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1. Introduction. Observability and null-controllability results for (non-)
autonomous Cauchy problems are relevant especially in the field of control
theory of partial differential equations and have recently attracted a lot of
attention in the literature. Here, the most common approach towards final-
state observability is a so-called Lebeau-Robbiano strategy, which combines a
suitable uncertainty principle with a corresponding dissipation estimate for
the evolution family describing the evolution of the system, see (essUCP) and
(DE) below, respectively. Certain null-controllability results can then be in-
ferred from final-state observability via a standard duality argument, see, e.g.,
[4] for more information and also [9] for an holistic overview of duality theory
for control systems.

Such a Lebeau-Robbiano strategy has been considered, for instance, in [1,2,
4,8,10,11,13,14], see also [5] for a review of other related results in this context.
The two most general results in this direction so far are [4, Theorem 3.3]
and [1, Theorem 13], each highlighting different aspects and exhibiting certain
advantages and disadvantages over the other, both with regard to hypotheses
and the asserted conclusion, see the discussion below. The aim of the present
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work is to present a unified extension of both mentioned results, taking the
best of each, thus allowing to apply the Lebeau-Robbiano strategy to a broader
range of observation problems and, at the same time, providing a streamlined
proof.

2. Lebeau-Robbiano strategy for non-autonomous observation problems. For
the reader’s convenience, let us fix the following notational setup.

Hypothesis 2.1. Let X and Y be Banach spaces, T > 0, E ⊆ [0, T ] be measur-
able with positive Lebesgue measure, and (U(t, s))0≤s≤t≤T be an exponentially
bounded evolution family on X. Let C : [0, T ] → L(X,Y ) be essentially bounded
on E such that [0, T ] � t �→ ‖C(t)U(t, 0)x0‖Y is measurable for all x0 ∈ X.

Here, we denote by L(X,Y ) the space of bounded operators from X to
Y . Also recall that (U(t, s))0≤s≤t≤T ⊆ L(X):=L(X,X) is called an evolution
family of bounded operators on X if

U(s, s) = Id and U(t, s)U(s, r) = U(t, r) for 0 ≤ r ≤ s ≤ t ≤ T.

(2.1)

It is called exponentially bounded if there exist M ≥ 1 and ω ∈ R such that
for all 0 ≤ s ≤ t ≤ T, we have the bound ‖U(t, s)‖L(X) ≤ Meω(t−s).

Evolution families are oftentimes used to describe the evolution of non-
autonomous Cauchy problems, see, e.g., [4, Section 2] and the references cited
therein. The family (C(t))t∈[0,T ] in the mapping t �→ ‖C(t)U(t, 0)x0‖Y can be
understood as observation operators through which the state of the system
is observed at each time t ≥ 0. In the context of Lp-spaces, these are often
chosen as multiplication operators by characteristic functions for some (time-
dependent) sensor sets, see, e.g., Example 2.5 below.

The following theorem now covers and extends all known previous results
in this context, see the discussion below.

Theorem 2.2. Assume Hypothesis 2.1. Let (Pλ)λ>0 be a family in L(X) such
that for some constants d0, d1, γ1 > 0, we have

∀λ > 0, ∀x ∈ X : ‖Pλx‖X ≤ d0e
d1λγ1

ess inf
{
E � τ �→ ‖C(τ)Pλx‖Y

}
. (essUCP)

Suppose also that for some constants d2 ≥ 1, d3, γ2, γ3 > 0 with γ2 > γ1 and
γ4 ≥ 0, we have

∀λ > 0,∀0 ≤ s < t ≤ T,∀x ∈ X :

‖(Id − Pλ)U(t, s)x‖X ≤ d2 max
{
1, (t − s)−γ4

}
e−d3λγ2 (t−s)γ3 ‖x‖X .

