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1. Introduction. In this survey article, we review regularity results for abstract
linear parabolic evolution equations of the form

u̇(t) + Au(t) = f(t), t > 0, u(0) = u0, (1.1)

in the framework of time-weighted Lp-spaces

Lp,μ(R+;X) := {f ∈ L1,loc(R+;X) : [t �→ t1−μf(t)] ∈ Lp(R+;X)},

1 < p < ∞, that emanated from the groundbreaking paper [51]. Here X is a
Banach space, A is a closed linear operator in X with dense domain D(A), and
the data (f, u0) are given. In [51], the concept of Lp,μ-maximal regularity for
the operator A has been introduced, see Definition 2.2 for details. One of the
fundamental results of the article [51] states that this concept is independent
of the parameter μ as long as μ > 1/p. Note that in case μ = 1 one ends up
in the classical (unweighted) Lp-maximal regularity class, see e.g. [17,54,60]
which is just a selection.

We will furthermore consider quasilinear parabolic evolution equations

u̇(t) + A(u(t))u(t) = F (u(t)), t > 0, u(0) = u0, (1.2)
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and apply the linear theory for (1.1) from [51], combined with the contraction
mapping principle, which yields the existence and uniqueness of a local-in-
time solution of (1.2). Moreover, the advantage of working in time-weighted
Lp-spaces is underlined by some results on parabolic regularization and the
global-in-time existence for solutions to (1.2). In Sections 3.3 and 3.4 of this
survey article, we consider nonlinearities with a certain growth and so-called
critical spaces.

In the last section, we list some selected references which have been influ-
enced by the article [51].

Finally, let us mention that for example in [4,6,14], weighted continuous
function spaces of the form

[t �→ t1−μf(t)] ∈ BUC((0, T ];X), lim
t→0+

t1−μ‖f(t)‖X = 0

have been studied earlier. It is shown that this class allows for maximal regu-
larity results if the Banach space X is replaced by a continuous interpolation
space (X,D(A))0θ,∞ of order θ ∈ (0, 1).

2. Linear evolution equations. In this section, we review and discuss the set-
ting and some of the main results of the article [51].

2.1. Weighted spaces. For an arbitrary Banach space X and for 1 < p < ∞,
we define the weighted Lp-space Lp,μ(R+;X) by

Lp,μ(R+;X) := {f ∈ L1,loc(R+;X) : [t �→ t1−μf(t)] ∈ Lp(R+;X)},

where μ ∈ (1/p, 1] and R+ := (0,∞). Note that Lp(R+;X) is the classical
Bochner-Lebesgue space and evidently, it holds that Lp,1(R+;X) = Lp(R+;X).

The weighted Sobolev-space W 1
p,μ(R+;X) is accordingly defined by

W 1
p,μ(R+;X) := {u ∈ Lp,μ(R+;X) ∩ W 1

1,loc(R+;X) : u̇ ∈ Lp,μ(R+;X)}.

The spaces Lp,μ(R+;X) and W 1
p,μ(R+;X) are equipped with the norms

‖f‖Lp,μ(R+;X) :=

⎛
⎝

∞∫

0

|t1−μf(t)|pdt

⎞
⎠

1/p

and

‖u‖W 1
p,μ(R+;X) :=

(
‖u‖p

Lp,μ(R+;X) + ‖u̇‖p
Lp,μ(R+;X)

)1/p

,

respectively, which turn them into Banach spaces.
The restriction μ > 1/p is motivated by several reasons which we collect in

the following

Proposition 2.1. For all 1 < p < ∞ and all μ ∈ (1/p, 1], it holds that

1. Lp,μ(R+;X) ↪→ L1,loc(R+;X);
2. W 1

p,μ(R+;X) ↪→ W 1
1,loc(R+;X);



Vol. 121 (2023) Weighted Lp-spaces 627

3. (Hardy’s inequality) for all f ∈ Lp,μ(R+;X), the estimate
∞∫

0

∣∣∣∣∣∣
t−μ

t∫

0

f(s)ds

∣∣∣∣∣∣

p

dt ≤ 1
(μ − 1/p)p

∞∫

0

|t1−μf(t)|pdt (2.1)

is satisfied.

