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On the optimal effective stability bounds for quasi-periodic tori
of finitely differentiable and Gevrey Hamiltonians

Gerard Farré

Abstract. It is known that a Diophantine quasi-periodic torus with fre-
quency ω ∈ Ωd

τ of a Cl Hamiltonian is effectively stable for a time T (r)
that is polynomial on the inverse of the distance to the torus, that we
denote by r, with exponent 1 + (l − 2)/(τ + 1). It is also known that
a Diophantine quasi-periodic torus of a Gevrey Hamiltonian H ∈ Gα,L

is effectively stable for an exponentially long time on the inverse of the
distance to the torus with exponent 1/(α(1+τ)). In this note, we see that
following the methods in [11] one can show the almost optimality of these
exponents. We also show that, for a dense subset of non-resonant vectors,
for quasi-periodic tori of finitely differentiable and Gevrey Hamiltonians,
the naive lower bound T (r) ≥ Cr−1 is optimal in terms of the exponent.
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1. Introduction. The theory of effective stability in dynamical systems tries
to answer questions regarding the bounds for the time that a vector field
or a map on a differentiable manifold exhibits a certain type of dynamics. A
particularly interesting question is to measure how much time do nearby orbits
to invariant sets stay nearby forwards in time. This idea leads to an effective
version of Lyapunov stability for invariant sets, in which we are no longer
interested in knowing if nearby orbits will remain close for all positive time
but only if they will do so for a finite interval of time. The question becomes
then how long these intervals of time can be. In this note, we are interested in
the theory of effective stability in the context of Hamiltonian dynamics, more
specifically for Lagrangian invariant tori of Hamiltonians which are close to
integrable.

In particular, we study Hamiltonian systems H ∈ C3(DR), DR = T
d × BR

where BR ⊂ R
d is the closed ball of radius R > 0 centered at the origin, d ≥ 3,
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and H is of the form

H(θ, I) = ω · I + O(|I|2). (1.1)

In this particular case, the integrable part is considered to be linear and the
perturbation to be a function of order two in the action variable I. If ω is
non-resonant, it follows from (1.1) that T0 = T

d × {0} is indeed an invariant
and Lagrangian quasi-periodic torus.

In Theorems A and B, we will assume an arithmetic strong non-resonance
condition on the frequency ω, namely that it is Diophantine, i.e., that there
exist γ > 0, τ ≥ d − 1 such that

|ω · k| ≥ γ

‖k‖τ
, ∀ k ∈ Z

d \ {0}.

We will denote the set of vectors satisfying this condition for a fixed τ and γ
by Ωd

τ,γ and Ωd
τ = ∪γ>0Ωd

τ,γ . In case ω ∈ Ωd
τ in (1.1), we call T0 a Diophantine

quasi-periodic torus, or DQP-torus. In the case where ω is non-resonant and
ω /∈ Ωd

τ for any τ ≥ d − 1, we say that ω is a Liouville vector. In other words,
the set of Liouville vectors is the complement of the set of Diophantine vectors
inside the set of non-resonant vectors.

It is known that if H as in (1.1) is real-analytic and ω ∈ Ωd
τ , then there

exist C > 0, r∗ > 0 such that for all 0 < r < r∗, for |I| ≤ r, we have that

‖ΠIΦt
H(θ, I)‖ ≤ 2r, 0 < t < exp(Cr− 1

τ+1 ).

Thus DQP-tori of real-analytic Hamiltonians are exponentially stable. This
fact, up to small differences in the exponent, extensions to lower dimensional
tori, and extensions in terms of regularity, has been proved in the following
references [18,19,22,23]. In this work, we consider the case in which H is less
regular, either H ∈ Cl for some l ≥ 3 or H ∈ Gα,L for some α ≥ 1, L > 0.
It is well known that, the more regular the Hamiltonian, the larger become
the effective stability lower bounds known for T0. It follows from [4,5] that
in the case of H being finitely differentiable we have effective stability for a
polynomial time, and for the Gevrey case we have exponential stability with
exponent 1/(α(τ + 1)), where α is the Gevrey exponent. One of our goals in
this note is to show that these stability times are close to optimal and optimal
in the finitely differentiable and Gevrey cases respectively.

