Correction to: On the finite index subgroups of Houghton's groups

Charles Garnet Cox ${ }^{\text {D }}$

Abstract

This note resolves an issue raised by Prof. Derek Holt for the paper "On the finite index subgroups of Houghton's groups".

Mathematics Subject Classification. 20F05.
Keywords. Generation, Generation of finite index subgroups, Structure of finite index subgroups, Infinite groups, Houghton groups, Permutation groups, Highly transitive groups.

Correction to: Arch. Math. 118 (2022), 113-121
https://doi.org/10.1007/s00013-021-01677-y
This note addresses an issue raised by Derek Holt that not all finite index subgroups of \mathbb{Z}^{n} have the form $\left\langle c_{1} e_{1}, \ldots, c_{n} e_{n}\right\rangle$ for some constants $c_{1}, \ldots, c_{n} \in$ \mathbb{N}. I am grateful to him for drawing my attention to these subgroups. In this note, we show these additional subgroups can be dealt with using arguments of a similar nature to those in the original paper [1], and that a complete classification of when each $U \leqslant_{f} H_{n}$ has $d(U)=n-1$ or $d(U)=n$ can still be obtained. We begin by giving reformulated statements of the original results with these subgroups in mind. The notation we use is introduced in [1]. Recall that $\pi: H_{n} \rightarrow \mathbb{Z}^{n-1}$ is the homomorphism induced by defining $\pi\left(g_{i}\right)=e_{i-1}$ for $i=2, \ldots, n$.

Theorem 1. Let $n \in\{3,4, \ldots\}$ and $U \leqslant_{f} H_{n}$. Then there exist $v_{2}, \ldots, v_{n} \in$ \mathbb{Z}^{n-1} such that $\left\langle v_{2}, \ldots, v_{n}\right\rangle \leqslant_{f} \mathbb{Z}^{n-1}$ and $h_{2}, \ldots, h_{n} \in U$ where each $h_{i} \in$ $\pi^{-1}\left(v_{i}\right)$ and either $U=\left\langle h_{2}, \ldots, h_{n}, \operatorname{Alt}\left(X_{n}\right)\right\rangle$ or $U=\left\langle h_{2}, \ldots, h_{n}, \operatorname{FSym}\left(X_{n}\right)\right\rangle$. Furthermore, if there exist $c_{2}, \ldots, c_{n} \in \mathbb{N}$ such that $\pi(U)=\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$, then either U is:
(i) equal to $\left\langle\operatorname{FSym}\left(X_{n}\right), g_{i}^{c_{i}}: i=2, \ldots, n\right\rangle$; or
(ii) isomorphic to $\left\langle\operatorname{Alt}\left(X_{n}\right), g_{i}^{c_{i}}: i=2, \ldots, n\right\rangle$.

If $U \leqslant{ }_{f} H_{2}$, then there exists $c_{2} \in \mathbb{N}$ such that $\pi(U)=\left\langle c_{2}\right\rangle \leqslant \mathbb{Z}$ and either (i) or (ii) above occurs or U is equal to $\left\langle\operatorname{Alt}\left(X_{2}\right),((1,1),(1,2)) g_{2}\right\rangle$.

This theorem follows from the same principles as in the original paper, but we give the details in Section 1. Corollary 2 is not affected by the additional finite index subgroups of \mathbb{Z}^{n}, but is included for completeness.

Corollary 2. Let $n \in\{2,3, \ldots\}$ and $c_{2}, \ldots, c_{n} \in \mathbb{N}$. If $U \leqslant_{f} H_{n}$ and $\pi(U)=$ $\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$, then either

- at least two of c_{2}, \ldots, c_{n} are odd and $U=\left\langle g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}, \operatorname{FSym}\left(X_{n}\right)\right\rangle$; or
- U is one of exactly $2^{n-1}+1$ specific subgroups of H_{n}.

Theorem 3 can be rephrased so to only work with finite index subgroups of the specific form considered in the original paper, and so the original proofs apply to this rephrased result.

Theorem 3. If $U \leqslant_{f} H_{2}$, then $d(U)=d\left(H_{2}\right)$. Let $n \in\{3,4 \ldots\}$ and $U \leqslant_{f} H_{n}$ with $\pi(U)=\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$. Then $d(U) \in\left\{d\left(H_{n}\right), d\left(H_{n}\right)+1\right\}$ and $d(U)=$ $d\left(H_{n}\right)+1$ occurs exactly when both of the following conditions are met:
(i) that $\operatorname{FSym}\left(X_{n}\right) \leqslant U$; and
(ii) either one or zero elements in $\left\{c_{2}, \ldots, c_{n}\right\}$ are odd.

Our fourth result no longer immediately follows from Theorem 3 since we need to consider the generation of the remaining finite index subgroups. We therefore name it Proposition 4 rather than Corollary 4. The proof is in Section 2.