(DE)

Then, there exists a constant Cobs > 0 such that for each r ∈ [1,∞] and all
x0 ∈ X, we have the final-state observability estimate

‖U(T, 0)x0‖X ≤ Cobs

{(∫
E

‖C(t)U(t, 0)x0‖r
Y dt

)1/r
, r < ∞,

ess supt∈E‖C(t)U(t, 0)x0‖Y , r = ∞.
(OBS)
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Moreover, if for some interval (τ1, τ2) ⊆ [0, T ] with τ1 < τ2 we have |(τ1, τ2) ∩
E| = τ2 − τ1, then, depending on the value of r, the constant Cobs can be
bounded as

Cobs ≤ C1

(τ2 − τ1)1/r
exp

(
C2

(τ2 − τ1)
γ1γ3

γ2−γ1

+ C3T

)

, (2.2)

with the usual convention 1/r = 0 if r = ∞, where C1, C2, C3 > 0 are constants
not depending on r, T , E, τ1, or τ2.

The above theorem represents the established Lebeau-Robbiano strategy,
in which an uncertainty principle (essUCP), here with respect to the given
family (Pλ)λ>0 and uniform only on the subset E ⊆ [0, T ], and a correspond-
ing dissipation estimate in the form (DE) are used as an input; it should be
emphasized that the requirement γ1 < γ2 is essential here. The output in
the form of (OBS) then constitutes a so-called final-state observability esti-
mate for the evolution family (U(t, s))0≤s≤t≤T ⊆ L(X) with respect to the
family (C(t))t∈[0,T ] of observation operators. The corresponding constant Cobs

in (OBS) is called observability constant. An explicit form of the constants
C1, C2, C3 in (2.2) is given in Remark 3.1 below for easier reference.

Discussion and extensions. We first comment on two minor extensions of The-
orem 2.2.

Remark 2.3. (1) It becomes clear from the proof, see (3.7) below, that instead
of the polynomial blow-up in the dissipation estimate (DE) for small differences
t − s one can also allow a certain (sub-)exponential blow-up. More precisely,
one may replace the term max{1, (t − s)−γ4} in estimate (DE) by a factor of
the form exp(c(t − s)− γ1γ3

γ2−γ1 ) with some constant c > 0.
(2) If |(τ1, τ2)∩E| = τ2 − τ1 for some interval (τ1, τ2) ⊆ [0, T ] with τ1 < τ2,

then the dissipation estimate (DE) is actually needed only for τ1 < s < t ≤ τ2,
cf. part (1) of Remark 3.2 below.

Let us now compare Theorem 2.2 to earlier results in the literature.

Remark 2.4. (1) In the particular case where [τ1, τ2] = [0, T ], the bound on
Cobs in (2.2) is completely consistent, except perhaps for some minor differ-
ences in the explicit form of the constants C1, C2, C3 in Remark 3.1 below,
with all bounds obtained earlier for E = [0, T ] in [3,8,14] in the autonomous
case (i.e. C(t) ≡ C and the evolution family being actually a semigroup) and
in [4] in the non-autonomous case.

(2) Theorem 2.2 covers [4, Theorem 3.3], while allowing a polynomial blow-
up for small differences t − s in the dissipation estimate (DE). Such a blow-up
has first been considered in [1, Theorem 13], but under much more restrictive
assumptions, see item (4) below. Moreover, in contrast to [4, Theorem 3.3],
Theorem 2.2 requires the uncertainty relation (essUCP) only on a subset of
[0, T ] of positive measure, instead of the whole interval [0, T ], and thus allows
far more general families of observation operators. These families also need to
be uniformly bounded only on this measurable subset and not on the whole
interval [0, T ].



230 F. Gabel and A. Seelmann Arch. Math.

(3) The results from [3, Theorem A.1] and [8, Theorem 2.1] formulate a
variant of our Theorem 2.2 in the autonomous case with E = [0, T ], but
assume (essUCP) and (DE) only for λ > λ∗ with some λ∗ ≥ 0. Our current
formulation with the whole range λ > 0, just as in [4, Theorem 3.3], is not
really a restriction to that. Indeed, by a change of variable, one may then simply
consider the family (Pλ+λ∗)λ>0 instead, with a straightforward adaptation of
the parameters d0 and d1 in (essUCP). In this sense, Theorem 2.2 completely
covers [3, Theorem A.1] and [8, Theorem 2.1].

