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Terms of recurrence sequences in the solution sets of norm form
equations
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Abstract. The structure as well as several arithmetic properties of the
solution sets of norm form equations are of classical and recent interest.
In this paper, we give a finiteness result for terms of linear recurrence
sequences appearing in the coordinates of solutions of norm form equa-
tions. Our main theorem yields a common generalization of certain recent
results from the literature.
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1. Introduction. Arithmetic properties of solutions of norm form equations
have a considerable literature. Here we mention only one result (which is the
most important from our viewpoint), and for generalities on norm form equa-
tions or other related result, we refer the interested reader to the papers [1] or
[2]. Fuchs and Heintze considered terms of so-called multi-recurrences (being
natural generalizations of linear recurrence sequences) among the coordinates
of solutions of norm form equations. They set the problem in the general case,
however, their results concern the case of multi-recurrences which are simple.
Simplifying their result to the case of linear recurrence sequences, this means
that the characteristic polynomials of these sequences have simple zeroes. They
could prove that a simple multi-recurrence, under certain necessary assump-
tions, can have only finitely many terms among the coordinates of solutions of
a norm form equation.
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In the special situation when the underlying field is quadratic, we in fact
investigate terms of recurrence sequences among the solutions of generalized
Pell equations. For an account on these results, see [4]. In particular, the main
theorem of [4] states that under certain assumptions, a recurrence sequence
has only finitely many terms among the coordinates of solutions of generalized
Pell equations.

In this paper, we provide a common extension of the main results of [2]
(more precisely, its corollary to the case of linear recurrence sequences) and
of [4]. That is, we prove that, under certain assumptions, an arbitrary linear
recurrence sequence can have only finitely many terms in the coordinates of
solutions of norm form equations. We show that the imposed assumptions
are necessary. In our proof, we shall combine the finiteness of solutions of
polynomial-exponential equations proved by Schlickewei and Schmidt [5] with
some other tools and ideas.

2. The main result. To formulate our main result, we need to introduce some
notation. Let K be an algebraic number field of degree k, and write N (α) for
the norm of α ∈ K (over Q). Let α1, . . . , αk ∈ K be linearly independent over
Q, and let m be a non-zero integer. Consider the norm form equation

N (x1α1 + · · · + xkαk) = m (1)

in integers x1, . . . , xk. Write Xi (i = 1, . . . , k) for the coordinate sets of solu-
tions of (1).

Let r be a positive integer, a1, . . . , ar ∈ Z such that ar �= 0, and U0, . . . ,
Ur−1 ∈ Z not all zero. If

Un = a1Un−1 + · · · + arUn−r (n ≥ r) (2)

and r is minimal such that (Un) satisfies a relation above, then U = (Un) =
(Un)n≥0 is called a linear recurrence sequence (of integers) of order r. Through-
out this paper, we always assume that a recurrence sequence is given by its
minimal length relation (2). We shall also use the notation

U = U(a1, . . . , ar, U0, . . . , Ur−1).

The characteristic polynomial of (Un) is defined by

f(x) := xr − a1x
r−1 − · · · − ar =

d∏

i=1

(x − βi)mi (3)

where β1, . . . , βd are distinct algebraic numbers and m1, . . . ,mt are positive
integers. Then as it is well-known (see e.g. [9, Theorem C.1 in part C]), we
have

Un =
d∑

i=1

gi(n)βn
i (n ≥ 0). (4)

Here gi(x) is a not identically zero polynomial of degree at most mi − 1 (i =
1, . . . , s) with coefficients in the number field Q(β1, . . . , βd). (The fact that the
polynomials gi are not identically zero is not formulated in [9, Theorem C.1],
however it is clear from its proof.) We say that the sequence (Un) is degenerate
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if there are integers i, j with 1 ≤ i < j ≤ s such that αi/αj is a root of unity;
otherwise it is non-degenerate.

Now we can formulate our main result.

Theorem 2.1. Let K be an algebraic number field of degree k, and (Un) be a
non-degenerate linear recurrence sequence of integers of order r ≥ 2 given by
(2) and (4). If βi �= ±1 for some i = 1, . . . , d and one of the conditions
(i) ar �= ±1,
(ii) K ∩ Q(βi) = Q (i = 1, . . . , d)
is satisfied, then

Un ∈ X1 ∪ · · · ∪ Xk (5)

holds only for finitely many indices n, where Xi (i = 1, . . . , k) are the sets of
the coordinates of the solutions of any norm form equation, as defined in (1).
Further, the number of such indices is bounded by c1, where c1 = c1(m, k, r) is
an effectively computable constant depending only on m, k, r.