In [11], the optimality of the exponents in the effective stability bounds
for DQP-tori of real-analytic Hamiltonians was proved by providing, for any
C, ε > 0, Hamiltonians in the form of explicit convergent series with a sequence
of initial conditions zn = (θn, In) with ‖In‖ tending to zero and such that the
flow of H satisfies, for all n,

‖ΠIΦtn

H (θn, In)‖ > 2‖In‖, 0 < tn ≤ exp(C‖In‖− 1
τ+1−ε).

In this work, we provide analogous results for lower regularities. We also pro-
vide results on the optimality of the naive bound T (r) ≥ Cr−1 for a dense
subset of Liouville frequencies in both the finite differentiable and Gevrey
cases. We will see in the following section what are the exact statements. Let
us also mention that under certain non-degeneracy assumptions, Diophantine
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quasi-periodic tori of Gevrey Hamiltoninas are known to be doubly exponen-
tially stable ([7,20]). Clearly our examples cannot satisfy these non-degeneracy
conditions. The question of the optimality for the effective stability bounds in
these non-degenerate cases has been adressed in [15] for Gevrey Hamiltonians.

Finally, let us mention that for the case of elliptic fixed points there are also
several results on the effective stability and examples of Lyapunov unstable
elliptic fixed points, for which we refer the reader to the following (incomplete
list of) references [8,9,12,16,18,25].

1.1. Statement of the results. Let us introduce some preliminary definitions.
We will be considering the Hamiltonians lying in the class of real-valued Cl

functions, l ≥ 3, on DR = T
d × BR with the norm

‖f‖l = max
i∈N2d,|i|≤l

|∂if |C0(DR), f ∈ Cl(DR), (1.2)

which form a Banach space.
We will also consider, given α ≥ 1 and L > 0, Hamiltonians in the space of

real-valued functions f ∈ C∞(DR) which are (α,L)-Gevrey, meaning that we
have

‖f‖Gα,L(DR) = sup
i∈N2d

|f |α,L,i,R < ∞, |f |α,L,i,R = L|i|α(i!)−α|∂if |C0(DR).

(1.3)

Here we use the standard multi-index notation |i| = |i1| + · · · + |id|, i! =
i1! · · · id!. For α = 1, one recovers the space of real-analytic functions with a
certain analyticity band width. We will denote this space by Gα,L(DR), which
is also a Banach space. When no subindex is used, for v ∈ R

d, we denote
‖v‖ = max {|vi|, i = 1, . . . , d}.

For a Hamiltonian as in (1.1), let us define the time of diffusion away from
T0 from a ball of radius r > 0 as

T (r) = inf
θ0∈Td,|I0|≤r

{
t > 0, dist(Φt

H(θ0, I0), T0) = 2r
}

.

It follows from [5, Corollary 2.2] that for a DQP-torus of a Cl Hamiltonian as
in (1.1), there exist r∗ > 0 and C > 0 (depending on γ, τ, l, d, R) such that for
all 0 < r < r∗,

T (r) ≥ C
1
r

(
1
r

) l−2
τ+1

. (1.4)

In order to see this, consider [5, Corollary 2.2] for δ = r and F = R
d. Our

first result is that the exponent 1 + (l − 2)/(τ + 1) in equation (1.4) is almost
optimal.