Proof. The proof of the first two assertions can be found in [51, Lemma 2.1],
while for a proof of the last assertion, we refer to [52, Lemma 3.4.5]. �

2.2. Maximal regularity. Let X0, X1 be Banach spaces such that X1 ↪→ X0

and X1 is dense in X0. Suppose that A : X1 → X0 is a linear and closed
operator. We consider the abstract evolution equation

u̇(t) + Au(t) = f(t), t > 0, u(0) = 0. (2.2)

Following the lines of [51], we have the following

Definition 2.2. Let 1 < p < ∞ and μ ∈ (1/p, 1]. The operator A has the
property of maximal Lp,μ-regularity in X0 if, for each f ∈ Lp,μ(R+;X0), there
exists a unique solution

u ∈ W 1
p,μ(R+;X0) ∩ Lp,μ(R+;X1)

of (2.2). If this is the case, we write for short A ∈ MRp,μ(X0) and

MRp,1(X0) =: MRp(X0)

if μ = 1.

The following important and fundamental theorem states that the concept
of maximal Lp,μ-regularity does not depend on μ ∈ (1/p, 1].

Theorem 2.3 (Prüss and Simonett [51]). For all 1 < p < ∞ and μ ∈ (1/p, 1],
the following assertions are equivalent:

1. A ∈ MRp,μ(X0);
2. A ∈ MRp(X0).

The proof of this theorem, which can be found in [51, Theorem 2.4], relies
crucially on Hardy’s inequality (2.1), a sophisticated splitting of the solution
to (2.2), and some multiplier results as e.g. [51, Proposition 2.3].

Remark 2.4. The class MRp(X0) is independent of p ∈ (1,∞), see [58]. There-
fore, the class MRp,μ(X0) enjoys this property as well.

Remark 2.5. If A ∈ MRp(X0), then −A is the generator of an exponentially
stable analytic semigroup in X0, see e.g. [16, Theorem 2.2], [50, Proposition
1.2], or [52, Proposition 3.5.2]. A characterization of A ∈ MRp(X0) has been
given by Weis in [60]. It is based on the concept of R-boundedness in case X0

is additionally of class UMD.

We proceed with a selection of examples for operators belonging to the
class MRp(X0).
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• If X0 is a Hilbert space and −A generates an exponentially stable analytic
semigroup in X0, then A ∈ MRp(X0) [52, Theorem 3.5.7].

• If X0 is a real interpolation space, and −A generates an exponentially
stable analytic semigroup in X0, then A ∈ MRp(X0) [52, Theorem 3.5.8].

• Suppose Ω ⊂ R
n is open with compact boundary of class C2m, m ∈ N.

(Uniformly) normally elliptic operators of order 2m in Ω with appropri-
ate homogeneous boundary conditions (satisfying the Lopatinskii-Shapiro
condition) on ∂Ω induce operators A ∈ MRp(X0) for X0 = Lq(Ω;E),
1 < q < ∞, where E is a Banach space of class UMD [15, Chapter 5] or
[52, Chapter 6].

2.3. Trace spaces. We turn our attention to the abstract Cauchy problem (1.1)
and ask under which assumptions on the initial value u0 there exists a unique
solution

u ∈ W 1
p,μ(R+;X0) ∩ Lp,μ(R+;X1)

of (1.1), provided A ∈ MRp(X0) and f ∈ Lp,μ(R+;X0). By the second asser-
tion in Proposition 2.1, the trace operator

tr : W 1
p,μ(R+;X0) → X0, u �→ u(0),

is well-defined since

W 1
1,loc(R+;X0) ↪→ C(R+;X0).

In the sequel, let

E1,μ := W 1
p,μ(R+;X0) ∩ Lp,μ(R+;X1).

The following characterization of the trace space tr E1,μ holds.

Proposition 2.6. For all 1 < p < ∞ and all μ ∈ (1/p, 1], it holds that

tr E1,μ = (X0,X1)μ−1/p,p

(up to equivalent norms), where (X0,X1)μ−1/p,p is the real interpolation space
between X0 and X1 of exponent μ − 1/p. Moreover, the embedding

W 1
p,μ(R+;X0) ∩ Lp,μ(R+;X1) ↪→ BUC(R+; (X0,X1)μ−1/p,p)

is true. Here BUC stands for the bounded and uniformly continuous functions.

Proof. [51, Proposition 3.1]. �

With the help of this proposition, one can prove the following

Theorem 2.7 (Prüss and Simonett [51]). Let 1 < p < ∞, μ ∈ (1/p, 1], and
A ∈ MRp(X0). Then for all

(f, u0) ∈ Lp,μ(R+;X0) × (X0,X1)μ−1/p,p,

there exists a unique solution

u ∈ W 1
p,μ(R+;X0) ∩ Lp,μ(R+;X1)
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of (1.1). Moreover, there exists a constant C > 0 being independent of (f, u0)
such that the estimate

‖u‖E1,μ
≤ C

(
‖f‖Lp,μ(R+;X0) + ‖u0‖(X0,X1)μ−1/p,p

)
(2.3)

holds.

