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Abstract. The classical Erdős–Ginzburg–Ziv constant of a group G de-
notes the smallest positive integer � such that any sequence S of length
at least � contains a zero-sum subsequence of length exp(G). In the recent
paper (Integers 22: Paper No. A102, 17 pp., 2022), Caro and Schmitt gen-
eralized this concept, using the m-th degree symmetric polynomial em(S)
instead of the sum of the elements of S and considering subsequences
of a given length t. In particular, they defined the higher degree Erdős–
Ginzburg–Ziv constants EGZ(t, R, m) of a finite commutative ring R and
presented several lower and upper bounds to these constants. This paper
aims to provide lower and upper bounds for EGZ(t, R, m) in case R = F

n
q .

The lower bounds here presented have been obtained, respectively, using
the Lovász local lemma and the expurgation method and, for sufficiently
large n, they beat the lower bound provided by Caro and Schmitt for the
same kind of rings. Finally, we prove closed form upper bounds derived
from the Ellenberg–Gijswijt and Sauermann results for the cap-set prob-
lem assuming that q = pk, t = p, and m = p−1. Moreover, using the slice
rank method, we derive a convex optimization problem that provides the
best bounds for q = 3k, t = 3, m = 2, and k = 2, 3, 4, 5.
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1. Introduction. One significant subfield of additive group theory and combi-
natorial number theory is the zero-sum theory that studies the sums behavior
of suitable sequences of elements in an abelian finite group G (see, for instance,
the surveys [7,20]). In this context, a typical kind of problem considers the ex-
istence of constants � such that any sequence of elements of G whose length is
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bigger than � satisfies an additive property P. Among these constants, an im-
portant role is taken by the classical Erdős–Ginzburg–Ziv constant of a group
G that denotes the smallest positive integer � such that any sequence of length
|S| ≥ � contains a zero-sum subsequence of length exp(G). This constant has
been well studied in the literature, we refer to the survey paper [20]. Here we
recall that in [16], Erdős, Ginzburg, and Ziv completely determined its value
over cyclic groups and that in [18,21,23], respectively Fox, Sauermann, and
Naslund derived nontrivial upper bounds on groups of type F

n
p (they assumed

a slightly different definition of the Erdős–Ginzburg–Ziv constant).
In the recent paper [10], Caro and Schmitt generalized this concept, us-

ing the m-th degree symmetric polynomial em(g1, . . . , gt) =
∑

1≤i1<···<im≤t∏m
j=1 gij instead of the sum of the elements of S and considering subsequences

of a given length t (see also [1,3–5] that considered some related problems).
In particular, they defined the higher degree Erdős–Ginzburg–Ziv constants
EGZ(t, R,m) as follows. For a finite commutative ring R, EGZ(t, R,m) is the
smallest positive integer � such that every sequence S over R of length |S| ≥ �
contains a subsequence S′ of length t for which em(S′) evaluates to the zero
element in R. If such � does not exists, EGZ(t, R,m) is set to ∞.

They also present several lower and upper bounds to these constants solving
the case where R is Z2 and the case where R is Zps if t and m are powers of the
same prime. For a generic finite commutative ring R, their best lower bound is
expressed in term of the generalized Davenport constant D(R,m) of the ring
R (see Caro et al. [11]), that is, the smallest integer � such that any sequence
S over R of length |S| ≥ � contains a subsequence S′ of length |S′| ≥ m for
which em(S′) equals the zero element of R. Indeed they prove that

EGZ(t, R,m) ≥ t + D(R,m) − m. (1.1)

This paper aims to determine lower and upper bounds for EGZ(t, R,m)
in case R = F

n
q (viewed as a commutative ring) for some prime power q (in

the following we will always use the letter q for a prime power and p for a
prime). The article is organized as follows. In Section 2, we will present two
lower bounds obtained, respectively, using the Lovász local lemma and the
expurgation method. Then, in Section 3, we will show that, for sufficiently large
n, our bounds improve the ones given by Caro and Schmitt in the same context.
Finally, in Section 4, we prove closed form upper bounds to EGZ(p,R, p − 1),
derived from the Ellenberg–Gijswijt [15] and Sauermann [23] bounds for the
cap-set problem, in case R = F

n
q and q = pk. Moreover, we will apply Tao’s

slice rank method to provide an upper bound to EGZ(3,Fn
q , 2) and we derive

a convex optimization problem that we can solve numerically providing better
bounds for q = 3k and k = 2, 3, 4, 5.