(4) Let τ1 ∈ [0, T ) be such that |(τ1, T ) ∩ E| > 0. By a change of vari-
able, namely via considering C(· + τ1) on [0, T − τ1] and the evolution family
U(t+ τ1, s+ τ1)0≤s<t≤T−τ1 , one may replace U(T, 0), U(t, 0), and E in (OBS)
by U(T, τ1), U(t, τ1), and (τ1, T ) ∩ E respectively; note that (essUCP) and
(DE) then remain valid with the same constants. In this sense, Theorem 2.2
entirely covers [1, Theorem 13], while leaving the Hilbert space setting and
not requiring strong continuity or contractivity of the evolution family. At
the same time, our bound on Cobs in (2.2) contains an additional prefactor
1/(τ2 − τ1)1/r in front of the exponential term, which significantly changes
the asymptotics of the estimate as τ2 − τ1 (and thus also T ) gets large. Such
improved asymptotics has proved extremely useful in the past, for instance,
when considering homogenization limits as in [14].

In order to support the above comparison, we briefly revisit [4, Theorem 4.8]
in the following example.

Example 2.5. Let a be a uniformly strongly elliptic polynomial of degree m ≥ 2
in R

d with coefficients aα ∈ L∞([0, T ]), that is, a : [0, T ] × R
d → C with

a(t, ξ) =
∑

|α|≤m

aα(t)(iξ)α, t ∈ [0, T ], ξ ∈ R
d,

such that for some c > 0, we have

Re
∑

|α|=m

aα(t, ξ) ≥ c|ξ|m, t ∈ [0, T ], ξ ∈ R
d.

Let p ∈ [1,∞]. It was shown in [4, Theorem 4.4] that there is an exponen-
tially bounded evolution family (Up(t, s))0≤s≤t≤T in Lp(Rd) associated to a.
Let (Ω(t))t∈[0,T ] be a family of measurable subsets of Rd such that the mapping
[0, T ] × R

d � (t, x) �→ 1Ω(t)(x) is measurable. Then, ‖1Ω(·)Up(·, 0)u0‖Lp(Rd)

is for all u0 ∈ Lp(Rd) measurable on [0, T ] by [4, Lemma 4.7], so that Hy-
pothesis 2.1 with C(t) = 1Ω(t) is satisfied for every choice of measurable
E ⊆ [0, T ] with positive measure. Moreover, a dissipation estimate as in (DE)
with γ2 = m (but without blow-up, i.e., γ4 = 0) was established in the proof
of [4, Theorem 4.8] with Pλ being some smooth frequency cutoffs. It remains
to consider a corresponding essential uncertainty principle (essUCP).

Suppose that the family (Ω(t))t∈[0,T ] of subsets is uniformly thick on E in
the sense that there are L, ρ > 0 such that for all x ∈ R

d and all t ∈ E, we
have

|Ω(t) ∩ ((0, L)d + x)| ≥ ρLd. (2.3)
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Following the proof of [4, Theorem 4.8], we see that an essential uncertainty
principle as in (essUCP) holds with γ1 = 1 < γ2, so that Theorem 2.2 can be
applied. Here, the set E for which (2.3) needs to hold could be any measurable
subset of [0, T ] with positive measure, for instance, E = [0, T ] \ Q (satisfying
|E| = T ) or even some fractal set, say of Cantor-Smith-Volterra type. In
particular, this allows for completely arbitrary choices of measurable Ω(t) for
t /∈ E, even Ω(t) = ∅. By contrast, these choices for Ω(t) would not be allowed
in [4, Theorem 4.8], where (2.3) is required to hold for all x ∈ R

d and all
t ∈ [0, T ] and is thus much more restrictive on the choice of (Ω(t))t∈[0,T ].

Remark 2.6. In the situation of Example 2.5 with p < ∞, it was shown in
[4, Theorem 4.10] that an observability estimate as in (OBS) can hold with
r < ∞ only if the family (Ω(t))t∈[0,T ] is mean thick in the sense that for some
L, ρ > 0, we have

1
T

T∫

0

|Ω(t) ∩ ((0, L)d + x)|dt ≥ ρLd for all x ∈ R
d.

It is easy to see that families which are uniformly thick on a subset of [0, T ] of
positive measure as in (2.3) are also mean thick in the above sense (with possi-
bly different parameters), but the converse need not be true. A corresponding
example in R is the family (Ω(t))t∈[0,T ] with Ω(t) = (0,∞) for t ≤ T/2 and
Ω(t) = (−∞, 0) for T/2 < t ≤ T . It is yet unclear whether such choices also
lead to an observability estimate as in (OBS) or anything similar. In this sense,
Example 2.5 and Theorem 2.2 still leave a gap between necessary and sufficient
conditions on the family (Ω(t))t∈[0,T ] towards final-state observability.