Proposition 4. Let $n \in\{3,4, \ldots\}$. If $U \leqslant_{f} H_{n}$ and $\operatorname{FSym}\left(X_{n}\right) \cap U=\operatorname{Alt}\left(X_{n}\right)$, then $d(U)=n-1$. Thus, for every $U \leqslant_{f} G_{2}:=\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{2}, \ldots, g_{n}^{2}\right\rangle$, we have that $d(U)=d\left(G_{\mathbf{2}}\right)=d\left(H_{n}\right)$.

This result yields a complete characterisation of when $U \leqslant_{f} H_{n}$ has $d(U)=$ $n-1$ and when it has $d(U)=n$. For details, see Remark 2.2. As a consequence of our adjusted approach, two new results are obtained. The proofs are contained in Sections 3 and 4, respectively.

Proposition 5. Let $U=\left\langle t^{k}, \operatorname{Alt}(\mathbb{Z})\right\rangle \leqslant_{f} H_{2}$ and $p \in \mathbb{N} \backslash\{1\}$. Then there exists $\omega \in \operatorname{FSym}(\mathbb{Z})$ of order p such that $\left\langle t^{k}, \omega\right\rangle=U$. If $U=\left\langle t^{k}, \operatorname{FSym}(\mathbb{Z})\right\rangle \leqslant_{f} H_{2}$, then such an ω exists if and only if p is even.

Proposition 6. Let $n \in \mathbb{N}$ and $U \leqslant_{f} H_{n}$ with $\pi(U)=\left\langle v_{2}, \ldots, v_{n}\right\rangle$. Then for any choice of $h_{2}, \ldots, h_{n} \in U$ with $\pi\left(h_{i}\right)=v_{i}$ for $i=2, \ldots, n$, there exists an $\omega \in \operatorname{FSym}\left(X_{n}\right)$ such that $\left\langle\omega, h_{2}, \ldots, h_{n}\right\rangle=U$.

1. Additional details for Theorem 1. Two well known results (used in the original paper) give us Theorem 1.

Lemma 1.1. Given $U \leqslant_{f} G$, there exists $N \leqslant_{f} U$ which is normal in G.
Lemma 1.2 ([2, Prop. 2.5]). Let X be a non-empty set and $\operatorname{Alt}(X) \leqslant G \leqslant$ $\operatorname{Sym}(X)$. Then G has $\operatorname{Alt}(X)$ as a unique minimal normal subgroup.

Proof of Theorem 1. Let $n \in\{2,3, \ldots\}$ and $U \leqslant_{f} H_{n}$. By Lemma 1.1, U contains a normal subgroup of H_{n} and so, by Lemma 1.2, $\operatorname{Alt}\left(X_{n}\right) \leqslant U$. Furthermore, $U \leqslant_{f} H_{n}$ and so $\pi(U) \leqslant_{f} \pi\left(H_{n}\right)$. Thus $\pi(U)=\left\langle v_{2}, \ldots, v_{n}\right\rangle \leqslant_{f}$ \mathbb{Z}^{n-1}, meaning that U contains some elements h_{2}, \ldots, h_{n} where $h_{i} \in \pi^{-1}\left(v_{i}\right)$ for $i=2, \ldots, n$. Note that for any $v \in \mathbb{Z}^{n-1}$, we can describe $\pi^{-1}(v)$. Given $v=$ $\sum_{j=2}^{n} d_{j} e_{j-1}$ with $d_{2}, \ldots, d_{n} \in \mathbb{Z}$, define $\hat{v}:=\prod_{j=2}^{n} g_{j}^{d_{j}}$. With this notation, for $i=2, \ldots, n$, we have

$$
\pi^{-1}\left(v_{i}\right)=\left\{\sigma \hat{v}_{i}: \sigma \in \operatorname{FSym}\left(X_{n}\right)\right\}
$$

If $\operatorname{FSym}\left(X_{n}\right) \leqslant U$, then $U=\left\langle\hat{v}_{2}, \ldots, \hat{v}_{n}, \operatorname{FSym}\left(X_{n}\right)\right\rangle$. If $\operatorname{FSym}\left(X_{n}\right) \cap U=$ $\operatorname{Alt}\left(X_{n}\right)$, then we can specify that h_{i} is \hat{v}_{i} or $\epsilon \hat{v}_{i}$ where $\epsilon=((1,1)(1,2))$, depending on whether $\hat{v}_{i} h_{i}^{-1}$ is an even or odd permutation respectively. Note that the possibility of $\epsilon \hat{v}_{i}, \hat{v}_{i} \in U$ is excluded since $\operatorname{FSym}\left(X_{n}\right) \nless U$ means $\epsilon \notin U$. Hence $U=\left\langle h_{2}, \ldots, h_{n}, \operatorname{Alt}\left(X_{n}\right)\right\rangle$ in this case.