Proof. For the proof of the first assertion, see [51, Theorem 3.2]. Concerning
the estimate (2.3), note that

‖(u̇ + Au, u(0))‖Lp,μ(R+;X0)×(X0,X1)μ−1/p,p
≤ C‖u‖E1,μ

by Proposition 2.6. Hence (2.3) follows from the first assertion and the open
mapping theorem. �

Remark 2.8. Theorem 2.7 asserts, in particular, that the regularity of the ini-
tial value can be reduced by decreasing the exponent μ ∈ (1/p, 1] of the time-
weight. This in turn implies that the number of compatibility conditions in
the context of initial-boundary value problems for parabolic partial differen-
tial equations may be reduced to a minimum.

3. Quasilinear parabolic evolution equations.

3.1. Local well-posedness and regularization. In this section, we consider
quasilinear evolution equations of the form

u̇(t) + A(u(t))u(t) = F (u(t)), t > 0, u(0) = u1. (3.1)

We are looking for solutions in the maximal regularity class

u ∈ W 1
p,μ((0, T );X0) ∩ Lp,μ((0, T );X1) =: E1,μ(0, T )

with an appropriate T ∈ (0,∞). Therefore, by Proposition 2.6, it is reasonable
to assume

(A,F ) ∈ C1−(Vμ;B(X1,X0) × X0) (3.2)
where Vμ ⊂ (X0,X1)μ−1/p,p =: Xγ,μ is open and nonempty, C1− stands for
the locally Lipschitz continuous functions, and B(X1,X0) denotes the space of
all bounded and linear operators from X1 to X0.

To exploit the general strategy, assume for simplicity that Vμ = Xγ,μ. Given
any u0, u1 ∈ Vμ, we consider for given w ∈ E1,μ(0, T ) the linear problem

v̇(t) + A(u0)v(t) = G(w(t)), t > 0, u(0) = u1,

where G(w) := F (w) + A(u0)w − A(w)w. By the regularity assumption (3.2),
it follows that

[t �→ G(w(t))] ∈ Lp,μ((0, T );X0).

Assuming A(u0) ∈ MRp(X0), by Theorem 2.7 and extension-restriction ar-
guments, the mapping

[w �→ v] : E1,μ(0, T ) → E1,μ(0, T )

is well defined. Obviously, any fixed point of this mapping is a solution to (3.1)
and vice versa. The contraction mapping principle then yields the following



630 M. Wilke Arch. Math.

Theorem 3.1. Let p ∈ (1,∞), u0 ∈ Vμ be given, and suppose that (A,F ) satisfy
(3.2) for some μ ∈ (1/p, 1]. Assume in addition that A(u0) ∈ MRp(X0). Then
there exist T = T (u0) > 0 and ε = ε(u0) > 0 such that B̄Xγ,μ

(u0, ε) ⊂ Vμ and
such that problem (3.1) has a unique solution

u(·, u1) ∈ W 1
p,μ((0, T );X0) ∩ Lp,μ((0, T );X1) ∩ C([0, T ];Vμ)

on [0, T ] for any initial value u1 ∈ B̄Xγ,μ
(u0, ε). Furthermore, there exists a

constant c = c(u0) > 0 such that, for all u1, u2 ∈ B̄Xγ,μ
(u0, ε), the estimate

‖u(·, u1) − u(·, u2)‖E1,μ(0,T ) ≤ c‖u1 − u2‖Xγ,μ

is valid. Here B̄Xγ,μ
(u0, ε) denotes the closed ball with center u0 and radius ε

in the topology of Xγ,μ.

Proof. [37, Theorem 2.1]. �

Remark 3.2. A benefit of Theorem 3.1 is that the local existence time T =
T (u0) is locally uniform. Moreover, Theorem 3.1 shows that the space Xγ,μ =
(X0,X1)μ−1/p,p is the natural phase space for the semi-flow [u0 �→ u(t, u0)]
generated by (1.2) or (3.1). In the unweighted case (i.e., μ = 1), Theorem 3.1
has been proven in [13] and [50].