Theorem A. For any τ > d − 1, l ≥ 3, C > 0, and ε > 0, there exist H ∈
Cl(DR) as in (1.1) with ω ∈ Ωd

τ , c > 0, and a sequence rn → 0 such that for
every n ≥ 0, we have zn = (θn, In) with ‖In‖ = |rn| such that

sup
[0,tn]

‖ΠIΦt
H(z)‖ ≥ 2|rn|, z ∈ B |rn|

4 e−ctn
(zn),
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where

tn = C
1

|rn|

(
1

|rn|

) l−1
τ+1+ε

. (1.5)

Remark 1. Notice that there is a small discrepancy between the stability ex-
ponent and the exponent for the rate of escape that we obtain in Theorem A,
namely there is a gap of size 1/(τ + 1). It has been pointed out by the referee
that it may be possible to prove that the stability exponent can be improved
to 1 + (l − 1)/(τ + 1) by using the methods in [2]. The result in Theorem A
would imply, in case this is possible, that this new stability exponent is the
optimal one.

Similarly, it follows from [4,19] that for a Hamiltonian as in (1.1) belonging
to Gα,L(DR), we have that there exist C > 0 and r∗ > 0 (again depending on
γ, τ,R, d, α, L) such that for any 0 < r < r∗, we have

T (r) ≥ exp(Cr− 1
α(τ+1) ). (1.6)

The result follows from [4, Corollary 2.5], again considering δ = r and F = R
d.

Theorem B. For any τ > d − 1, α ≥ 1, C > 0, and ε > 0, there exist L > 0,
H ∈ Gα,L(DR) as in (1.1) with ω ∈ Ωd

τ , c > 0, and a sequence rn → 0 such
that for every n ≥ 0, we have zn = (θn, In) with ‖In‖ = |rn| and

sup
[0,tn]

‖ΠIΦt
H(z)‖ ≥ 2|rn|, z ∈ B |rn|

4 e−ctn
(zn),

where tn = exp(C|rn|−
1

α(τ+1)−ε).

Notice that none of the results above follow from the real-analytic case
shown in [11] since the times of diffusion for lower regularities need to be
smaller. Nevertheless, it seems that the existence of bump functions in the
strictly Gevrey and finitely differentiable case should allow us to obtain stronger
results. In particular, we would expect that following the methods in [10,14]
one could build examples with diffusion in a larger positive measure subset of
the phase space, and eventually allow us to show that in general an invariant
Diophantine torus is not accumulated by a set of initial conditions with large
relative measure and which have larger diffusion times than the strictly opti-
mal ones. This would contrast with the results for the analytic case in [6]. The
existence of such Hamiltonians would be in line with the examples of smooth
Hamiltonians with Diophantine tori which are not accumulated by a positive
measure set of invariant tori (see again [10,14]).

Let us now state a result regarding frequencies which are not Diophantine.
For a Hamiltonian of type (1.1), it is easy to derive, independently of the
frequency ω, a naive bound for T (r). There exists a constant C > 0 and
r∗ > 0 such that for all 0 < r < r∗, we have that

T (r) ≥ C

r
. (1.7)

In the case where H ∈ Cl(DR), comparing the latter bound with (1.4), we
see that they are the same up to an improvement of the exponent (which
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increases with the regularity) by (l − 2)/(τ + 1) when ω ∈ Ωd
τ . Therefore it is

natural to ask what happens when the frequency ω does not belong to Ωd
τ . Is

then the bound in (1.7) optimal? The statement of Theorem C below is that
there exists a dense subset of Liouville vectors Ld ⊂ R

d such that the bound
(1.7) is optimal. Let us define ω = (ω1, . . . , ωd) ∈ Ld if ω is non-resonant and
ω̃ := (ω1, . . . , ωd−1) /∈ Ωd−1

τ for any τ ≥ d − 2 (meaning that ω̃ is a Liouville
vector in R

d−1). Our statement is the following.

Theorem C. For ω ∈ Ld, l ≥ 3, C > 0, there exist H ∈ Cl(DR) as in (1.1),
c > 0, and sequences rn → 0, εn → 0 such that for every n ≥ 0, we have
zn = (θn, In) with ‖In‖ = |rn| and

sup
[0,tn]

‖ΠIΦt
H(z)‖ ≥ 2|rn|, z ∈ B |rn|

4 e−ctn
(zn),

where tn = C
(

1
|rn|

)1+εn

.