Note if we assume that $\pi(U)=\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$ for some $c_{2}, \ldots, c_{n} \in \mathbb{N}$, then

$$
U=\left\langle g_{2}^{k_{2}}, \ldots, g_{n}^{k_{n}}, \operatorname{FSym}\left(X_{n}\right)\right\rangle \text { or } U=\left\langle\epsilon_{2} g_{2}^{k_{2}}, \ldots, \epsilon_{n} g_{n}^{k_{n}}, \operatorname{Alt}\left(X_{n}\right)\right\rangle
$$

where each ϵ_{i} is either trivial or equal to $((1,1)(1,2))$. This gives us Corollary 2.
2. Proving Proposition 4. We work with a fixed $n \in\{3,4, \ldots\}$. To prove the proposition, it is sufficient to show that if $U \leqslant_{f} H_{n}$ and $\operatorname{FSym}\left(X_{n}\right) \cap U=$ $\operatorname{Alt}\left(X_{n}\right)$, then U is $n-1$ generated.

Recall that $\pi(U)=\left\langle v_{2}, \ldots, v_{n}\right\rangle \leqslant f \mathbb{Z}^{n-1}$. Let $i \in\{2, \ldots, n\}$. The support of any preimage of v_{i} has infinite intersection with at least 2 rays of X_{n}. Since $n \geqslant 3$, we therefore have $2(n-1)>n$ and so there exist distinct j, j^{\prime} such that the supports of the preimages of v_{j} and $v_{j^{\prime}}$ have infinite intersection with the same branch. By relabelling, we will assume this is $R_{1}:=\{(1, m): m \in$ $\mathbb{N}\} \subset X_{n}$ and that $j=2$ and $j^{\prime}=3$. For $k \in\{2, \ldots, n\}$, let $h_{k}:=\hat{v}_{k}$ with the notation from Section 1. That is, if $v_{k}=\sum_{j=2}^{n} d_{j} e_{j-1}$ with $d_{2}, \ldots, d_{n} \in \mathbb{Z}$, set $\hat{v}_{k}:=\prod_{j=2}^{n} g_{j}^{d_{j}}$. After possibly exchanging v_{2} with $-v_{2}$ and v_{3} with $-v_{3}$, we can assume that the first component of $\pi\left(h_{2}\right)$ and of $\pi\left(h_{3}\right)$ are positive. We claim that there exists $\omega \in \operatorname{FSym}\left(X_{n}\right)$ such that $\left\langle\omega h_{2}, h_{3}, \ldots, h_{n}\right\rangle=U$. Furthermore, we can specify that $\operatorname{supp}(\omega) \subset R_{1}$.

There are some key properties about the restrictions we have imposed thus far. Fix an $h \in\left\{h_{2}, \ldots, h_{n}\right\}$ so that $h=\prod_{j=2}^{n} g_{j}^{d_{j}}$ for some constants d_{2}, \ldots, d_{n}. We note that every orbit of h is either infinite or has size 1 . Let $i \in\{2, \ldots, n\}$ and $x \in R_{i}$. Then $(x) h=x$ if and only if $d_{i}=0$. If $d_{i} \neq 0$, then $\left\{(x) h^{k}: k \in \mathbb{Z}\right\}$ is infinite. Now, take any $y \in R_{1}$ and let $\mathcal{O}_{y}:=\left\{(y) h^{k}: k \in \mathbb{Z}\right\}$. If $\mathcal{O}_{y} \cap R_{j} \neq \emptyset$ for some $j \in\{2, \ldots, n\}$, then from the form of h we must have $d_{j} \neq 0$ and, from our first case, \mathcal{O}_{y} is infinite. Finally, let $y=(1, m)$ and assume that $\mathcal{O}_{y} \subseteq R_{1}$. Then $(1, m) h=\left(1, m+\sum_{j=2}^{n} d_{j}\right)=(1, m)$ since $\mathcal{O}_{y} \subseteq R_{1}$ implies that $\sum_{j=2}^{n} d_{j}=0$.

Note that there is a $d \in \mathbb{N}$ such that $d \mathbb{Z}^{n-1} \leqslant \pi(U)$. Hence, for each $i=2, \ldots, n$, there is a $\sigma_{i} \in \operatorname{FSym}\left(X_{n}\right)$ such that $\sigma_{i} g_{i}^{d} \in\left\langle h_{2}, \ldots, h_{n}\right\rangle$. Elements
of H_{n} act 'eventually as a translation' meaning that $\sigma_{i} g_{i}^{d}$ has d infinite orbits, infinitely many fixed points, and then possibly some finite orbits (see [3, Lem. 2.3] for details and also note from this lemma that $R_{1} \cup R_{i}$ and $\operatorname{supp}\left(\sigma_{i} g_{i}^{d}\right)$ have finite symmetric difference). We can therefore choose some $m_{2}, \ldots, m_{n} \in \mathbb{N}$ so that $\left(\sigma_{i} g_{i}^{d}\right)^{m_{i}}$ has $m_{i} d$ infinite orbits and no finite orbits other than fixed points. For $i=2, \ldots, n$, let $f_{i}:=\left(\sigma_{i} g_{i}^{d}\right)^{m_{i}}$ and $F_{i}:=\left(R_{1} \cup R_{i}\right) \backslash \operatorname{supp}\left(f_{i}\right)$, which is finite, and set $F:=\cup_{i=2}^{n} F_{i}$.