3. Proof of Theorem 2.2. Our proof of Theorem 2.2 is a streamlined adap-
tation of earlier approaches, especially of that from [4] and its predecessors
[14], [8], and [1]. It avoids the interpolation argument in [4] and is thus much
more direct and, at the same time, requires an uncertainty relation only on a
measurable subset of [0, T ] of positive measure.

Proof of Theorem 2.2. Let us fix x0 ∈ X. For 0 ≤ t ≤ T, we abbreviate

F (t):=‖U(t, 0)x0‖X , G(t):=‖C(t)U(t, 0)x0‖Y .

By Hölder’s inequality, we clearly have

‖G(·)‖L1(E) ≤ |E|1− 1
r ‖G(·)‖Lr(E) (3.1)

with the usual convention 1/∞ = 0. Hence, estimate (OBS) for r > 1 follows
from the one for r = 1 by multiplying the corresponding constant Cobs by
|E|1− 1

r ≤ max{1, |E|}. It therefore suffices to show (OBS) for r = 1, which in
the new notation reads

F (T ) ≤ Cobs

∫

E

G(t) dt. (3.2)

Upon possibly removing from E a set of measure zero, we may assume
without loss of generality that (essUCP) holds with ess inf replaced by inf
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and that C(·) is uniformly bounded on E. Let us then show that there exist
constants c1, c2 > 0 such that for all 0 ≤ s < t ≤ T with t ∈ E and all
ε ∈ (0, 1), we have

F (t) ≤ c1 exp
(

c2

( 1
t − s

) γ1γ3
γ2−γ1

)
(
ε−1G(t) + εF (s)

)
. (3.3)

To this end, let ε ∈ (0, 1) and fix 0 ≤ s < t ≤ T with t ∈ E. For λ > 0, we
introduce

Fλ:=‖PλU(t, 0)x0‖X , F⊥
λ :=‖(Id − Pλ)U(t, 0)x0‖X ,

as well as

Gλ:=‖C(t)PλU(t, 0)x0‖Y , G⊥
λ :=‖C(t)(Id − Pλ)U(t, 0)x0‖Y .

The uncertainty relation (essUCP) and the uniform boundedness of C(·) on E
then give

Fλ ≤ d0ed1λγ1
Gλ and G⊥

λ ≤ ‖C(·)‖E,∞F⊥
λ for all λ > 0,

where ‖C(·)‖E,∞:= supτ∈E ‖C(τ)‖L(X,Y ) < ∞. Since by the triangle inequal-
ity F (t) ≤ Fλ +F⊥

λ and Gλ ≤ G(t)+G⊥
λ , the latter implies that for all λ > 0,

we have

F (t) ≤ d0ed1λγ1 (
G(t) + ‖C(·)‖E,∞F⊥

λ

)
+ F⊥

λ

≤ ed1λγ1 (
d0G(t) + (d0‖C(·)‖E,∞ + 1)F⊥

λ

)
. (3.4)

Now, writing U(t, 0)x0 = U(t, s)U(s, 0)x0 by (2.1), we obtain from (DE) with
x = U(s, 0)x0 that

F⊥
λ ≤ d2 max{1, (t − s)−γ4}e−d3λγ2 (t−s)γ3

F (s),

and inserting this into the preceding estimate (3.4) yields for all λ > 0 that

F (t) ≤ c1ed1λγ1 max{1, (t − s)−γ4}(
G(t) + e−d3λγ2 (t−s)γ3

F (s)
)

= c1ef(λ) max{1, (t − s)−γ4}(
e

d3
2 λγ2 (t−s)γ3

G(t) + e− d3
2 λγ2 (t−s)γ3

F (s)
)

(3.5)

with

c1:= max{d0, (d0‖C(·)‖E,∞ + 1)d2} ≥ 1 and f(λ):=d1λ
γ1 − d3

2
λγ2(t − s)γ3 .

(3.6)

Let us maximize f(λ) with respect to λ. In light of γ2 > γ1 by hypothesis, a
straightforward calculation reveals that f takes its maximal value on (0,∞)
at the point

λ∗:=
(2d1γ1

d3γ2

) 1
γ2−γ1

( 1
t − s

) γ3
γ2−γ1

> 0.