Remark. It is important to mention that (1) can have infinitely many solutions
(with m chosen appropriately), unless K is Q or an imaginary quadratic field.
This follows from results of Schmidt (see [6, Satz 2] or [7, Chapter VII]). In
certain cases, (1) can have infinitely many solutions even if we take only k′

linearly independent algebraic integers αi ∈ K (i = 1, . . . , k′) with k′ < k.
This happens e.g. if we take α1 = 1 and α2 =

√
2 in K = Q( 4

√
2), together

with m = 1. (For a precise description of these cases, see [6,7] again). Clearly,
Theorem 2.1 remains valid also in these cases. Indeed, choose algebraic integers
αk′+1, . . . , αk from K such that α1, . . . , αk are linearly independent over Q.
As X1 ∪ · · · ∪ Xk′ ⊆ X1 ∪ · · · ∪ Xk, the finiteness of the set of indices n with

Un ∈ X1 ∪ · · · ∪ Xk′

immediately follows from Theorem 2.1.
We also note that the conditions in the theorem are all necessary. To show

this, we exhibit some examples. However, we do so after the proof of Theorem
2.1 since then we shall have the required machinery and notation.

3. Lemmas and proofs. To prove our theorem, we need two lemmas. The first
one is due to Schlickewei and Schmidt [5]. It concerns the finiteness of the
solutions of polynomial-exponential equations. For its formulation, we need to
introduce some new notation.

Let L be an algebraic number field, and let P1, . . . , Ps be not identically
zero polynomials in t variables over L. Further, let κi1, . . . , κit (i = 1, . . . , s)
be non-zero elements of L. Consider the equation

s∑

i=1

Pi(x)κx
i = 0 (6)

in tuples x = (x1, . . . , xt) ∈ Zt, where κi = (κi1, . . . , κit) (i = 1, . . . , s) and

κx
i = κx1

i1 · · · κxt
it (i = 1, . . . , s). (7)
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Let P be a partition of the set Λ = {1, . . . , s}. Then the system of equations
∑

i∈λ

Pi(x)κx
i = 0 (λ ∈ P) (8)

is called a refinement of (6). Let S(P) be the set of solutions of (8) which are
not solutions of

∑

i∈λ

Pi(x)κx
i = 0 (λ ∈ P ′)

with any proper refinement P ′ of P. Set i1
P∼ i2 if i1 and i2 lie in the same

subset λ of P. Let G(P) be the subgroup of Zt consisting of tuples z =
(z1, . . . , zt) with

κz
i1 = κz

i2 for any i1, i2 with i1
P∼ i2.

Lemma 3.1. Using the above notation, if G(P) = {0}, then we have

|S(P)| < 235A3
D6A2

with D = deg(L) and

A = max

(
t,

∑

i∈Λ

(
t + δi

t

))
,

where δi is the total degree of the polynomial Pi.

Proof. The statement is [5, Theorem 1]. �

Our second lemma is an application of Lemma 3.1 with t = 1 to linear
recurrence sequences. Note that it is closely related to the zero multiplicity
of linear recurrence sequences, known to be finite and bounded due to a deep
result of Schmidt [8].

Lemma 3.2. Let (Un) be a non-degenerate linear recurrence sequence of inte-
gers of order r ≥ 2. Using (4), let I ⊆ {1, . . . , d}. Then there are only finitely
many indices n for which

∑

i∈I

gi(n)βn
i = 0 (9)

holds. Further, the number of such indices n can be bounded by c2, where
c2 = c2(r) is an effectively computable constant depending only on r.

Proof. We apply Lemma 3.1 with t = 1. Let n be a solution of (9). First
observe that if gi(n) = 0 for some i ∈ I, then n comes from a finite set of
cardinality bounded in terms of r. So we may assume that gi(n) �= 0 (i ∈ I).
Clearly, there is a partition P of I such that n ∈ S(P). If I has a class λ
with |λ| = 1, then n is a root of one of the polynomials gi (i ∈ I), which
is excluded. So we can suppose that |λ| ≥ 2 for all λ ∈ P. Clearly, since
(Un) is non-degenerate, we have G(P) = {0}. Thus, by Lemma 3.1, n comes
again from a finite set of cardinality bounded in terms of r, and our claim
follows. �
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Now we can prove our main result.