Our aim is therefore to move points in F to $X_{n} \backslash F$. This can be achieved with a word of the form $\left(\omega h_{2}\right)^{k_{2}} h_{3}^{k_{3}} \cdots h_{n}^{k_{n}}$. Let Y_{2} consist of points in $F \backslash R_{1}$ lying on an infinite orbit of ωh_{2}. Then let $Y_{i}:=F \cap \operatorname{supp}\left(h_{i}\right)$ for $i=3, \ldots, n$, define $A_{j}:=\bigcup_{i=2}^{j-1} Y_{i}$ for $j=3, \ldots, n$, and let $Z_{i}:=Y_{i} \backslash A_{i}$ for $i=3, \ldots, n$. Choose $k_{2}^{\prime}, \ldots, k_{n}^{\prime}$ such that $\left(Y_{2}\right)\left(\omega h_{2}\right)^{k_{2}^{\prime}} \subset X_{n} \backslash F$ and $\left(Z_{i}\right) h_{i}^{k_{i}^{\prime}} \subset X_{n} \backslash F$. Then for $j=2, \ldots, n$, pick $\left|k_{j}\right| \geqslant\left|k_{j}^{\prime}\right|$ where k_{j} and k_{j}^{\prime} have the same sign so that

$$
\left(Y_{i}\right)\left(\omega h_{2}\right)^{k_{2}} \prod_{j=3}^{n} h_{j}^{k_{j}} \subset X_{n} \backslash F \text { for } i=2, \ldots, n
$$

Finally use f_{2}, \ldots, f_{n} to move the points in $X_{n} \backslash F$ to $R_{1} \backslash F$. For $j \in \mathbb{N}$, let $R_{1}^{(j)}:=\{(1, m): m>j\} \subset X_{n}$. Then the above shows, for any $j \in \mathbb{N}$ and for any $\omega \in \operatorname{FSym}\left(X_{n}\right)$ with $\operatorname{supp}(\omega) \subset R_{1}$, that

$$
\begin{equation*}
\left\langle\omega h_{2}, h_{3}, \ldots, h_{n}, \operatorname{Alt}\left(R_{1}^{(j)}\right)\right\rangle=\left\langle\omega h_{2}, h_{3}, \ldots, h_{n}, \operatorname{Alt}\left(X_{n}\right)\right\rangle . \tag{1}
\end{equation*}
$$

Thus we need only generate $\operatorname{Alt}\left(R_{1}^{(j)}\right)$ for some $j \in \mathbb{N}$ in order to generate U.
Note that there exist $d, d^{\prime} \in \mathbb{N}$ such that the first component of $\pi\left(f_{3}^{2 d^{\prime}}\right)$ and $\pi\left(h_{3}^{d}\right)$ are equal and that this lies in $8 \mathbb{N}$. Denote this first component by k. We now compute that $\left[\omega h_{2}, h_{3}^{d}\right]=h_{2}^{-1}\left[\omega, h_{3}^{d}\right] h_{2}\left[h_{2}, h_{3}^{d}\right]$ where $[g, h]:=$ $g^{-1} h^{-1} g h$ and so let $\left[h_{2}, h_{3}^{d}\right]=: \tau \in \operatorname{FSym}\left(X_{n}\right)$. Our aim is to choose ω so that $\left\langle h_{2}^{-1}\left[\omega, h_{3}^{d}\right] h_{2} \tau, h_{3}^{d}\right\rangle$ contains Alt $\left(\operatorname{supp}\left(h_{3}^{d}\right)\right)$. Since we can choose ω freely, it is sufficient to show that $\left\langle\left[\omega, h_{3}^{d}\right] \tau, h_{3}^{d}\right\rangle$ contains $\operatorname{Alt}\left(\operatorname{supp}\left(h_{3}^{d}\right)\right)$. We can do so by mimicking the proof (from the original paper) of the following lemma.

Lemma 2.1 ([1, Lemma 3.3]). Let $k \in \mathbb{N}$ and $t: z \rightarrow z+1$ for all $z \in \mathbb{Z}$. Then $G_{k}:=\left\langle\operatorname{Alt}(\mathbb{Z}), t^{k}\right\rangle$ and $F_{k}:=\left\langle\operatorname{FSym}(\mathbb{Z}), t^{k}\right\rangle$ are 2-generated.