Taking into account the relation γ1
γ2−γ1

+ 1 = γ2
γ2−γ1

, we observe that
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d3

2
(λ∗)γ2(t − s)γ3 =

d3

2

(2d1γ1

d3γ2

) γ2
γ2−γ1

( 1
t − s

) γ2γ3
γ2−γ1

−γ3

=
d1γ1

γ2

(2d1γ1

d3γ2

) γ1
γ2−γ1

( 1
t − s

) γ1γ3
γ2−γ1 =

d1γ1

γ2
(λ∗)γ1 .

We may therefore estimate f(λ) as

f(λ) ≤ f(λ∗) = d1

(
1 − γ1

γ2

)
(λ∗)γ1 = d1

(
1 − γ1

γ2

)(2d1γ1

d3γ2

) γ1
γ2−γ1

( 1
t − s

) γ1γ3
γ2−γ1

.

Moreover, using the elementary bound ξα ≤ eαξ for α, ξ > 0, we have

max{1, (t − s)−γ4} ≤ exp
(

γ4(γ2 − γ1)
γ1γ3

( 1
t − s

) γ1γ3
γ2−γ1

)
. (3.7)

Inserting this and the preceding bound on f(λ) into (3.5), we arrive for all
λ > 0 at

F (t) ≤ c1 exp
(

c2

( 1
t − s

) γ1γ3
γ2−γ1

)(
e

d3
2 λγ2 (t−s)γ3

G(t) + e− d3
2 λγ2 (t−s)γ3

F (s)
)

with

c2:=d1

(
1 − γ1

γ2

)(2d1γ1

d3γ2

) γ1
γ2−γ1 +

γ4(γ2 − γ1)
γ1γ3

. (3.8)

We finally choose λ > 0 such that ε = e− d3
2 λγ2 (t−s)γ3 , which shows that (3.3)

is valid; note that indeed neither c1 nor c2 depend on s or t.

Let q:=
(

3
4

) γ2−γ1
γ1γ3 < 1, and choose by Lebesgue’s differentiation theorem a

(right) density point 
 ∈ [0, T ) ∩ E of E in the sense of Appendix A. Proposi-
tion A.1 then guarantees that there is a strictly decreasing sequence (
m)m∈N

in (
, T ] of the form 
m = 
 + qm−1(
1 − 
), m ∈ N, satisfying

|(
m+1, 
m) ∩ E| ≥ δm

3
, m ∈ N, (3.9)

where δm:=
m − 
m+1, m ∈ N. It is also easy to see that

δm+1 = qδm, m ∈ N. (3.10)

Since the evolution family (U(t, s))0≤s≤t≤T is exponentially bounded by hy-
pothesis, there exist M ≥ 1 and ω ∈ R such that

F (t) = ‖U(t, s)U(s, 0)x0‖X ≤ Meω(t−s)F (s) for all 0 ≤ s ≤ t ≤ T.

Setting ω+:= max{ω, 0}, this in particular implies for each m ∈ N and all
t ∈ (
m+1, 
m) that

F (
m) ≤ Meω(�m−t)F (t) ≤ Meω+δ1F (t). (3.11)

Define

ξm:=
m+1 +
δm

6
∈ (
m+1, 
m), m ∈ N,

which in light of (3.9) satisfies
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|(ξm, 
m) ∩ E| = |(
m+1, 
m) ∩ E| − |(
m+1, ξm) ∩ E|
≥ δm

3
− (ξm − 
m+1) =

δm

6
> 0. (3.12)

Combining (3.11) and (3.3) with s = 
m+1, we obtain for all m ∈ N, t ∈
(ξm, 
m) ∩ E, and ε ∈ (0, 1) that

F (
m) ≤ c3 exp

(
c4

δ
γ1γ3

γ2−γ1
m

)
(
ε−1G(t) + εF (
m+1)

)

with

c3:=Mc1eω+δ1 ≥ 1 and c4:=c26
γ1γ3

γ2−γ1 > 0,

where we have taken into account that t − 
m+1 ≥ ξm − 
m+1 = δm/6. With
the particular choice

ε = c−1
3 q exp

(

− 2c4

δ
γ1γ3

γ2−γ1
m

)

