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Abstract. The article On the regularity of the pressure of weak solutions
of Navier–Stokes equations by H. Sohr and W. von Wahl (1986) is one of
the most-cited papers of the journal Archiv der Mathematik. Our aim is
to describe not only the content of the paper, but especially the novelty of
its results on maximal regularity of the Stokes operator considered from
a point of view of the eighties and from a modern point of view.
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1. Introduction. The article under review deals with the regularity of the hy-
drodynamic pressure π in the Navier–Stokes equations

∂tu − Δu + u · ∇u + ∇π = f, div u = 0 (1.1)

with initial value u0 for the velocity field u = u(t, x) at time t = 0 and with
vanishing Dirichlet boundary values u|∂Ω = 0 in a smooth bounded or exterior
domain Ω ⊂ R

n. For simplicity, in (1.1), the coefficient of viscosity is put equal
to 1 and the constant density is assumed to be ρ = 1. This non-linear system
of partial differential equations is the most important model describing the
flow of a viscous incompressible fluid.

In the weak formulation of the stationary Stokes equation

− Δu + ∇π = f, div u = 0, u|∂Ω = 0, (1.2)
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when working with solenoidal test vector fields, the pressure plays a special
role, namely that of a Lagrange multiplier. Here u is the solution of the mini-
mization problem

min
v∈H1

0 (Ω)

1
2
‖∇v‖2

L2 −
∫

Ω

f · v dx

under the constraint div v = 0, and its existence and uniqueness is obtained
easily by the lemma of Lax-Milgram. However, it is non-trivial to prove the
existence of a pressure function. To that aim, e.g., the closed range theorem
and an estimate of the type ‖π‖L2 ≤ c‖∇π‖H−1 for functions π ∈ L2 with
vanishing integral mean on a bounded domain is needed.

The difficulties for the pressure π are even more involved in the unsteady
case. Starting with the instationary Stokes system

∂tu − Δu + ∇π = f, div u = 0, u(0) = u0, u|∂Ω = 0, (1.3)

we see that no restrictions are imposed on the time derivative of the pressure
being unique only up to an arbitrary, even non-measurable function π̃(t) de-
pending only on time t. This drawback can be avoided by assuming

∫
Ω

π dx = 0
in the bounded domain case. Moreover, there is no boundary value condition
available for π. Now assume that a suitable velocity field u satisfying (1.3)
has been found. Applying the divergence operator to (1.3), we obtain the
equation Δπ = div f together with the formal Neumann boundary condition
∂π
∂N = Δu · N + f · N ; here N = N(x) denotes the outer normal at x ∈ ∂Ω.
Even in the case f ≡ 0 where π is harmonic, we conclude that due to the
formal boundary condition, π depends non-locally on the solution u. This be-
comes even more transparent in the non-linear case (1.1) when including the
transport term u · ∇u where

Δπ = −div (u · ∇u) + div f. (1.4)

In the seminal paper [4] on partial regularity and the Hausdorff dimension of
the set of singular points in time-space, the authors L. Caffarelli, R. Kohn, and
L. Nirenberg mention in view of the non-optimal result π ∈ L5/4(0, T ;L5/3(Ω))
for domains Ω that

... when Ω = R
3, the pressure satisfies p ∈ L5/3(R3×(0, T )). It seems

reasonable to conjecture the analogous estimate, at least locally, for
bounded Ω; but this is apparently open.

The authors of [24] write that
... this property would have some important consequences for the
partial regularity theory of weak solutions of (1.1). It is the aim of
the present paper to prove this conjecture for a bounded domain Ω.
However, combining the method of the proof with the method given
in [10] (the joint paper [23] of the authors), the result follows for an
exterior domain too.

Beyond this important pressure estimate, we emphasize that
the article [24] is the first to prove the full Ls(Lq)-maximal regularity
estimate of the Stokes operator in bounded and exterior domains.
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These are the reasons why this paper has been cited more than 60 times with
an increasing rate since the year 2000 and still in the last 5 years.