Note, for $m \geqslant 8$, that $\langle(123),(234), \ldots,(m-2 m-1 m)\rangle=\operatorname{Alt}(\{1, \ldots$, $m\})$. Also, by [3, Lemma 3.6], we have that

$$
\begin{equation*}
\operatorname{Alt}(\{1, \ldots, m\}) \leqslant\left\langle\alpha, t^{2 m}\right\rangle \Rightarrow \operatorname{Alt}(\mathbb{Z}) \leqslant\left\langle\alpha, t^{m}\right\rangle \tag{2}
\end{equation*}
$$

Our aim is to find an $\omega \in \operatorname{FSym}(\mathbb{Z})$ such that $\left\langle\left[\omega, h_{3}^{d}\right] \tau, h_{3}^{d}\right\rangle$ contains $\operatorname{Alt}\left(\operatorname{supp}\left(h_{3}^{d}\right)\right)$. From the preceding paragraph, it is sufficient to show that $\left\langle\left[\omega, h_{3}^{d}\right] \tau, h_{3}^{d}\right\rangle$ contains certain 3-cycles. Let τ have order $p \in \mathbb{N}$. Choose $p^{\prime} \in \mathbb{N}$ with $p \mid p^{\prime}$ and $p^{\prime}-1 \geqslant k+2$. We will restrict ourselves to those $\omega \in \operatorname{FSym}\left(X_{n}\right)$ such that:

- $\operatorname{supp}(\omega) \subset R_{1} ;$
- $\operatorname{supp}\left(h_{3}^{-d} \omega h_{3}^{d}\right) \cap \operatorname{supp}(\omega)=\emptyset$;
- $\operatorname{supp}\left(\left[\omega, h_{3}^{d}\right]\right) \cap \operatorname{supp}(\tau)=\emptyset$; and
- ω consists only of cycles of length $p^{\prime}-1$.

Thus $\left(\left[\omega, h_{3}^{d}\right] \tau\right)^{p^{\prime}}=\left[\omega, h_{3}^{d}\right]$. Identify $R_{1}=\{(1, m): m \in \mathbb{N}\}$ with \mathbb{N} using the bijection $(1, m) \mapsto m$. Define $\sigma_{1}, \sigma_{2} \in \operatorname{FSym}(\mathbb{N})<\operatorname{FSym}(\mathbb{Z})$ so that, for $i=1,2$,
$\sigma_{i}: \max \left\{\operatorname{supp}\left(\sigma_{i}\right)\right\} \mapsto \min \left\{\operatorname{supp}\left(\sigma_{i}\right)\right\}$ and $\sigma_{i}(x)>x$ for all other $x \in \operatorname{supp}\left(\sigma_{i}\right)$.
We note that $p^{\prime}-1=a k+b+2$ for some $a \in \mathbb{N}$ and $b \in\{0, \ldots, k-1\}$. Then let

$$
\operatorname{supp}\left(\sigma_{i}\right):=\left(\bigcup_{i=0}^{a+1}\{2 k i+1, \ldots, 2 k i+k\}\right) \backslash A_{i}
$$

where

$$
A_{1}:=\{3, \ldots, k\} \cup\{2 k+1+b, \ldots, 3 k\}
$$

and
$A_{2}:=\{1+b, \ldots, 2 k\} \cup\{2(a+1) k+1\} \cup\{2(a+1) k+4, \ldots, 2(a+1) k+k\}$.
For $i=1,2, \sigma_{i}$ can be seen as an element moving points within $a+2$ blocks, each of size k. Let $t: z \mapsto z+1 \in \operatorname{Sym}(\mathbb{Z})$. By construction, $t^{-k} \sigma_{1} t^{k}$ has support disjoint from σ_{1}. Note that $\operatorname{supp}\left[\sigma_{1}, t^{k}\right] \subset\{1,2, \ldots, 2(a+2) k\} \subset \mathbb{Z}$. In light of this, define $\sigma_{2}^{\prime}:=t^{-2(a+2) k} \sigma_{2} t^{2(a+2) k}$. Then $\operatorname{supp}\left(\left[\sigma_{2}^{\prime}, t^{k}\right]\right) \cap \operatorname{supp}\left(\left[\sigma_{1}, t^{k}\right]\right)=\emptyset$ and also $\left[\sigma_{1} \sigma_{2}^{\prime}, t^{k}\right]=\left[\sigma_{1}, t^{k}\right]\left[\sigma_{2}^{\prime}, t^{k}\right]$. We first work with the element $\omega^{\prime}:=\sigma_{1} \sigma_{2}^{\prime}$, and will show that there is a $c \in \mathbb{N}$ such that $\omega:=t^{-c} \omega^{\prime} t^{c}$ achieves our aim. Let $\alpha:=\left[\omega^{\prime}, t^{k}\right]$ and $q:=2(a+1) k+1$. Direct computation shows that $\max (\operatorname{supp}(\alpha))=q+2$ and $\alpha: q-k+1 \mapsto q+1$ and $q+1 \mapsto q+2$. Also $\min (\operatorname{supp}(\alpha))=1$ and so with $\beta:=t^{-(4(a+1)+2) k} \alpha t^{(4(a+1)+2) k}$ we see that $\operatorname{supp}(\alpha) \cap \operatorname{supp}(\beta)=\{q+1\}$. Similarly, $\min (\operatorname{supp}(\beta))=q$ and $\beta^{-1}: q \mapsto q+1$ and $q+1 \mapsto q+2 k$. Then $[\beta, \alpha]$ is the 3 -cycle $(q q+1 q+2)$ in $\operatorname{FSym}(\mathbb{Z})$. Furthermore, for $i=1, \ldots, k-2$,