Finally, let us define an analogous arithmetic condition to define a set of
frequencies for which an analogous statement as the one in Theorem C holds
as well for the case of Gevrey Hamiltonians. We will say that ω ∈ Ld

α if it
is a non-resonant vector and such that ω̃ satisfies that there is a sequence
{kj} ⊂ Z

d−1 such that

lim
j→∞

ln|ω̃ · kj |
‖kj‖

1
α

= −∞.

Theorem D. For ω ∈ Ld
α, α ≥ 1, C > 0, there exist L > 0, H ∈ Gα,L(DR) as

in (1.1), c > 0, and sequences rn → 0, εn → 0 such that for every n ≥ 0, we
have zn = (θn, In) with ‖In‖ = |rn| and

sup
[0,tn]

‖ΠIΦt
H(z)‖ ≥ 2|rn|, z ∈ B |rn|

4 e−ctn
(zn),

where tn = C
(

1
|rn|

)1+εn

.

For the general perturbative case, meaning for Hamiltonians of type H =
ω · I + εf(θ, I), the almost optimality and optimality (understood in the same
sense as in this work) of the exponents for the lower time bounds analogous to
(1.4) and (1.6) were proved in [4,5] by constructing examples that diffuse for
a time arbitrarily close to the lower bounds in terms of the exponent. Similar
examples had already been used by Nekhoroshev in order to motivate the need
for steepness assumptions in Nekhoroshev theory (see [21]) and by Sevryuk in
the context of KAM theory in order to prove that in the absence of Russ-
mann non-degeneracy conditions we can find perturbations that destroy all
tori ([24]). Although the stability results proved in [4,5] for the general pertur-
bative setting can be translated, after a suitable rescaling, to Hamiltonians of
the type (1.1), this is no longer the case when we seek examples of instability
since the examples used in [4,5] are not of the particular type (1.1). The type
of examples found in [11] for the analytic case allow us to overcome this prob-
lem. We refer the reader to [3, Section 3] for a discussion on the comparison
between these two settings.
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Remark 2. All the examples that we present in this paper could have been
built in such a way that the resulting quasi-periodic tori are Lyapunov un-
stable. We have not shown this explicitly because in this particular case the
existence of Lyapunov unstable quasi-periodic tori has already been proved for
real-analytic Hamiltonians in [11].

Remark 3. All the constructions in this note are given as explicit convergent
series in the appropriate topologies that are considered. Alternatively, they
can be seen as the limit of an infinite conjugacy scheme of symplectic changes
of variables à la Anosov Katok (see [1,13]).

2. Proof of the results. From now on, we will consider, for the sake of clarity,
the case d = 3. The proofs work in an analogous manner in the case where
d > 3. For any ω ∈ R

3, let us define the function

ω(I3) = ω + (I3, 0, 0).

We will need the following arithmetic lemmas. The proof of Lemma 1 can be
found in [11], and Lemma 2 below is a generalization of [11, Lemma 2]. Let
us denote by ω̃ ∈ R

2 the vector obtained by omitting the last component in
ω ∈ R

3, and similarly we denote ω̃(I3) := (ω1 + I3, ω2).

Lemma 1. For any τ > 2 and ω̃ ∈ Ω2
τ , a.e. ω3 ∈ R satisfies ω := (ω̃, ω3) ∈ Ω3

τ .

The main interest of the Lemma 1 is to show that the class of vectors for
which Lemma 2 yields inequality (2.1) is non-empty.

Lemma 2. Consider ω ∈ R
3 non-resonant. There exists a sequence {rj} ⊂ R

and an increasing sequence in norm {kj} ⊂ Z
2 such that

(a) limj→∞ |rj | = 0,
(b) limj→∞ ‖kj‖ = ∞,
(c) ω̃(rj) · kj = 0, ∀j ≥ 1.