Concerning the continuation of solutions in the weighted maximal regularity
class, one can prove the following

Corollary 3.3. Let the assumptions of Theorem 3.1 be satisfied and assume
that A(v) ∈ MRp(X0) for all v ∈ Vμ. Then the solution u(·, u0) of (1.2) has
a maximal interval of existence [0, t+(u0)) and for each T ∈ (0, t+(u0)), there
holds

u(·, u0) ∈ E1,μ(0, T ) ∩ C([0, T ];Xγ,μ).

The mapping [u0 �→ t+(u0)] : Vμ → (0,∞) is lower-semicontinuous.

Proof. [37, Corollary 2.2] and [39, Corollary 2.2]. �

Let us point out another advantage of working in the setting of weighted
Lp-spaces. To see the benefit, observe that for all τ, T ∈ (0, t+(u0)) with τ < T ,
the estimate

τ1−μ‖u‖E1,1(τ,T ) ≤ ‖u‖E1,μ(τ,T ) ≤ ‖u‖E1,μ(0,T ) (3.3)

for the solution u of (3.1) holds, hence

u ∈ W 1
p,loc((0, t+(u0));X0) ∩ Lp,loc((0, t+(u0)),X1) ↪→ C((0, t+(u0));Xγ,1)

(3.4)

by Proposition 2.6. This shows that the solution u(t) of (1.2) with initial value
u0 ∈ Xγ,μ = (X0,X1)μ−1/p,p regularizes instantaneously for t ∈ (0, t+(u0))
provided μ < 1.
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3.2. Global well-posedness. Assume that for some 1/p < μ < ν ≤ 1, it holds
that

Xγ,ν
c

↪→ Xγ,μ (3.5)

and for some τ ∈ (0, t+(u0)),

u ∈ BC([τ, t+(u0));Xγ,ν),

where
c

↪→ stands for a compact embedding. Then, the orbit {u(t)}t∈[τ,t+(u0)) is
relatively compact in Xγ,μ which in turn implies that t+(u0) = ∞ and there-
fore, the solution u exists globally (see [39, Section 3] for details). Moreover,
combining the continuous dependence of the solution on the initial data from
Theorem 3.1 with (3.3) and (3.4), one can even prove relative compactness of
{u(t)}t∈[τ,t+(u0)) in Xγ,1, the strongest topology with respect to μ ∈ (1/p, 1].
All these considerations are part of the following result which has been proven
in [39, Theorem 3.1].

Theorem 3.4. Let p ∈ (1,∞), suppose that A(v) ∈ MRp(X0) for all v ∈ Vμ,
and let (3.2) hold for some μ ∈ (1/p, 1). Assume furthermore that (3.5) holds
for some ν ∈ (μ, 1] and that the solution u of (1.2) satisfies

u ∈ BC([τ, t+(u0));Vμ ∩ Xγ,ν)

for some τ ∈ (0, t+(u0)) and ν ∈ (μ, 1] as well as

dist(u(t), ∂Vμ) ≥ η > 0

for all t ∈ [0, t+(u0)). Then the solution u exists globally and for each δ > 0, the
orbit {u(t)}t≥δ is relatively compact in Xγ,1. If u0 ∈ Vμ ∩Xγ,1, then {u(t)}t≥0

is relatively compact in Xγ,1.
In addition, the ω-limit set ω(u0) defined by

ω(u0) := {v ∈ Vμ ∩ Xγ,1 : ∃ tn ↗ ∞ s.t. u(tn, u0) → v in Xγ,1}
is nonempty, compact, and connected.

Example 3.5. We consider the quasilinear initial-boundary value problem

∂tu − div(a(u)∇u) = f(u,∇u) in Ω,

u = 0 on ∂Ω,

u(0) = u0 in Ω, (3.6)

where Ω ⊂ R
n is a bounded domain with boundary ∂Ω ∈ C2, f ∈ C1(R ×

R
n;R), a ∈ C2(R;R), and a(s) ≥ a0 > 0 for all s ∈ R. Let us first rewrite (3.6)

in the form (1.2). To this end, for 1 < q < ∞, we set X0 = Lq(Ω),

X1 = {u ∈ W 2
q (Ω) : u|∂Ω = 0},

where u|∂Ω has to be understood in the sense of traces. In this situation, we
have for μ ∈ (1/p, 1],

(X0,X1)μ−1/p,p =

⎧⎨
⎩

{u ∈ B
2μ−2/p
qp (Ω) : u|∂Ω = 0} if μ > 1/p + 1/(2q),

B
2μ−2/p
qp (Ω) if μ < 1/p + 1/(2q),
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see e.g. [27]. Let us assume that 2/p + n/q < 1, wherefore the embedding
B