In the following, we describe ideas to construct the pressure and to un-
derstand the importance of the special exponents 5

3 and 5
4 in view of weak

solutions and scale invariance.
One possibility to overcome the problems to find and estimate the pressure

is to rewrite ∇π in (1.3) and in (1.1) in terms of u by a formal solution
operator based on (1.4) to get a non-linear, non-local system in u only and to
use pseudodifferential operator theory, see e.g. [10,11] for the proof of resolvent
estimates and [14] for the treatment of (1.1) with different kinds of boundary
conditions. Another method needs the Helmholtz projection P = P2 which -
for a smooth bounded domain Ω ⊂ R

n - yields the orthogonal decomposition
L2(Ω)n = L2

σ(Ω) + G2(Ω) where L2
σ(Ω) is the subspace of solenoidal vector

fields u satisfying u · N = 0 on ∂Ω and G2(Ω) is the space of gradient fields in
L2. Since P vanishes on gradient fields, an application of P to (1.1) yields the
system

∂tu − PΔu + P (u · ∇u) = Pf, u(0) = u0, (1.5)

considered in the space of solenoidal vector fields with vanishing Dirichlet
boundary values. Generalizing the Helmholtz decomposition to Lp spaces, 1 <
p < ∞, we define the operator A = Ap = −PpΔ with domain D(Ap) =
W 2,p(Ω)n ∩ W 1,p

0 (Ω)n ∩ Lp
σ(Ω), called the Stokes operator. Then, with the aid

of the Stokes semigroup {e−tA; t ≥ 0}, a bounded analytic semigroup, (1.5)
can be rewritten as the non-linear integral equation

u(t) = e−tAu0 +

t∫

0

e−(t−τ)A
(
Pf(τ) − P (u · ∇u)(τ)

)
dτ. (1.6)

Problem (1.6) can be solved in suitable function spaces with help of well-known
tools from analytic semigroup theory and properties of the Stokes operator.

Evidently, properties of the associated pressure function π are interesting
as an important physical quantity. Moreover, integrability properties of π are
crucially needed in [4] on partial regularity of so-called suitable weak solutions
of the Navier-Stokes system, see Definition 1.1 (ii) below. The discussion of
partial regularity started with fundamental papers of V. Scheffer, see [20,21],
looking for points (t0, x0) in time-space such that a given weak solution u is
(essentially) bounded in a neighborhood of (t0, x0), and to characterize the
set S ⊂ R

4 of all singular points where u is not locally bounded. In order to
get local properties of solutions, cut-off functions ϕ ∈ C∞

c ((0, T ) × Ω) must
be used, leading to terms such as uϕ where div (uϕ) = u · ∇ϕ �= 0. In that
case, it is indispensable to work with the associated pressure π which had been
eliminated either by the Helmholtz projection or, in a weak formulation, by
working with solenoidal test functions.

To describe this topic more precisely, we recall several definitions. For sim-
plicity, we refer to the three-dimensional case only and omit the superscript
n = 3 for spaces of vector fields. Let (u, v) =

∫
Ω

u ·v dx provided u ·v ∈ L1(Ω).
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Moreover, consider locally integrable external forces rather than elements in
negative Sobolev spaces.
Definition 1.1. Let Ω ⊂ R

3 be a domain and T > 0. Moreover, let u0 ∈ L2
σ(Ω)

and f ∈ Ls(0, T ;Lp(Ω)) where s, p ∈ (1,∞).
(i) A weak solution of the Navier–Stokes system (1.1) is a vector field u ∈

L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω)) satisfying the variational formulation

−
T∫

0

(u, v′) dτ +

T∫

0

(∇u,∇v) dτ −
T∫

0

(u ⊗ u,∇v) dτ = (u0, v(0)) +

T∫

0

(f, v) dτ

for all test functions v = wh, w ∈ C∞
c (Ω), div w = 0, w|∂Ω = 0, h ∈

C1([0, T ]), h(T ) = 0. If u satisfies the energy inequality

1
2
‖u(t)‖L2 +

t∫

0

∫

Ω

|∇u|2 dxdτ ≤ 1
2
‖u0‖2

L2 +

t∫

0

(f, u) dτ (1.7)

for all 0 < t < T , it is called a Leray-Hopf weak solution.
(ii) A weak solution u together with an associated pressure π is called a

suitable weak solution if it satisfies the localized energy inequality
T∫

0

∫

Ω

|∇u|2ϕ dxdτ

≤
T∫

0

∫

Ω

(1
2
|u|2(∂tϕ + Δϕ) +

(1
2
|u|2 + π

)
u · ∇ϕ + u · fϕ

)
dxdτ (1.8)

for all non-negative test functions ϕ ∈ C∞
c ((0, T ) × Ω).