2. Lower bounds. In this section, we will present two kinds of probabilistic
lower bounds on the Erdős–Ginzburg–Ziv constants of rings of type F

n
q . Both

those bounds exploit the following upper bound on the probability that a given
t-sequence S of elements in (vectors of) Fn

q is such that em(S) = 0. To provide
such an upper bound, we exploit the following famous lemma.
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Lemma 2.1 (Schwartz–Zippel lemma [24,27]). Let P ∈ F[x1, x2, . . . , xt] be a
non-zero polynomial with degree d. Consider a finite subset A ⊆ F. If we pick
uniformly at random r1, r2, . . . , rt from A, then

P[P (r1, r2, . . . , rt) = 0] ≤ d

|A| .

Using Lemma 2.1, we easily obtain the follow proposition.

Proposition 2.2. Let us choose, uniformly at random, a sequence S = (g1, g2,
. . . , gt) of t ≥ m vectors of Fn

q . Then

P[em(S) = 0] ≤
(

m

q

)n

.

Proof. We prove this result first assuming n = 1. Since em(S) is a polynomial
of degree m, by Lemma 2.1, taking A = Fq, we obtain

P[em(S) = 0] ≤ m

|A| =
m

q
.

Now we note that, if we consider a sequence S of t ≥ m vectors of Fn
q , then

em(S) = 0 if and only if each of the n projections πi(S) of S over the i-th
coordinate satisfies em(πi(S)) = 0. Since those projections are independent, it
follows that

P[em(S) = 0] =
n∏

i=1

P[em(πi(S)) = 0] ≤
(

m

q

)n

.

�

We provide a first new lower bound on EGZ(t,Fn
q ,m) by exploiting the so-

called Lovász local lemma, see also the work [5] of Bitz, Griffith, and He for a
similar application of this method. Here we state the lemma (in the symmetric
case) for the reader’s convenience.

Lemma 2.3 ([17] (see also [2])). Let E1, E2, . . . , Ek be events in an arbitrary
probability space. Suppose that each event Ei is mutually independent of the
set of all other events Ej but at most d, and that P[Ei] ≤ P for all 1 ≤ i ≤ k.
If

edP ≤ 1,

then P[∩k
i=1Ei] > 0.

Now, we are ready to state the following theorem.

Theorem 2.4. Let � be such that

e

[(
�

t

)

−
(

� − t

t

)] (
m

q

)n

≤ 1

where
(
�−t

t

)
is set to zero if � < 2t. Then EGZ(t,Fn

q ,m) > �.



20 S. Costa and S. Della Fiore Arch. Math.

Proof. Here we need to prove the existence of a sequence S of length � for
which any subsequence S′ of length t is such that em(S′) �= 0.

Let us choose, uniformly at random, a sequence S of length � in F
n
q . For

a given subsequence S′ of length t contained in S, let ES′ be the event such
that em(S′) = 0. Clearly, there are

(
�
t

)
such events. Due to Proposition 2.2, we

know that

P[ES′ ] ≤
(

m

q

)n

for all S′ ⊆ S, |S′| = t.

It is easy to see that each event ES′ is mutually independent from all the events
ES′′ where S′′ ⊆ S \ S′ and |S′′| = t. Therefore each event ES′ is dependent
on at most

(
�
t

) − (
�−t

t

)
other events. Hence, due to Lemma 2.3, we obtain the

thesis. �
Now we provide a second lower bound that, in some regime of the param-

eters, turns out to improve that of Theorem 2.4. The method we use here is
sometimes called expurgation in the literature. We refer the reader to the book
[2, Chapter 3 (Alterations)].

