
LT

2π

)2
T∫

0

‖v̇(r)‖2
H dr.

If LT < 2π, then v̇ vanishes, u = u0 is constant, and ∇HE (u0) = f(u0). �
Remark 6.1. We can relax the regularity of u in Theorem 1.4 to u ∈ W 1,2

loc (R;V )
provided the property (iii) above holds. Under this assumption, we can prove
Lemma 6.2 below. With Lemma 6.2 at hand, we can run the same argument
as before for u ∈ W 1,2

loc (R;V ).

Lemma 6.2. Let I ⊆ R be an interval and u ∈ W 1,2(I;V ) be such that u(r) ∈
D(∇HE ) for almost every r ∈ I. Then, for all s, t ∈ I with s < t, we have

t∫

s

∇HE (u(r))u̇(r) dr = E (u(t)) − E (u(s)).

Proof. It clearly suffices to show that r �→ E ′(u(r))u̇(r) is the weak derivative
of r �→ E (u(r)). This is clear for u ∈ C1(I, V ). Using mollifiers and passing to
a subsequence if necessary, we approximate u by a sequence (un) in C1(I, V )
such that un → u in W 1,2(I;V ) and such that we have pointwise almost
everywhere u̇n → u̇ in V . By the inclusion W 1,2(I;V ) ↪→ Cb(I, V ), we have
un → u uniformly on I. Then the sequence (E ′(un)) is bounded in V ′ by (iii)
and converges pointwise in V ′ to E ′(u). Since (u̇n) converges to u̇ in L2(I;V ),
we have E ′(un)u̇n → E ′(u)u̇ = ∇HE (u)u̇ in L2(I;R). Since also E (un) → E (u)
pointwise, the assertion follows. �
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Wirtinger. Ann. Inst. Henri Poincaré 9(1), 29–50 (1992)
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