$$
\left(t^{-2 k} \alpha t^{2 k}\right)^{-i}(q, q+1, q+2)\left(t^{-2 k} \alpha t^{2 k}\right)^{i}=(q+i, q+1+i, q+2+i)
$$

Hence, from (2), $\left\langle\alpha, t^{k / 2}\right\rangle$ contains $\operatorname{Alt}(\mathbb{Z})$.
We now work with ω^{\prime} as an element in $\operatorname{FSym}\left(R_{1}\right)<\operatorname{FSym}\left(X_{n}\right)$ by using the bijection $m \mapsto(1, m)$ between \mathbb{N} and R_{1}. Fix a $c \in k \mathbb{N}$ so that $\omega:=t^{-c} \sigma_{1} \sigma_{2}^{\prime} t^{c}$ has $\operatorname{supp}(\omega) \cap \operatorname{supp}(\tau)=\emptyset$ and

$$
(1, x) f_{3}^{2 d^{\prime}}=(1, x) h_{3}^{d}=(1, x+k) \text { for all } x \geqslant \min \{\operatorname{supp}(\omega)\} .
$$

Then $f_{3}^{2 d^{\prime}}$ can take the role of t^{k} in our above calculations, and the elements corresponding to α and β above lie in $\left\langle\left[\omega, h_{3}^{d}\right], h_{3}^{d}\right\rangle \leqslant\left\langle\left[\omega, h_{3}^{d}\right] \tau, h_{3}^{d}\right\rangle$. Thus $\left\langle f_{3}^{d^{\prime}},\left[\omega, h_{3}^{d}\right]\right\rangle$ contains $\operatorname{Alt}\left(\{(1, q), \ldots,(1, q+k-1)\}\right.$ and also $\operatorname{Alt}\left(R_{1}^{(q)}\right)$. Equation (1) then implies the result.

Remark 2.2. As in the original paper, it follows that U requires n generators exactly when $\operatorname{FSym}\left(X_{n}\right) \leqslant U$ but $\operatorname{FSym}\left(X_{n}\right) \nless[U, U]$, where $[U, U]$ denotes the commutator subgroup of U. We can see this as follows. Let $\pi(U)=$ $\left\langle v_{2}, \ldots, v_{n}\right\rangle$ and $h_{i} \in \pi^{-1}\left(v_{i}\right)$ for $i=2, \ldots, n$. Given $g, h \in U$, we can find σ_{1}, σ_{2} from $\operatorname{FSym}\left(X_{n}\right)$ such that $\sigma_{1} g=\prod_{i=2}^{n} h_{i}^{c_{i}}$ and $\sigma_{2} h=\prod_{i=2}^{n} h_{i}^{d_{i}}$ for some $c_{2}, d_{2}, \ldots, c_{n}, d_{n} \in \mathbb{Z}$. If $\left[h_{i}, h_{j}\right] \in \operatorname{Alt}\left(X_{n}\right)$ for all $i, j \in\{2, \ldots, n\}$,
then applying the standard commutator identities (used in the original paper) means that $[g, h]$ is in $\operatorname{Alt}\left(X_{n}\right)$. This applies to any $g, h \in U$, and so $[U, U] \cap \operatorname{FSym}\left(X_{n}\right)=\operatorname{Alt}\left(X_{n}\right)$ and U has abelianization $\mathbb{Z}^{n-1} \times C_{2}$. Therefore U cannot be $n-1$ generated if this is the case, but it will be n generated. Otherwise, we have two cases. If $\operatorname{FSym}\left(X_{n}\right) \cap U=\operatorname{Alt}\left(X_{n}\right)$, then Proposition 4 applies. If $[U, U] \cap \operatorname{FSym}\left(X_{n}\right)=\operatorname{FSym}\left(X_{n}\right)$, then there exist $i, j \in\{2, \ldots, n\}$ such that $\left[h_{i}, h_{j}\right] \in \operatorname{FSym}\left(X_{n}\right) \backslash \operatorname{Alt}\left(X_{n}\right)$. We can then use the element ω from the proof of Proposition 4 so that $\left\langle\omega h_{2}, h_{3}, \ldots, h_{n}\right\rangle$ contains $\operatorname{Alt}\left(X_{n}\right)$. But $\left\langle\omega h_{2}, h_{3}, \ldots, h_{n}\right\rangle$ must also contain $\operatorname{FSym}\left(X_{n}\right)$ since