Theorem 2.5. Let � be such that
(

� + s

t

)(
m

q

)n

< s + 1

for some s ≥ 0. Then EGZ(t,Fn
q ,m) > �.

Proof. We first note that the thesis is equivalent to prove the existence of a
sequence S of length � for which any subsequence S′ of length t is such that
em(S′) �= 0.

Here we choose, uniformly at random, a sequence T of length � + s and we
evaluate the expected value of the random variable X given by the number
of subsequences T ′ of T of length t and such that em(T ′) = 0. Because of
Proposition 2.2, we have that

E(X) ≤
∑

T ′⊆T :|T ′|=t

(
m

q

)n

=
(

� + s

t

)(
m

q

)n

.

Moreover, due to the hypothesis, we have that E(X) < s + 1. It follows that
there exists a set T of length � + s with at most s subsequences T ′ such that
em(T ′) = 0 that we call bad subsequences. If we remove from T one element
from each bad subsequence, we have removed at most s elements and we are
left with a sequence S of length at least � for which any subsequence S′ of
length t is such that em(S′) �= 0. Clearly, we may assume, without loss of
generality, that the length of S is exactly � obtaining the thesis. �
Remark 2.6. We have been able to compute the optimal value of s in the
expurgation bound (Theorem 2.5) only for small values of t, i.e., t = 2, 3, 4, 5.
In all these cases, the expurgation bound performs better than the bound
given in Theorem 2.4 obtained using the Lovász local lemma. In view of these
results, we are inclined to conjecture that the expurgation bound provides
the best bound for every � ≥ t ≥ 2. However, since we did not succeed to
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prove this conjecture, we considered it useful to report also the bound given
in Theorem 2.4.

3. Comparison to Caro and Schmitt’s bounds. In this section, we discuss the
bounds we have obtained in comparison to that of Caro and Schmitt. In par-
ticular, in [11, Theorems 3.1 and 3.4], it was proved that for rings of type F

n
p

(where p is a prime), the following bounds on D(Fn
p ,m) hold:

nmp − (n − 1)m ≥ D(Fn
p ,m) ≥ np − (n − 1)m. (3.1)

It follows that the lower bound of Caro and Schmitt (1.1) becomes

EGZ(t,Fn
p ,m) ≥ t + n(p − m). (3.2)

Now we consider our lower bound of Theorem 2.5 with s = 0 in the case q = p.
Note that this is not, in general, our best lower bound but it is the easiest to
consider. We have that EGZ(t,Fn

p ,m) ≥ � if � is such that
(

�

t

) (
m

p

)n

< 1.

We note that �t

t! >
(
�
t

)
and hence EGZ(t,Fn

p ,m) ≥ � for any � such that

�t

t!

(
m

p

)n

< 1,

that is,
�t

t!
<

( p

m

)n

and hence
EGZ(t,Fn

p ,m) ≥ (t!)
1
t

( p

m

)n
t

. (3.3)

Now, since (3.3) is, when p > m, exponential in n, it is clear that asymptoti-
cally in n, it improves the lower bound of Equation (3.2).

Remark 3.1. From Equation (3.3), we also have that, if p > m, for sufficiently
large n:

EGZ(t,Fn
p ,m) ≥ (t!)

1
t

( p

m

)n
t

> t + nm(p − 1) ≥ t + D(Fn
p ,m) − m

where the last inequality follows from the upper bound of Equation (3.1). This
means that, for these kinds of parameters, it does not yield a Caro-Gao-type
relation (see [8,9,19]), i.e., it does not hold the equality in Equation (1.1).