Furthermore:

(d) If ω ∈ R
3 is such that ω̃ /∈ Ω2

τ , then we may assume without loss of
generality that

‖kj‖ < |rj |−(τ+1)−1
. (2.1)

(e) If ω ∈ L3, then we may assume without loss of generality that

‖kj‖ < |rj |−(j+1)−1
. (2.2)

(f) If ω ∈ L3
α, then we may assume without loss of generality that there exists

an increasing sequence uj → ∞ such that

‖kj‖ <
(
ln|rj |

− 1
uj

)α

. (2.3)

Proof. Consider an increasing sequence {kj} ⊂ Z
2. Then if we impose

0 = ω̃(rj) · kj = ω1kj,1 + ω2kj,2 + rjkj,1,
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we obtain rj = (ω̃ ·kj)/kj,1. Up to a permutation (consider simply ω̃(rj) = ω̃+
(0, rj) instead of ω̃(rj) = ω̃+(rj , 0) if necessary) and considering a subsequence
of {kj}, we can assume without loss of generality that ‖kj‖ = |kj,1|. Thus

|rj | ≤ |ω̃ · kj |/‖kj‖.

Additionally, by Dirichlet’s approximation theorem, we can assume that the
increasing sequence {kj} has been chosen in such a way that |ω̃ · kj | → 0, and
this gives us a) to c). If we assume that ω satisfies the assumptions in d), then
we can additionally assume without loss of generality that the sequence kj is
such that |ω̃ · kj | < ‖kj‖−τ , which leads to (2.1). Analogously, if we assume
that ω satisfies the assumptions in e), then we can assume without loss of
generality that the sequence kj is such that |ω̃ · kj | < ‖kj‖−j , leading to (2.2).
The proof of f) follows in the same manner. �

Let us also state a consequence of the Gronwall inequalities [17, Lemma
4.1.2] adapted to our context in the form of the following lemma.

Lemma 3. Assume that {Hn} ⊂ C3(DR) is a convergent sequence of Hamil-
tonians as in (1.1) and denote the limit by H. There exist constants K, c > 0
such that, for any given T > 0 and ξ > 0, if ‖Hn − H‖3 < ξ, then for all
z, z0 ∈ DR/4, we have that, if the solutions remain in DR,

‖Φt
H(z) − Φt

Hn
(z0)‖ < (‖z − z0‖ + Kξ)ecT , t ∈ [0, T ].

Proof. From the differential equation corresponding to the difference between
the Hamiltonian vector fields Hn and H, we have

ẏ − ẋ = J∇Hn(y) − J∇Hn(x) + f(y),

where ‖f‖C0(DR) ≤ ξ. Thus we obtain, by the mean value theorem, that

‖y(t) − x(t)‖ ≤ ‖y(0) − x(0)‖+

t∫

0

‖f‖C0(DR) ds

+

t∫

0

3‖J∇2Hn‖C0(DR)‖y − x‖ds.

This leads to, by the Gronwall inequalities and denoting ‖J∇2Hn‖C0(DR) ≤ L,

‖y(t) − x(t)‖ ≤ ‖y(0) − x(0)‖ exp

⎛

⎝
t∫

0

3Lds

⎞

⎠ +

t∫

0

ξ

⎛

⎝exp

t∫

s

3Ldτ

⎞

⎠ ds.

Therefore

‖y(t) − x(t)‖ ≤
(

‖y(0) − x(0)‖ +
ξ

3L

)
exp(3Lt).