$$
\left\{\left[h_{i}, h_{j}\right]: i=3, \ldots, n, j=2, \ldots, n\right\} \cup\left\{\left[\omega h_{2}, h_{j}\right]: j=2, \ldots, n\right\}
$$

contains an element from $\operatorname{FSym}\left(X_{n}\right) \backslash \operatorname{Alt}\left(X_{n}\right)$.
3. Proving Proposition 5. Choose $p \in\{2,3, \ldots\}$ and $k \in \mathbb{N}$. Our aim will be to construct $\omega \in \operatorname{Alt}(\mathbb{Z})$, consisting only of p-cycles, such that $\operatorname{Alt}(\mathbb{Z}) \leqslant\left\langle\omega, t^{k}\right\rangle$. With this aim in mind, observe that we only need to show that $\operatorname{Alt}(\mathbb{Z}) \leqslant$ $\left\langle\omega, t^{a k}\right\rangle$ for some $a \in \mathbb{N}$, and so without loss of generality we can assume that $k \geqslant 8$. We again use the idea of the proof of Lemma 2.1. Let $\Omega:=$ $\{1,2, \ldots, k p\}$. Recall that $\langle(123), \ldots,(12 k p)\rangle=\operatorname{Alt}(\Omega)$ which is a routine calculation within the proof of [3, Lemma 3.6]. Define $\sigma_{0}:=\left(\begin{array}{lll}1 & 2\end{array}\right)$, $\sigma_{i}:=t^{-i}(12 \ldots p) t^{i}$ for $i=1, \ldots, k p-p$, and $\sigma_{k p-p+1}:=\sigma_{p-1}$. Note that these are all elements of $\operatorname{FSym}(\Omega) \leqslant \operatorname{FSym}(\mathbb{Z})$, and also for $i=1, \ldots, k p-p$ that σ_{i} conjugates (123) to (123+i). Now let $n:=k p-p+1$ and define

$$
\omega:=\prod_{i=0}^{n} t^{-k p i} \sigma_{i} t^{k p i}
$$

which is an element of $\operatorname{Alt}(\mathbb{Z})$ by construction. Furthermore, with $\omega^{\prime}:=t^{k p n}$ $\omega t^{-k p n}$ we see that $\left[\omega^{\prime}, \omega^{-1}\right]=(p+1 p p-1)$. We can then conjugate the inverse of this element by $t^{-k p i} \omega t^{k p i}$ for various $i \in \mathbb{N}$ to obtain $\left\{\binom{1}{2}, \ldots,(12 k p)\right\}$ which generate $\operatorname{Alt}(\Omega)$. Finally,

$$
\left\langle\operatorname{Alt}(\Omega), t^{k}\right\rangle \geqslant\left\langle\operatorname{Alt}(\{1, \ldots, 2 k\}), t^{k}\right\rangle=\left\langle\operatorname{Alt}(\mathbb{Z}), t^{k}\right\rangle
$$

by [3, Lemma 3.6]. If p is even, then we can modify ω to include an extra orbit of length p so that $\left\langle\omega, t^{k}\right\rangle=\left\langle\operatorname{FSym}(\mathbb{Z}), t^{k}\right\rangle$.
4. Proving Proposition 6. This proof again takes inspiration from Lemma 2.1 above. Recall that $\pi(U)=\left\langle v_{2}, \ldots, v_{n}\right\rangle \leqslant_{f} \mathbb{Z}^{n-1}$. We now let h_{2}, \ldots, h_{n} denote arbitrary elements of U satisfying $\pi\left(h_{i}\right)=v_{i}$ for $i=2, \ldots, n$. We will show that there exists $\omega \in \operatorname{FSym}\left(X_{n}\right)$ such that $U=\left\langle\omega, h_{2}, \ldots, h_{n}\right\rangle$.

In the same way as the previous section, we can choose some $m_{2}, \ldots, m_{n} \in$ \mathbb{N} so that $\left(\sigma_{i} g_{i}^{d}\right)^{m_{i}} \in\left\langle h_{2}, \ldots, h_{n}\right\rangle$ has $m_{i} d$ infinite orbits and no finite orbits. And again for $i=2, \ldots, n$, we let $f_{i}:=\left(\sigma_{i} g_{i}^{d}\right)^{m_{i}}, F_{i}:=\left(R_{1} \cup R_{i}\right) \backslash \operatorname{supp}\left(f_{i}\right)$, $F:=\cup_{i=2}^{n} F_{i}$, and $T:=\operatorname{supp}\left(f_{2}\right)$. Note that $\left(R_{1} \backslash F\right) \subset T$.