We also note that the bound of Equation (3.3) can be trivially improved
for several values of q = pk. Indeed, if

(
t
m

) �≡ 0 (mod p), we have that
EGZ(t,Fn

q ,m) = ∞. It suffices to consider the infinite constant sequence such
that gi = 1 for any i ∈ N. In this case, we have that, for any subsequence S′

of length t, em(S′) =
(

t
m

) �≡ 0 (mod p). On the other hand, this is a subset
of the parameters for which our bounds of Section 2 (and in particular Equa-
tion (3.3)) hold. Moreover, we will show in the upcoming section that, at least
when q = pk, t = p, and m = p − 1, it is possible to provide nontrivial upper
bounds.
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Finally, we also note that the bounds here presented can be easily general-
ized to rings of type Fq1 × Fq2 × · · · × Fqn (similarly to those of [10] that Caro
and Schmitt stated for rings of type Zm1 × Zm2 × · · · × Zmn

) but, since we
believe this is not a substantial improvement, we prefer to keep the notation
of this note as simple as possible and to explicitly consider only rings of type
F

n
q .

4. Upper bounds. In this section, we provide an upper bound to EGZ(p,Fn
q , p−

1) with q = pk, where p is an odd prime. In the first part of this section, we
provide, using the Ellenberg–Gijswijt [15] and Sauermann [23] bounds for the
cap-set problem, a general upper bound to EGZ(p,Fn

q , p − 1) for every prime
p ≥ 3. Then, we use the so-called slice rank method, introduced by Tao in [25]
and revisited by Tao and Sawin in [26] (see also [12] and [22] for a discussion
on the method) in order to generalize the polynomial approach introduced in
[14] and in [15], to improve the bounds that can be deduced by the Ellenberg–
Gijswijt bound for p = 3 and k = 2, 3, 4, 5. Our application of the method is
somehow reminiscent of works on the classical Erdős–Ginzburg–Ziv constants
of Fox and Sauermann [18] and Naslund [21].

Let us first state the following theorems that will be used in Theorem 4.3
to provide a general bound on EGZ(p,Fn

q , p − 1) for q = pk and k ≥ 2.

Theorem 4.1 (Ellenberg–Gijswijt [15]). Let A be a subset of Fn
3 which does not

contain 3 distinct elements x1, x2, x3 such that x1 + x2 + x3 = 0. Then, for
n → ∞, we have that

|A| ≤
(

3
8

3
√

207 + 33
√

33 + o(1)
)n

≈ (2.756 + o(1))n.

Theorem 4.2 (Sauermann [23]). Let p ≥ 5 be a prime and let A be a subset of
F

n
p which does not contain p distinct elements x1, x2, . . . , xp such that x1 +

x2 + · · · + xp = 0. Then, for n → ∞, we have that

|A| ≤ (2
√

p + o(1))n
.

Now we consider a sequence S = (g1, g2, . . . , g�) of elements in F
n
q with q =

pk such that every p-tuple of elements g′
1, g

′
2, . . . , g

′
p of S satisfies

ep−1(g′
1, g

′
2, . . . , g

′
p) =

∑
1≤i1<···<ip−1≤p

∏p−1
j=1 g′

ij
�= 0. We note that S cannot

have elements repeated more than p − 1 times since ep−1(g′
1, g

′
2, . . . , g

′
p) = 0

whenever g′
1 = g′

2 = · · · = g′
p. It means that we can remove the repeated ele-

ments in S obtaining a set S1 with |S1| ≥ |S|
p−1 . Clearly, to upper bound the

length of the sequence S, it suffices to bound the cardinality of S1 considered
as a set (it has no repetitions). Since it does not admit repeated elements, we
already have that

|S|
p − 1

≤ |S1| ≤ qn. (4.1)

Now, we are ready to state our first result whose proof has been pointed
out by an anonymous referee.
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Theorem 4.3. Let p be an odd prime and k a positive integer. Then we have
that, when q is not a power of p,

EGZ(p,Fn
q , p − 1) = ∞.