2−2/p
qp (Ω) ↪→ C1(Ω̄) is at our disposal. In this case, there exists μ0 ∈ (1/p, 1)

such that

B2−2/p
qp (Ω)

c
↪→ B2μ−2/p

qp (Ω)
c

↪→ C1(Ω̄) if μ ∈ (μ0, 1),

with compact embeddings. Indeed, the number μ0 ∈ (1/p, 1) is given by

μ0 =
1
2

+
1
p

+
n

2q
,

provided 2/p+n/q < 1. For μ ∈ (μ0, 1] and Xγ,μ := (X0,X1)μ−1/p,p, we define
A : Xγ,μ → B(X0,X1) and F : Xγ,μ → X0 by means of

[A(v)u](x) := −div(a(v(x))∇u(x)), x ∈ Ω, v ∈ Xγ,μ, u ∈ X1,

and

F (v)(x) := f(v(x),∇v(x)), x ∈ Ω, v ∈ Xγ,μ.

From the regularity assumptions on a and f , it follows that

(A,F ) ∈ C1−(Xγ,μ;B(X1,X0) × X0), μ ∈ (μ0, 1].

Furthermore, by [52, Theorem 6.3.2], it holds that A(v) ∈ MRp(X0) for all
v ∈ Xγ,μ, μ ∈ (μ0, 1] since the spectral bound of −A(v) is negative for each
v ∈ Xγ,μ. An application of Theorem 3.1, Corollary 3.3, and Theorem 3.4
yields the following result.

Theorem 3.6. Let n ∈ N, p, q ∈ (1,∞) such that 2/p + n/q < 1, Ω ⊂ R
n a

bounded domain with boundary ∂Ω ∈ C2. Suppose that μ > 1/2+1/p+n/(2q)
and let u0 ∈ B

2μ−2/p
qp (Ω) such that u0|∂Ω = 0. If the solution u of (3.6)

satisfies

u ∈ BC
(
[τ, t+(u0));B2ν−2/p

qp (Ω)
)

for some τ ∈ (0, t+(u0)) and ν ∈ (μ, 1], then the solution u exists globally,
i.e., t+(u0) = ∞ and for any δ > 0, the set {u(t)}t≥δ is relatively compact in
B

2−2/p
qp (Ω). Moreover, the ω-limit set

ω(u0) :=
{

v ∈ B2−2/p
qp (Ω) : ∃ tn ↗ ∞ s.t. u(tn;u0) → v in B2−2/p

qp (Ω)
}

is nonempty, connected, and compact.

3.3. Nonlinearities with polynomial growth. The condition (3.2) is for quite
general functions (A,F ) and does not account for nonlinearities having a cer-
tain growth. Consider for example the PDE

∂tu − div(a(u)∇u) = f(u). (3.7)

We compute (assuming that a is sufficiently regular)

div(a(u)∇u) = a(u)Δu + a′(u)|∇u|2.
Therefore, we may also consider (3.7) in the form

∂tu − a(u)Δu = f(u) + a′(u)|∇u|2. (3.8)
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Let us compare (3.8) with the PDE

∂tu − a(u)Δu = f(u). (3.9)

For (3.8) and (3.9), we choose the setting X0 = Lq(Ω) and

X1 = {u ∈ W 2
q (Ω) : u|∂Ω = 0}.

Then, as in Example 3.5, the trace space is computed to the result

Xγ,μ =

{
{u ∈ B

2μ−2/p
qp (Ω) : u|∂Ω = 0} if μ > 1/p + 1/(2q),

B
2μ−2/p
qp (Ω) if μ < 1/p + 1/(2q),

To solve (3.9) in this setting, we require Xγ,μ ↪→ C(Ω), i.e., 2μ > 2/p + n/q.
Note that this is possible if 2/p + n/q < 2, in order to ensure μ ∈ (1/p, 1].
We turn back to (3.8). The terms a(u)Δu and f(u) are as in (3.9) while the
remaining term a′(u)|∇u|2 seems to induce additional conditions on the weight
μ for solving (3.8). However, it is of fundamental importance to observe that
the last term in (3.8) has a certain structure: it is of quadratic growth and of
lower order compared to a(u)Δu.

Such a class of nonlinearities with a certain growth behaviour has been
considered in [39,53], and [55]. We write

F (u) = Fr(u) + Fs(u)

where Fr and Fs are the regular and singular part of F , respectively. In the
sequel, we denote by Xβ = (X0,X1)β , β ∈ (0, 1), the complex interpolation
spaces. The precise assumptions on (A,Fr, Fs) are as follows.