Proof of Theorem 2.1. By Lemma 5 of Győry [3], we know that there are only
finitely many pairwise non-associate algebraic integers μ in K of norm m, and
their number can be bounded in terms of k,m. That is, if (x1, . . . , xk) ∈ Zk is
any solution of (1), then we have

x1α1 + · · · + xkαk = εμ (10)

with such a μ, where ε is a unit of K. As we need to bound the number of
indices n for which Un = xi for some solution (x1, . . . , xk) and i with 1 ≤ k,
we may assume that μ is fixed. Let ε1, . . . , ε� be a system of fundamental units
in K. Then (10) yields

x1α1 + · · · + xkαk = δεu1
1 · · · εu�

� μ, (11)

where δ is a root of unity in K. Since the number of roots of unity in K
is bounded in terms of k, we may assume that here δ is fixed. Taking the
conjugates in (11) (following arguments from [1] and [2]), we get

⎛

⎜⎝
σ1(α1) · · · σ1(αk)

...
. . .

...
σk(α1) · · · σk(αk)

⎞

⎟⎠

⎛

⎜⎝
x1

...
xk

⎞

⎟⎠ =

⎛

⎜⎝
σ1(δμ)νu1

11 · · · νu�

1�
...

σk(δμ)νu1
k1 · · · νu�

k�

⎞

⎟⎠ , (12)

where σ1, . . . , σk are the isomorphisms of K into C (in any order), and νij =
σi(εj) (1 ≤ i ≤ k, 1 ≤ j ≤ 
). As the determinant of the matrix on the left
hand side of (12) is known to be non-zero, we can write

xi = b1iν
u1
11 · · · νu�

1� + · · · + bkiν
u1
k1 · · · νu�

k� (i = 1, . . . , k) (13)

with some algebraic numbers bij (belonging to the normal closure of K). Then,
using the notation (7), by (4) and (13), relation (5) gives

b1iν
u
1 + · · · + bniν

u
n = P1(n)βn

1 + · · · + Pd(n)βn
d (14)

with u = (u1, . . . , u�) for some i with 1 ≤ i ≤ k. We may clearly assume that
i is fixed. We shall apply Lemma 3.1 to handle the solutions u, n of (14). For
this, we need to introduce some new notation. Define the (k + 1)-tuples ϑj

(1 ≤ j ≤ k + d) by

ϑj =

{
(νj1, . . . , νj�, 1) for 1 ≤ j ≤ k,

(1, . . . , 1, βj−k) for k + 1 ≤ j ≤ k + d,

and the polynomials Qj (1 ≤ j ≤ k + d) in 
 + 1 variables z = (z1, . . . , z�+1)
by

Qj(z) =

{
bji for 1 ≤ j ≤ k,

−Pj(zk+1) for k + 1 ≤ i ≤ k + d.

Then we can rewrite (14) as
k+d∑

j=1

Qj(z)ϑz
j = 0. (15)
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Let P be any partition of the set J = {1, . . . , k +d}. Observe that the number
of such partitions is bounded in terms of k and r. Consider the refinement

∑

j∈λ

Qj(z)ϑz
j = 0 (λ ∈ P) (16)

of (15). We shall be concerned with the solutions of (16) which are not solutions
of proper refinements of it; that is, with S(P). If there is a λ ∈ P such that
λ ⊆ {k + 1, . . . , k + d}, then any solution of (16) comes from a case where
we have a vanishing subsum in the right hand side of (14). However, since by
Lemma 3.2 the number of indices n which allow this is bounded in terms of
r, we may assume that it is not the case. We study the set G(P) - in fact, we
show that G(P) = {0} in any case. Take an index j1 with k + 1 ≤ j1 ≤ k + d
such that βj1 �= ±1. (By our assumptions, such an index exists.) Then j1 ∈ λ
for some λ ∈ P. By the above argument, we see that there is a j2 ∈ λ with
1 ≤ j2 ≤ k such that Qj2 is not identically zero. If z ∈ G(P), then as j1

P∼ j2,
we have

νz1
j21

· · · νz�

j2� = β
z�+1
j1

. (17)

If (i) holds, then since βj1 is not a unit in σj2(K), we get z�+1 = 0. Then,
as νj21, . . . , νj2� is a system of fundamental units in σj2(K), we obtain zv = 0
(1 ≤ v ≤ 
). Hence z = 0, so G(P) = {0}, and our statement follows from
Lemma 3.1 in this case. Assume that (ii) holds. Taking the inverse σ−1

j2
of σj2 ,

(17) yields

εz1
1 · · · εz�

� = β
z�+1
h , (18)

where βh = σ−1
j2

(βj1). Clearly, βh is an algebraic conjugate of βj2 , so it is
a root of f(x) in (3). Thus (ii) gives that the unit β

z�+1
h is rational - that

is, it is ±1. Since βj1 �= ±1 and by the non-degenerate property of (Un), βh

cannot be a root of unity, this gives z�+1 = 0. Then as ε1, . . . , ε� form a system
of fundamental units in K, we also get z1 = · · · = z� = 0. So z = 0, and
G(P) = {0}. Thus our statement follows from Lemma 3.1 also in this case.
The proof of the theorem is complete. �

As we mentioned earlier, the assumptions made in Theorem 2.1 are neces-
sary. We conclude our paper by some examples showing that this is the case
indeed.

Example. Let (Un) be given by U0 = 0, U1 = 1, and Un+2 = Un+1−Un (n ≥ 0).
Then as one can easily check, (Un) is given by 0, 1, 1, 0,−1,−1, 0, 1, . . .. Taking
K = Q(

√
2) (so k = 2) and α1 = 1, α2 =

√
2, m = 1, (1) reads as

N (x1 + x2

√
2) = 1 (19)

in integers x1, x2. Since 1 +
√

2 is a fundamental unit in K of norm −1, all
solutions x1, x2 of (19) come from the coefficients of 1 and

√
2 in ±(1 +

√
2)�

with 
 ∈ Z, 
 even. From this, we easily obtain that

X1 = {±P� : 
 ≥ 0}, X2 = {±Q� : 
 ≥ 0},
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where P0 = 1, P1 = 3, Q0 = 0, Q1 = 2, and

P�+2 = 6P�+1 − P�, Q�+2 = 6Q�+1 − Q�.

In particular, this shows that Un ∈ X1 ∪ X2 for every n ≥ 0. However, in
this case, the characteristic polynomial of (Un) is f(x) = x2 − x + 1, so the
sequence is degenerate. Hence it is necessary to exclude this property.

Next, consider the sequence (Un) defined by U0 = 0, U1 = 1, and Un+2 =
2Un+1−Un (n ≥ 0). Then one readily gets that Un = n (n ≥ 0). So considering
again (19), we obtain that Un ∈ X1 ∪ X2 for infinitely many n, namely, when-
ever n belongs to either (P�) or (Q�). Now we have f(x) = x2−2x+1 = (x−1)2,
so the condition that one of the roots of f is different from ±1 is violated.

Finally, assume that none of the conditions (i) and (ii) in Theorem 2.1 is
satisfied. Let α = 3

√
2 and K = Q(α). Then 1, α, α2 form an integral basis of

K. Further, α−1 is a fundamental unit of K, and the only roots of unity in K
are ±1. Putting (α1, α2, α3) = (1, α, α2) and m = 1, the norm form equation
(1) is given by

N (x1 + x2α + x3α
2) = 1.

Since the norm of α − 1 is 1, this equation is equivalent to

x1 + x2α + x3α
2 = (α − 1)u (u ∈ Z).

Thus, in this case, (12) reads as
⎛

⎝
1 α α2

1 ξα ξ2α2

1 ξ2α ξα2

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
(α − 1)u

(ξα − 1)u

(ξ2α − 1)u

⎞

⎠ ,

where ξ = (−1+
√−3)/2 (which is a primitive third root of unity). From this,

by a simple calculation, we obtain that

x1 =
1
3
(α − 1)u +

1
3
(ξα − 1)u +

1
3
(ξ2α − 1)u (u ∈ Z). (20)

Set U0 = 1, U1 = −1, U2 = 1, and Un+3 = −3Un+2 − 3Un+1 + Un (n ≥ 0).
So (Un) is a linear recurrence sequence of order r = 3, with characteristic
polynomial f(x) = x3 + 3x2 + 3x − 1. As one can easily check, the roots of
f(x) are given by α − 1, ξα − 1, ξ2α − 1, and also that in this case (4) is given
by

Un =
1
3
(α − 1)n +

1
3
(ξα − 1)n +

1
3
(ξ2α − 1)n (n ≥ 0). (21)

Comparing (20) and (21), we see that Un ∈ X1 for every n ≥ 0. Observe that
now (i) does not hold as a3 = −1, and (ii) does not hold since K∩Q(α−1) = K.
So we need to require the validity of (i) or (ii), indeed.
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driving their attention to this problem, and to the referee for her/his work
and for the helpful remarks.

Funding Open access funding provided by University of Debrecen.



186 L. Hajdu and P. Sebestyén Arch. Math.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References
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