While for q = pk, we have that

EGZ(p,Fn
q , p − 1) ≤

⎧
⎪⎨

⎪⎩

qn+o(n) for p = 3, 5 and k = 1,

(2.756k + 1)n+o(n) for p = 3 and k ≥ 2,
(
2k√

q + 1
)n+o(n) for p �= 3 and q ≥ 7.

Proof. We note that, if Fq has characteristic p′ �= p,
(

p
p−1

)
= p �≡ 0 (mod p′).

In this case, we consider the infinite constant sequence such that gi = 1 for
any i ∈ N. Here we have that, for any subsequence S′ of length p, ep−1(S′) =(

p
p−1

)
= p �≡ 0 (mod p′) and hence EGZ(p,Fn

q , p − 1) = ∞ whenever q is not
a power of p. Therefore we can assume that q = pk. For k = 1 and p = 3, 5,
the upper bound of this theorem follows directly from Equation (4.1). Hence
we can suppose that k ≥ 2.

Now, let S ⊆ F
n
q be a subset not containing p distinct elements x1, x2, . . . ,

xp ∈ S such that ep−1(x1, x2, . . . , xp) = 0. For every P ⊆ {1, 2, . . . , n}, let
us denote by SP = {v ∈ S | supp(v) = P}, where supp(v) is defined as the
set of coordinates in which v is nonzero, the set of vectors in S that have
the same support P. Let also denote by S′

P ⊆ F
|P |
q the set obtained from

SP restricting every vector v ∈ SP only to coordinates in P. This guarantees
us that all the entries of S′

P are nonzero elements of Fq. Then we construct
a new set S′′

P ⊆ F
|P |
q by replacing every vector (a1, a2, . . . , a|P |) ∈ S′

P by
(a−1

1 , a−1
2 , . . . , a−1

|P |) ∈ S′′
P . Clearly, |SP | = |S′

P | = |S′′
P |. We claim that S′′

P

does not contain p distinct elements summing to zero in F
|P |
q . Indeed, suppose

by contradiction there exist p distinct vectors x1, x2, . . . , xp ∈ S′
P such that

x−1
1,i + x−1

2,i + · · · + x−1
p,i = 0 for every i, then we can multiply both sides of the

previous equation by x1,ix2,i · · · xp,i to obtain that ep−1(x1, x2, . . . , xp) = 0.
But this is absurd due to the initial hypothesis on S.

Since, as an abelian group under addition, F|P |
q is isomorphic to F

k|P |
p , by

Theorems 4.1 and 4.2, we have that, for fixed p and k, |SP | ≤ (up,k + o(1))|P |

for every P ⊆ {1, 2, . . . , n} such that |P | = αn(1 + o(1)) for some 0 < α < 1,
where

up,k :=

{
2.756k for p = 3 and k ≥ 2,

(2
√

p)k for p �= 3 and pk ≥ 7.

Hence, for any real 0 < α ≤ 1/4, we get

|S| ≤
∑

P⊆{1,2,...,n}
|P |≤αn

|SP | +
∑

P⊆{1,2,...,n}
|P |≥αn

|SP |
(i)

≤ 2nqαn +
n∑

i≥αn

∑

P⊆{1,2,...,n}
|P |=i

|SP |
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(ii)

≤ o(un
p,k) +

n∑

i≥αn

(
n

i

)

(up,k + o(1))i
(iii)

≤ o(un
p,k) + (up,k + 1 + o(1))n

= (up,k + 1)n+o(n)
,

where (i) follows since |SP | ≤ qαn for |P | ≤ αn. Since 2qα = 2pαk < up,k

for every α < 1/4 and k ≥ 1, inequality (ii) holds due to the fact that
|SP | ≤ (up,k + o(1))|P |

. Finally inequality (iii) is due to the binomial theo-
rem. Therefore the theorem follows. �

We will see that it is possible to improve the bounds given in Theorem 4.3
using the slice rank method for q = 3k and k = 2, 3, 4, 5.