(H1) (A,Fr) ∈ C1−(Vμ;B(X1,X0) × X0).
(H2) Fs : Vμ ∩ Xβ → X0 satisfies the estimate

‖Fs(u1) − Fs(u2)‖X0 ≤ C

m∑
j=1

(1 + ‖u1‖ρj

Xβ
+ ‖u2‖ρj

Xβ
)‖u1 − u2‖Xβj

,

u1, u2 ∈ Vμ ∩ Xβ , for some numbers m ∈ N, ρj ≥ 0, β ∈ (μ − 1/p, 1), βj ∈
[μ − 1/p, β], where C denotes a constant which may depend on ‖ui‖Xγ,μ

. The
case βj = μ − 1/p is only admissible if (H2) holds with Xβj

replaced by Xγ,μ.
(H3) For all j = 1, . . . ,m, we have

ρj(β − (μ − 1/p)) + (βj − (μ − 1/p)) ≤ 1 − (μ − 1/p).

Allowing for equality in (H3) is not for free and we additionally need to impose
the following structural condition (S) on the Banach spaces X0 and X1.

(S) The space X0 is of class UMD and the embedding

W 1
p (R;X0) ∩ Lp(R;X1) ↪→ H1−β

p (R;Xβ)

is valid for each β ∈ [0, 1].

Remark 3.7. 1. By the mixed derivative theorem, condition (S) is in partic-
ular satisfied if X0 is of class UMD, and if there is an operator B in X0,
with domain D(B) = X1, such that B possesses a bounded H∞-calculus
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in X0 (for short B ∈ H∞(X0)) with H∞-angle φ∞
B < π/2. We refer to

Prüss and Simonett [52, Section 4.5] for details.
2. Hypothesis (H3) with strict inequality has been considered in [39]. In this

case, condition (S) can be neglected.

Let us apply (H2) to the nonlinearity Fs(u) := a′(u)|∇u|2 in (3.8). In this
case, we have m = 1, β1 = β, and ρ1 = 1 and

2β = 1 +
n

2q

to ensure the embedding H2β
q (Ω) ↪→ H1

2q(Ω). From (H3), it then follows that

2μ ≥ 2
p

+
n

q
,

hence there are no additional conditions on μ in (3.8).
The extension of Theorem 3.1 to the setting of this section reads as follows.

Theorem 3.8. Suppose that the structural condition (S) holds, and assume that
hypotheses (H1), (H2), (H3) are valid. Fix any u0 ∈ Vμ such that A0 :=
A(u0) ∈ MRp(X0). Then there is T = T (u0) > 0 and ε = ε(u0) > 0 with
B̄Xγ,μ

(u0, ε) ⊂ Vμ such that the problem

u̇(t) + A(u(t))u(t) = Fr(u(t)) + Fs(u(t)), t > 0, u(0) = u1, (3.10)

admits a unique solution

u(·, u1) ∈ W 1
p,μ((0, T );X0) ∩ Lp,μ((0, T );X1) ∩ C([0, T ];Vμ)

for each initial value u1 ∈ B̄Xγ,μ
(u0, ε). There is a constant c = c(u0) > 0

such that

‖u(·, u1) − u(·, u2)‖E1,μ(0,T ) ≤ c‖u1 − u2‖Xγ,μ

for all u1, u2 ∈ B̄Xγ,μ
(u0, ε).

Proof. [53, Theorem 1.2]. �

3.4. Critical spaces. Looking into the literature, there is no universally ac-
cepted definition of critical spaces. One possible definition may be based on
the idea of a ‘largest space of initial data such that a given PDE is well-posed’.
On the other hand, critical spaces are often introduced as ‘scaling invariant
spaces’, provided the underlying PDE enjoys a scaling.

We consider again the setting from Section 3.3. Note that the condition
(H3) implies that the minimal value of μ is given by

μc =
1
p

+ β − min
j

(1 − βj)/ρj ,

which we call the critical weight as long as μc ∈ (1/p, 1]. Theorem 3.8 shows
in particular that we have local well-posedness of (3.10) for initial values in
the spaces Xγ,μ, provided (H1) holds for μ ∈ [μc, 1]. Therefore, it makes sense
to name the space Xγ,μc

= (X0,X1)μc−1/p,p the critical space for (3.10). The
critical space Xγ,μc

enjoys the following properties.
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• Generically, the critical space Xγ,μc
is the largest space such that the

underlying evolution equation is well-posed for initial values in Xγ,μc
. A

concrete counterexample is given in [53, Section 2.2].
• If the underlying evolution equation admits a scaling, then the critical

space Xγ,μc
is scaling invariant. This has been proven in [53, Section 2.3].