Notice finally that because of the convergence of the sequence Hn in C3(DR),
L can be taken sufficiently large so that the above argument works uniformly
on n, and thus the statement follows by considering K = 1/(3L), c = 3L. �
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Proof of Theorem A. Consider the Hamiltonian

H = lim
n→∞ Hn,

Hn(θ, I) = ω(I3) · I −
n∑

j=2

I23
1

C‖kj‖l+δ
sin(2π(kj,1θ1 + kj,2θ2)) (2.4)

for a sequence {kj} as in Lemma 2 with ω ∈ Ω3
τ such that ω̃ /∈ Ω2

τ−ρ and
where the choices of ρ, δ > 0 will be made precise later. It is an elementary
consequence of Lemma 1 that such frequencies exist for τ > 2. First of all let
us consider the convergence. It is clear from (2.4) that, for any m > n ≥ N ,

max
i∈N6,|i|≤l

|∂i(Hn − Hm)|C0(DR) �
m∑

j=n

1
C‖kj‖δ

→ 0

as N → ∞ if we assume ‖kj‖ to increase sufficiently fast, and so the limit
exists and H ∈ Cl(DR).

When considering the corresponding Hamiltonian vector field to (2.4), no-
tice first of all that İ3 = 0. In particular, we obtain that, for an initial condition
z0,n = (θ(0), I(0)) = (0, . . . , 0, rn), I3 ≡ rn and

(θ̇1, θ̇2) = ω̃(rn),

(İ1, İ2) = 2π
n∑

j=2

(kj,1, kj,2)r2n
1

C‖kj‖l+δ
cos(2πkj · ω̃(rn)t)

= 2πknr2n
1

C‖kn‖l+δ
+ 2π

n−1∑

j=2

kjr
2
n

1
C‖kj‖l+δ

cos(2πkj · ω̃(rn)t).

This leads, by integration, to the following expression for the action variables

(I1(t), I2(t)) = 2πknr2n
1

C‖kn‖l+δ
t

+ 2π

n−1∑

j=2

kj
r2n

C(2πkj · ω(rn))‖kj‖l+δ
sin(2πkj · ω̃(rn)t).

Since we can assume without loss of generality that |kj,1| = ‖kj‖, we have that
if ‖kn‖ is increasing sufficiently fast, for j = 2, . . . , n − 1,

|kj · ω̃(rn)| = |kj,1ω1 + kj,2ω2 + kj,1rj + kj,1(rn − rj)| ≥ ‖kj‖rn

2
and also that for all n ≥ 3,

∥
∥
∥
∥
∥
∥
2π

n−1∑

j=2

kj
r2n

C(2πkj · ω(rn))‖kj‖l+δ
sin(2πkj · ω̃(rn)t)

∥
∥
∥
∥
∥
∥

≤ 3rn.

Thus it follows that

‖I(t)‖ ≥ 2πr2n
1

C‖kn‖l−1+δ
t − 3rn. (2.5)
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Using now Lemma 2, we have ‖kn‖ < |rn|−(τ+1−ρ)−1
and we obtain that,

assuming δ, ρ > 0 to be sufficiently small,

tn = C
1

|rn|

(
1

|rn|

) l−1+δ
τ+1−ρ

≤ C
1

|rn|

(
1

|rn|

) l−1
τ+1+ε

(2.6)

and we have ‖I(tn)‖ > 3rn. The following step is to see that the limit Hamil-
tonian H inherits these dynamics by Gronwall’s lemma. Assume that ‖kn+1‖
is sufficiently large so that

‖Hn − H‖C3(DR) < ξ :=
rne−ctn

4K

where K, c are given by Lemma 3. Then by this very same lemma, we have
that for z ∈ B rn

4 e−ctn (z0,n),

‖Φtn

Hn
(z0,n) − Φtn

H (z)‖ ≤ (‖z0,n − z‖ + Kξ)ectn ≤ rn

2
.