As done before, let S = (g1, g2, . . . , g�) be a sequence of elements in F
n
q with

q = 3k such that every three elements g′
1, g

′
2, g

′
3 of S satisfy e2(g′

1, g
′
2, g

′
3) �= 0.

Let S1 be the set obtained from removing the repeated elements in S. By
Equation (4.1), we have that |S1| ≥ |S|/2. Now we split S1 in n + 1 sets
S0

1 , S1
1 , . . . , Sn

1 where gi ∈ Sj
1 if gi has exactly j coordinates equal to zero. We

note that there exists j such that

|Sj
1| ≥ |S1|

n + 1
≥ |S|

2(n + 1)
.

Now, let us recall some definitions and lemmas from [25,26].

Definition 4.4. A function T : Ak → F is said to be a slice if it can be written
in the form

T (x1, . . . , xk) = T1(xi)T2(x1, . . . , xi−1, xi+1, . . . , xk)

where T1 : A → F and T2 : Ak−1 → F.

Definition 4.5. The slice rank srk(T ) of a general function T : Ak → F is the
smallest number m such that T is a linear combination of m slices.

Lemma 4.6 ([25]). Let A be a finite set and F be a field. Let T (x, y, z) be a
function A × A × A → F such that T (x, y, z) �= 0 if and only if x = y = z.
Then srk(T ) = |A|.

In order to apply Lemma 4.6, we want to consider a function that is
zero whenever we consider three different elements of Sj

1. In particular, given
x, y, z ∈ F

n
q , we consider

P (x, y, z) =
n∏

i=1

(1 − (xiyi + yizi + zixi)q−1). (4.2)

Lemma 4.7. Let us consider the function P (x, y, z) on the restricted domain
Sj

1 ×Sj
1 ×Sj

1 → Fq where q = 3k. Then P (x, y, z) �= 0 if and only if x = y = z.

Proof. Here we have that, if x, y, z are in Sj
1, then P (x, y, z) �= 0 if and only

if x = y = z. Indeed, if x, y, and z are three different elements of Sj
1, they

are such that xy + yz + zx �= 0 and hence xiyi + yizi + zixi �= 0 for at least
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one i ∈ [1, n]. This means that 1 − (xiyi + yizi + zixi)q−1 = 0 and hence
P (x, y, z) = 0.

We note that also if we consider an element x ∈ Sj
1 repeated twice and

z �= x, we have that P (x, x, z) = 0. Indeed, since x and z have the same
number of zero components, there exists i such that xi �= 0 and xi �= zi. Here
we have that

xixi + xizi + zixi = x2
i + 2xizi = xi(xi − zi) �= 0

since both xi − zi and xi are nonzero. It follows that P (x, x, z) = 0. Similarly,
we prove that also P (z, x, x) = 0 and P (x, z, x) = 0.

Finally, we consider an element x repeated three times. In this case, we
have that

P (x, x, x) =
n∏

i=1

(1 − (xixi + xixi + xixi)q−1) =
n∏

i=1

(1 − (3xixi)q−1) = 1 �= 0.

�

As a corollary of Lemmas 4.6 and 4.7, we have that:

Corollary 4.8.

|S| ≤ 2(n + 1)|Sj
1| = 2(n + 1)srk(P |Sj

1×Sj
1×Sj

1
).

Now the goal is to upper bound the srk(P |Sj
1×Sj

1×Sj
1
). The following lemma

will help us to make the first step in this direction.

Lemma 4.9 ([25]). Let A be a finite set, A1 ⊆ A, and F be a field. Let T (x, y, z)
be a function A × A × A → F. Then

srk(T |A1×A1×A1) ≤ srk(T ).

We immediately get the following corollary:

Corollary 4.10. Considering the function P on the domain F
n
q × F

n
q × F

n
q , we

have that

|S| ≤ 2(n + 1)|Sj
1| = 2(n + 1)srk(P ).