Produce a bijection $\phi: T \rightarrow \mathbb{Z}$ such that $\phi\left(x f_{2}\right)=\phi(x) t^{m_{2} d}$ for all $x \in T$. We can then apply Lemma 2.1 to produce an element of $\operatorname{FSym}\left(X_{n}\right)$ which with f_{2} generates a group containing either $\operatorname{FSym}(T)$ or $\operatorname{Alt}(T)$, depending on our preference. We can therefore choose $\tau \in \operatorname{FSym}\left(X_{n}\right)$ so that $\left\langle f_{2}, \tau\right\rangle \cap$
$\operatorname{FSym}\left(X_{n}\right)=U \cap \operatorname{FSym}(T)$. Let r denote the order of τ. Choose a prime q larger than $\max \{r, 2|F|\}$, and let $\omega_{1} \in \operatorname{Alt}\left(X_{n}\right)$ consist of a single orbit of length q with $F \subset \operatorname{supp}\left(\omega_{1}\right) \subset R_{1} \cup F$ and $(F) \omega_{1} \subset R_{1} \backslash F$. Now conjugate τ by a suitable power of f_{2} to obtain ω_{2}, where $\operatorname{supp}\left(\omega_{2}\right)$ is contained in R_{1} and has trivial intersection with $\operatorname{supp}\left(\omega_{1}\right)$. Clearly we have $\left\langle f_{2}, \omega_{2}\right\rangle=\left\langle f_{2}, \tau\right\rangle$. Set $\omega:=\omega_{1} \omega_{2}$. Using that ω_{1} and ω_{2} have disjoint supports, $\omega^{r}=\omega_{1}^{r}$. Since ω_{1} has prime order, $\left\langle\omega^{r}\right\rangle=\left\langle\omega_{1}^{r}\right\rangle=\left\langle\omega_{1}\right\rangle$. Thus $\langle\omega\rangle=\left\langle\omega_{1}, \omega_{2}\right\rangle$. Note, by construction, that any finite subset of X_{n} can be moved into $R_{1} \backslash F$ by using an element of $\left\langle\omega_{1}, f_{2}, \ldots, f_{n}\right\rangle$. (First use powers of the elements f_{2}, \ldots, f_{n} to send all points in $X_{n} \backslash F$ to $R_{1} \backslash \operatorname{supp}\left(\omega_{1}\right)$, and then use ω_{1} to send any points in F to $R_{1} \backslash F$.) But then $\left\langle\omega_{1}, h_{2}, \ldots, h_{n}\right\rangle$ contains $\left\langle\omega_{1}, f_{2}, \ldots, f_{n}\right\rangle$, and so also has this property. Thus for any $\sigma \in \operatorname{FSym}\left(X_{n}\right)$, there exists $g \in\left\langle\omega_{1}, h_{2}, \ldots, h_{n}\right\rangle$ such that $\operatorname{supp}\left(g^{-1} \sigma g\right) \subset T \cap R_{1}$, i.e.,
$\operatorname{Alt}\left(X_{n}\right) \leqslant\left\langle\omega_{1}, h_{2}, \ldots, h_{n}, \operatorname{Alt}(T)\right\rangle$ and $\operatorname{FSym}\left(X_{n}\right) \leqslant\left\langle\omega_{1}, h_{2}, \ldots, h_{n}, \operatorname{FSym}(T)\right\rangle$.
Hence $\left\langle\omega, h_{2}, \ldots, h_{n}\right\rangle=\left\langle\omega_{1}, \omega_{2}, f_{2}, h_{2}, \ldots, h_{n}\right\rangle=U$, as required.

Acknowledgements. I thank Derek Holt for identifying and communicating the additional finite index subgroups, the editor for his help with submitting this note, and the anonymous referee for their helpful comments.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Cox, C.G.: On the finite index subgroups of Houghton's groups. Arch. Math. (Basel) 118, 113-121 (2022)
[2] Cox, C.G.: A note on the R_{∞} property for $\operatorname{groups} \operatorname{FAlt}(X) \leqslant G \leqslant \operatorname{Sym}(X)$. Comm. Algebra 47(3), 978-989 (2019)
[3] Cox, C.G.: On the spread of infinite groups. Proc. Edinb. Math. Soc. (2) 65, 214-228 (2022)

```
Charles Garnet Cox
School of Mathematics
University of Bristol
Bristol BS8 1UG
UK
e-mail: charles.cox@bristol.ac.uk
```

Received: 23 November 2022
Revised: 15 June 2023
Accepted: 15 August 2023