Therefore we have that there exists c > 0 such that for all initial conditions
z ∈ B rn

4 e−ctn (z0,n), we have that ‖ΠIΦtn

H (z)‖ > 2‖z‖. �

Proof of Theorem B. Consider the Hamiltonian

H = lim
n→∞ Hn,

Hn(θ, I) = ω(I3) · I −
n∑

j=2

I23e−3αL‖kj‖ 1
α sin(2π(kj,1θ1 + kj,2θ2)) (2.7)

with L = C
4α , and a sequence {kj} as in Lemma 2 for an ω ∈ Ω3

τ such that
ω̃ /∈ Ω2

τ−ρ (where the choice of ρ > 0 will be made precise later). Let us show
first the convergence of the sequence. We have that, for a given N ∈ N, for all
m > n ≥ N , i ∈ N

6,

|Hm − Hn|α,L,i,R

� L|i|α

i!α

m∑

j=n

‖kj‖|i|e−3αL‖kj‖ 1
α =

m∑

j=n

L|i|α

i!α
‖kj‖|i|e−3αL‖kj‖ 1

α

=
m∑

j=n

(
L|i|

i!
‖kj‖

|i|
α

)α

e−3αL‖kj‖ 1
α ≤

m∑

j=n

e2αL‖kj‖ 1
α e−3αL‖kj‖ 1

α

=
m∑

j=n

e−αL‖kj‖ 1
α .

Thus

‖Hm − Hn‖Gα,L(DR) = sup
i∈N6

|Hm − Hn|α,L,i,R �
m∑

j=n

e−αL‖kj‖ 1
α → 0

as N → ∞. Therefore the sequence Hn is a Cauchy sequence and the limit
H ∈ Gα,L(DR). Analogously as in the proof of Theorem A, we obtain that for
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z0,n = (θ(0), I(0)) = (0, . . . , 0, rn), we have that the two first action variables
of the flow of Hn satisfy

(I1(t), I2(t)) = 2π(kn,1, kn,2)r2ne−3αL‖kn‖ 1
α t

+ 2π

n−1∑

j=2

r2n
(kj,1, kj,2)

(2πkj · ω(rn))
e−3αL‖kj‖ 1

α sin(2πkj · ω̃(rn)t).

Assuming again ‖kn‖ to increase sufficiently fast, we have

‖I(t)‖ ≥ 2πr2ne−3αL‖kn‖ 1
α t − 3rn. (2.8)

Using that ‖kn‖ ≤ |rn|−(τ+1−ρ)−1
, for C = 4αL > 0, we have that for all n

sufficiently large, for

tn = exp(C|rn|−
1

α(τ+1)−ε), (2.9)

we get ‖I(tn)‖ > 3rn (again by considering ρ > 0 sufficiently small with respect
to ε). We conclude as before that, due to Lemma 3, there exists c > 0 such
that for all n ∈ N,

‖ΠIΦtn

H (z)‖ ≥ 2‖z‖, z ∈ B |rn|
4 e−ctn

(z0,n).

�

Proof of Theorem C. Consider the Hamiltonian

H = lim
n→∞ Hn, Hn(θ, I) = ω(I3) · I −

n∑

j=2

I23
1

C‖kj‖l+1
sin(2π(kj,1θ1 + kj,2θ2))

for a sequence {kj} as in Lemma 2 with ω ∈ L3. The result follows exactly in
the same lines as the proof of Theorem A, the only difference being that in
(2.6) we will obtain

tn = C
1

|rn|

(
1

|rn|

)l/(n+1)

= C

(
1

|rn|

)1+εn

for εn := l/(n + 1). This finishes the proof. �

Proof of Theorem D. Consider the Hamiltonian
H = lim

n→∞ Hn,

Hn(θ, I) =ω(I3) · I −
n∑

j=2

C−1I23e−3αL‖kj‖ 1
α sin(2π(kj,1θ1 + kj,2θ2))

(2.10)

with L > 0, and a sequence {kj} as in Lemma 2 for ω ∈ L3
α. The result follows

exactly in the same lines as the proof of Theorem B, the only difference being
that in (2.8) we will obtain that, due to (2.3),

‖I(t)‖ ≥ 2πC−1r2ne−3αL‖kn‖ 1
α t − 3rn ≥ 2πC−1r2ne− 3αL

un
ln 1

|rn| t − 3rn

= 2πC−1r2n|rn|3αL/unt − 3rn.

By choosing now εn = 3αL/un → 0, we obtain the desired result. �
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