Now we aim to prove that srk(P ) improves the bound given in Theorem 4.3.
For this purpose, we recall the asymptotic rank theory studied by Tao and
Sawin in [26] in the special case of polynomial functions (we do not need to
consider the very general case of tensor slice rank).

Given a polynomial p(x, y, z) whose degree in each variables is at most
δ, we define Γ as the subset of {0, 1, . . . , δ}3 of the triples (d1, d2, d3) such
that xd1yd2zd3 has a nonzero coefficient in p. Hence we state the following
proposition derived from [26].

Proposition 4.11. Let p(x, y, z) be a polynomial and let Γ be its support. Then:

srk

(
n∏

i=1

p(xi, yi, zi)

)

≤ exp((H(Γ) + o(1))n)
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where

H(Γ) := sup
(X1,...,Xk)

min(h(X1), . . . , h(Xk)),

(X1, . . . , Xk) takes values in Γ, and h(X) is the entropy of the random variable
X defined as −∑

γ∈Γ′ P[X = γ] log(P[X = γ]) and Γ′ is the support of X.

In our case, we will not find the exact value of H(Γ) but we will compute
it numerically when k = 2, 3, 4, 5 solving a convex optimization problem and
providing then an upper bound of type exp(H(Γ))(n+o(n)) where exp(H(Γ)) is
strictly smaller than the bounds given in Theorem 4.3. For this purpose, we
will recall the following theorem from [6].

Theorem 4.12 ([6, Theorem 8]). Let Γ be a finite subset of S×S×S for some set
S and let σ ∈ Sym(3) be a permutation such that, for each a = (a1, a2, a3) ∈ Γ,
also σ(a) = (aσ(1), aσ(2), aσ(3)) ∈ Γ. Then there is a random variable Y taking
values in Γ such that, for all y ∈ Γ, we have that P[Y = y] = P[Y = σ(y)] and

min(h(Y1), h(Y2), h(Y3)) = H(Γ).

This theorem essentially ensures that the value H(Γ) is attained as a min-
imum of the entropy of the marginal variables of some random variable Y and
that this variable is invariant under permutations that fix Γ. We are now ready
to state the following theorem.

Theorem 4.13. Let q = 3k, then we have that

EGZ(3,Fn
q , 2) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

8.315n+o(n) for k = 2,

21.802n+o(n) for k = 3,

58.557n+o(n) for k = 4,

159.812n+o(n) for k = 5.

Proof. We set p(x, y, z) = (1−(xy+yz+zx)q−1) and we consider the following
polynomial defined in (4.2):

P (x, y, z) =
n∏

i=1

p(xi, yi, zi).

Hence we can use Proposition 4.11 to evaluate srk(P ). For q = 9, 27, 81, 243,
we compute the support Γ of p and then, using Theorem 4.12, we have been
able to compute H(Γ) numerically for these cases:

q 9 27 81 243

H(Γ) 2.118 3.082 4.07 5.074

Hence the theorem follows by Corollary 4.10 and Proposition 4.11. �
Remark 4.14. One can prove that H(Γ) < log q for every q = 3k ≥ 9, where Γ
is the support of the polynomial p(x, y, z) defined in Theorem 4.13. The reader
can find a proof in a previous version of this paper [13].
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Remark 4.15. We observe that, in Theorem 4.13, for q = 3, we obtain a weaker
bound than for the other cases of q. Indeed, in this case

Γ = {(0, 0, 0), (2, 2, 0), (0, 2, 2), (2, 0, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2)}
and one can easily check that defining Y that has, neatly, the distribution

(1/4, 1/12, 1/12, 1/12, 1/6, 1/6, 1/6)

over Γ, Y1, Y2, and Y3 all have uniform distributions. It follows that, in this
case, H(Γ) = log 3 and hence our proof fails to provide a better upper bound
for q = 3. �

For the other values of q (i.e., q > 243), we have not been able to explicitly
evaluate H(Γ) since it seems that there are too many variables for this problem
to be treated even with the help of a computer.
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