A typical example is given by the Navier–Stokes equations in R
n:

∂tu + u · ∇u − Δu + ∇π = 0, div u = 0,

which is invariant under the scaling

(uλ(t, x), πλ(t, x)) := (λu(λ2t, λx), λ2π(λ2t, λx)).

Here u denotes the velocity field and π the pressure.
• The critical spaces Xγ,μc

are invariant with respect to interpolation-
extrapolation scales (see e.g. [4] for the theory of those scales). This has
been proven in [53, Section 2.4]. Considering a PDE in a scale of func-
tion spaces gives great flexibility in choosing an appropriate setting for
analyzing a given equation.

In particular, the above definition of Xγ,μc
encompasses the aforementioned

properties of critical spaces from the literature.
Of special interest from a viewpoint of applications are semilinear evolution

equations of the form

u̇(t) + Au(t) = G(u(t), u(t)), t > 0, u(0) = u0. (3.11)

Here G : Xβ × Xβ → X0 is bilinear and bounded, with the complex interpo-
lation spaces Xβ = (X0,X1)β and A ∈ H∞(X0) with domain D(A) = X1 and
H∞-angle φ∞

A < π/2. In this setting, Fr = 0 and Fs(u) = G(u, u), so that
(H1) is satisfied and (H2) holds with m = 1, ρ1 = 1, and β1 = β. Hypothesis
(H3) then reads

2β − 1 ≤ μ − 1/p, (3.12)

so that the critical weight μc is given by μc = 1/p + 2β − 1 in case β > 1/2
and

Xγ,μc
= (X0,X1)μc−1/p,p = (X0,X1)2β−1,p

is the critical space.

Example 3.9. Let n ≥ 2, Ω ⊂ R
n be a bounded domain with boundary ∂Ω of

class C3−, and consider the Navier-Stokes problem

∂tu + u · ∇u − Δu + ∇π = 0 in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

u(0) = u0 in Ω. (3.13)

Employing the Helmholtz projection P in Lq(Ω)n, 1 < q < ∞, (3.13) can be
reformulated as the abstract semilinear evolution equation

u̇ + Au = F (u), t > 0, u(0) = u0, (3.14)
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in the Banach space X0 := Lq,σ(Ω) := PLq(Ω)n, where A = −PΔ is the
Dirichlet-Stokes operator with domain

D(A) := {u ∈ H2
q (Ω)n ∩ Lq,σ(Ω) : u = 0 on ∂Ω}

and the bilinear nonlinearity F is defined by

F (u) = G(u, u), G(u1, u2) = −P (u1 · ∇)u2.

In [55], we computed the criticial weight μc = 1/p + n/2q − 1/2 and the
corresponding critical spaces

Xγ,μc
= 0B

n/q−1
qp (Ω)n ∩ Lq,σ(Ω)

for (3.14), provided q ∈ (1, n), p ∈ (1,∞) such that 2/p + n/q ≤ 3. Here the
subscript 0 indicates that u|∂Ω = 0 whenever the trace exists. In the particular
case n = 3 and p = q = 2, we have

Xγ,μc
= D(A1/4), Xγ,1 = 0H

1
2(Ω)3 ∩ L2,σ(Ω) = D(A1/2),

which yields the celebrated Fujita-Kato theorem, proved first in 1962 by means
of the famous Fujita-Kato iteration, see [22].

Remark 3.10. Critical spaces for the Navier–Stokes equations with perfect-
slip as well as partial-slip boundary conditions have been characterized in [56].
Further examples in the context of critical spaces include

• the Cahn–Hilliard equation
• the Vorticity equation
• Convection–Diffusion equations
• Chemotaxis equations

which can be found in [53, Sections 3 & 5].

Last but not least, let us state from [53, Theorem 2.4] another important
application of critical spaces. It is a result of Serrin type which connects global-
in-time existence to an integral a-priori bound for the solution in the critical
topology.

Theorem 3.11. Let p ∈ (1,∞), β > 1/2, and μc := 2β − 1 + 1/p ≤ 1 be the
critical weight. Assume u0 ∈ Xγ,μc

, and let u denote the unique solution of
(3.11) with maximal interval of existence [0, t+(u0)). Then
(i) u ∈ Lp((0, a);Xμc

) for each a < t+(u0).
(ii) If t+(u0) < ∞, then u �∈ Lp((0, t+(u0));Xμc

).
In particular, the solution exists globally if u ∈ Lp((0, a);Xμc

) for any finite
number a with a ≤ t+(u0).