∈ (0, 1),

the latter turns into

F (
m) ≤ c2
3q

−1 exp

(
3c4

δ
γ1γ3

γ2−γ1
m

)

G(t) + q exp

(

− c4

δ
γ1γ3

γ2−γ1
m

)

F (
m+1). (3.13)

Observing that

exp

(
4c4

δ
γ1γ3

γ2−γ1
m

)

= exp

(
3c4

δ
γ1γ3

γ2−γ1
m+1

)

by (3.10) and the choice of q, multiplying (3.13) by δm and rearranging terms
yields

δm exp

(

− 3c4

δ
γ1γ3

γ2−γ1
m

)

F (
m) − δm+1 exp

(

− 3c4

δ
γ1γ3

γ2−γ1
m+1

)

F (
m+1) ≤ c2
3q

−1δmG(t)

for all t ∈ (ξm, 
m) ∩ E, m ∈ N. Taking into account (3.12), integrating the
latter with respect to t ∈ (ξm, 
m) ∩ E leads to

δm exp

(

− 3c4

δ
γ1γ3

γ2−γ1
m

)

F (
m) − δm+1 exp

(

− 3c4

δ
γ1γ3

γ2−γ1
m+1

)

F (
m+1)

≤ 6c2
3q

−1

�m∫

�m+1

1E(t)G(t) dt

for all m ∈ N. Note here that the exponential boundedness of the evolution
family guarantees that the sequence (F (
m))m∈N is bounded. Since also δm → 0



Vol. 122 (2024) A unified observability result 235

and 
m → 
 as m → ∞, summing the last inequality over all m ∈ N implies
by a telescoping sum argument that

δ1 exp

(

− 3c4

δ
γ1γ3

γ2−γ1
1

)

F (
1) ≤ 6c2
3q

−1

�1∫

�

1E(t)G(t) dt ≤ 6c2
3q

−1

∫

E

G(t) dt,

which can be rewritten as

F (
1) ≤ 6c2
3q

−1δ−1
1 exp

(
3c4

δ
γ1γ3

γ2−γ1
1

)∫

E

G(t) dt.

Now, we have F (T ) ≤ Meω(T−�1)F (
1) by using once more the exponential
boundedness of the evolution family, which shows that (3.2) holds with

Cobs = 6c2
3q

−1δ−1
1 exp

(
3c4

δ
γ1γ3

γ2−γ1
1

)

Meω(T−�1). (3.14)

Finally, suppose that |(τ1, τ2)∩E| = τ2−τ1 for some interval (τ1, τ2) ⊆ [0, T ]
with τ1 < τ2. We may then simply choose 
 = τ1 and 
1 = τ2 in the above
reasoning, leading to δ1 = (1 − q)(τ2 − τ1). For r ≥ 1, in light of (3.1) with E
replaced by (τ1, τ2) ∩ E, we conclude that Cobs in (OBS) can be bounded as
in (2.2), which completes the proof. �

For organizational purposes, we extract from the above proof the following
more explicit bound on the observability constant.

Remark 3.1. In the case where |(τ1, τ2) ∩ E| = τ2 − τ1 for some interval
(τ1, τ2) ⊆ [0, T ] with τ1 < τ2 in (the proof of) Theorem 2.2, we actually
have |(
m+1, 
m)∩E| = δm instead of the weaker (3.9). Consequently, one may
choose ξm:=
m+1 + δm/2, resulting in |(ξm, 
m)∩E| = δm/2 instead of (3.12).
We may therefore replace the numerical factor 6 in (3.14) and the constant c4

by 2, so that

Cobs ≤ C1

(τ2 − τ1)1/r
exp

(
C2

(τ2 − τ1)
γ1γ3

γ2−γ1

+ C3T

)

with

C1:=
2M3c2

1

q(1 − q)
, C2:=3c2

( 2
1 − q

) γ1γ3
γ2−γ1

, C3:=3ω+,

where

c1 = max{d0, (d0‖C(·)‖E,∞ + 1)d2} ≥ 1,

c2 = d1

(
1 − γ1

γ2

)(2d1γ1

d3γ2

) γ1
γ2−γ1 +

γ4(γ2 − γ1)
γ1γ3

are as in (3.6) and (3.8), respectively, and where M ≥ 1 and ω+ = max{ω, 0},
ω ∈ R, are such that ‖U(t, s)‖L(X) ≤ Meω(t−s) for all 0 ≤ s ≤ t ≤ T .
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Remark 3.2. (1) The proof of Theorem 2.2 actually requires the dissipation
estimate (DE) only for 
 ≤ s < t ≤ 
1.

(2) It is worth to emphasize that in contrast to [1, Theorem 13], our proof
of Theorem 2.2 does not require the sequence (
m)m∈N to belong to the set E,
but only to (
, T ]. This relaxed requirement is much easier to satisfy than the
stricter one in [1, Proposition 14] and is reviewed in Proposition A.1 in the
appendix.

Appendix A. Approximating density points of measurable subsets of the real
line. Recall that a point 
 ∈ R is called a right density point (resp. density
point) of a measurable set E ⊆ R with positive Lebesgue measure if

lim
θ→0

|(
, 
 + θ) ∩ E|
θ

= 1 (resp. lim
θ→0

|(
 − θ, 
 + θ) ∩ E|
2θ

= 1). (A.1)

It is easy to see that every density point is also a right density point, cf. [6, p.
32], and it follows from Lebesgue’s differentiation theorem that almost every
point 
 ∈ E is a density point of E, and thus a right density point, see, e.g.,
[12, Corollary 2.14].

The following result is an adapted version of [15, Proposition 2.1]; see also
[6, Lemma 2.1.5] for a similar statement. We give a proof here in order to be
self-contained.

Proposition A.1. Let E ⊆ R be measurable with positive Lebesgue measure,
and let 
 ∈ R be a right density point of E. Then, given q ∈ (0, 1), for every

1 > 
 sufficiently close to 
, the strictly decreasing sequence (
m)m∈N with


m = 
 + qm−1(
1 − 
), m ∈ N, (A.2)

satisfies


m − 
m+1 ≤ 3|(
m+1, 
m) ∩ E|, m ∈ N. (A.3)

Proof. Since 
 is a right density point of E by hypothesis, there is by (A.1)
some θ0 > 0, depending on E and q, such that

|(
, 
 + θ) \ E| <
1 − q

2(1 + q)
|(
, 
 + θ) ∩ E| for all θ < θ0. (A.4)

We fix an arbitrary 
1 ∈ (
, 
 + θ0) and define the sequence (
m)m∈N as in
(A.2). It remains to show that (A.3) holds. To this end, let m ∈ N, and set
θ:=
m − 
, so that 
 + θ = 
m and θ < 
1 − 
 < θ0. Inserting this into (A.4)
gives

|(
m+1, 
m) \ E| ≤ |(
, 
m) \ E| <
1 − q

2(1 + q)
|(
, 
m) ∩ E|. (A.5)

In order to bound the right-hand side further, we observe that


m+1 − 
 = qm(
1 − 
) =
q

1 − q
(1 − q)qm−1(
1 − 
)

=
q

1 − q
(qm−1 − qm)(
1 − 
) =

q

1 − q
(
m − 
m+1).



Vol. 122 (2024) A unified observability result 237

This leads to the estimate

|(
, 
m) ∩ E| ≤ |(
, 
m+1)| + |(
m+1, 
m) ∩ E|
≤ q

1 − q
(
m − 
m+1) + |(
m+1, 
m) ∩ E|,

which together with (A.5) and the bounds q/(1+q) < 1 and (1−q)/(1+q) < 1
yields

|(
m+1, 
m) \ E| <
1
2

(
|(
m+1, 
m) ∩ E| + (
m − 
m+1)

)
.

From this, we conclude that


m − 
m+1 = |(
m+1, 
m) ∩ E| + |(
m+1, 
m) \ E|
≤ 3

2
|(
m+1, 
m) ∩ E| +

1
2
(

m − 
m+1

)
,

and rearranging terms shows the desired estimate (A.3). This completes the
proof. �

Remark A.2. The proof of Proposition A.1 shows that (A.4) can actually be
relaxed to

|(
, 
 + θ) \ E| < min
{1 − q

2q
,
1
2

}
|(
, 
 + θ) ∩ E| for all θ < θ0

with the corresponding modification to (A.5). The rest of the proof then carries
over.
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