We remind that Xμc
= (X0,X1)μc

denotes the complex interpolation space.
Theorem 3.11 has in particular been applied in [56] and [57] to prove the global
well-posedness of the Navier–Stokes equations in bounded domains of R2 and
on two-dimensional compact manifolds, respectively.

4. Further implications and applications of weighted Lp -spaces. In this sec-
tion, we give a selection of some further results and applications that were
influenced by the article [51].
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4.1. General weighted spaces. More general time-weighted function spaces
with power weights have subsequently been considered for instance in [1,5,
41,44,46], and [47]. The authors in [46] consider sharp embeddings for vector-
valued weighted spaces of Besov, Triebel-Lizorkin, Bessel potential, and
Sobolev-Slobodeckii type.

In [1,44], and [47] anisotropic weighted function spaces have been studied.
Several sharp embedding results as well as trace theorems have been proven
therein. Those (anisotropic) function spaces are of significant importance in
the theory of maximal regularity for parabolic boundary value problems as
they appear e.g. as certain trace spaces.

Results on interpolation of weighted vector-valued function spaces with
boundary conditions can be found in [5] and [41]. Those interpolation spaces
appear for instance in the computation of the trace spaces or critical spaces
as soon as boundary conditions come into play.

For additional literature on function spaces, we recommend [5] and [52] and
the references listed therein.

4.2. Maximal regularity results. Deterministic results on optimal weighted
Lp-Lq-regularity for parabolic boundary value problems with inhomogeneous
boundary data can be found in [25,43,45] for the case p = q, and in [35,40] for
the general case p �= q. In [35], weights in the spatial variable are considered as
well. We also refer to the articles [23] and [24] concerning maximal regularity
results in time-weighted spaces for parabolic operators in R

n having merely
measurable coefficients and to the article [59] for parabolic boundary value
problems in non-smooth domains.

In the probabilistic setting, there has been recent progress on stochastic
maximal Lp-regularity in time-weighted spaces. In this context, we want to
mention the articles [2,3], and [49]. The first two articles can be seen as a sto-
chastic version of [53] concerning critical spaces, while in [49], stochastic partial
differential equations with VMO coefficients within the stochastic weighted
Lp-maximal regularity framework are considered. Finally, we want to men-
tion the article [7] for stochastic maximal Lp-regularity results in (weighted)
tent spaces. For a comprehensive list of further references in the probabilistic
setting, we refer to [2] and [49].

Note that by Theorem 2.3, classical (unweighted) Lp-maximal regularity
extrapolates to the Lp,μ-spaces with power weights having a positive exponent.
This has subsequently been extended to all Muckenhoupt weights in [28] and
in [10–12] to more general weights. For a proof of those extrapolation results
in terms of R-boundedness, we refer to [19].

4.3. Specific applications of time-weighted spaces. The aforementioned ab-
stract or general results on weighted Lp-maximal regularity have been applied
to numerous concrete examples over the last years. Among the vast literature,
we want to mention the following references.

Within the dynamics of fluids, weighted Lp-spaces and maximal regularity
results have for instance been applied to

• the Hibler sea ice model [9],
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• a system of PDEs for magnetoviscoelastic fluids [18],
• incompressible and inhomogeneous fluids (with variable density) [20],
• nematic liquid crystal flows via quasilinear evolution equations [33],
• the phase-field Navier–Stokes equations [36],
• the Navier–Stokes equations in unbounded domains with rough initial

data [38],
• rotating rigid bodies with a liquid-filled gap [42].

For the primitive equations of geophysical flows, which might be seen as a
suitable approximation of the Navier–Stokes equations, we refer to [8] and [26]
where critical spaces have been computed and analyticity of the solutions is
proven. We further mention the articles [30] and [31] for surveys ranging from
boundary layers and fluid structure interaction problems over free boundary
value problems and liquid crystal flow to the primitive equations.

For a comprehensive overview of applications of weighted function spaces in
the context of free boundary problems as e.g. for the two-phase Navier–Stokes
equations or Stefan problems, see the monograph [52]. Further applications of
weighted function spaces include

• regularity issues for the Cahn-Hilliard equation [21],
• reaction-diffusion systems of Maxwell-Stefan type [29],
• Keller-Segel systems in critical spaces [32],
• bidomain operators [34].
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