By classical results of J. Leray [16] and E. Hopf [15] for any initial value
u0 ∈ L2

σ(Ω) and external force f ∈ L1(0, T ;L2(Ω)), there exists a weak Leray-
Hopf solution. A modern and comprehensive monograph on weak and strong
solutions to the stationary as well as instationary both Stokes and Navier–
Stokes equations was published by H. Sohr ([22]) in 2001. For a more recent
survey by the author of this review, we refer to [6].

Note that all terms in (1.7) are well defined for a weak solution. However,
the cubic term |u|3 and also |u|π in (1.8) require additional integrability condi-
tions to be discussed below. Generally, an associated pressure is found only in
the sense of distributions as a time derivative of a locally integrable function;
for further details, we refer to Remark 3.1.

An important term is the scale invariance of norms for a solution (u, π).
For λ > 0, let

uλ(x, t) = λu(λ2t, λx), πλ(x, t) = λ2π(λ2t, λx).

It is easy to see that with (u, π) also (uλ, πλ) is a solution of (1.1) on Ω = R
3

(with modified f) and that

‖uλ‖Ls(0,T/λ2;Lq(R3)) = ‖u‖Ls(0,T ;Lq(R3)) if and only if
2
s

+
3
q

= 1.
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It is the so-called Serrin condition 2
s + 3

q = 1 which guarantees unique-
ness and regularity of weak solutions ([22]). However, the Sobolev embedding
H1(Ω) ↪→ L6(Ω) and Hölder’s inequality imply that a weak solution u sat-
isfies u ∈ Ls(0, T ;Lq(Ω)) for all pairs s, q provided that 2

s + 3
q = 3

2 where
s ≤ 2 ≤ ∞, 2 ≤ q ≤ 6. Moreover, ∇u ∈ Ls(0, T ;Lq∗(Ω)) with 2

s + 3
q∗

= 5
2 and,

by Hölder’s inequality, u · ∇u ∈ Ls(0, T ;Lp(Ω)) with 2
s + 3

p = 4. In particular,
u · ∇u ∈ L5/4(0, T ;L5/4(Ω)).

Concerning (1.8), the condition u ∈ L3(L3) is satisfied locally in space-time
since 2

3 + 3
3 = 5

3 > 3
2 . However, for π no kind of integrability is guaranteed a

priori so that an assumption to justify (1.8) and to allow for the analysis of
partial regularity in [4] must be posed. It is this point where the article by H.
Sohr and W. von Wahl comes into play. The following ideas are explained in
[4] and [24].

The optimal integrability of a weak solution u with s = p is given by the
condition s = p = 10

3 . Concerning the pressure π, consider (1.4) with f = 0 and
the case when Ω = R

3. Since div u = 0, we have, using Einstein’s summation
convention, div (u · ∇u) = ∂xj

∂xk
(ujuk) so that

π = (−Δ)−1∂xj
∂xk

(ujuk) = RjRk(ujuk). (1.9)

Here Rj denotes the Riesz transform with symbol −iξj
|ξ| . Hence the theory of

Calderón–Zygmund implies that ‖π‖Lp/2(R3) ≤ c‖u ⊗ u‖Lp/2(R3) ≤ c‖u‖2
Lp(R3).

After an integration with respect to time, we obtain that

‖π‖Lp/2(0,T ;Lp/2(R3)) ≤ c‖u‖2
Lp(0,T ;Lp(R3)), p = 10

3 , (1.10)

i.e., π ∈ L5/3((0, T ) × Ω).
The representation (1.9) of π by Riesz operators applied to u ⊗ u is not

available for domains Ω due to the lack of boundary values of π. However, the
instationary Stokes system

∂ut − Δu + ∇π = f − u · ∇u, div u = 0, u(0) = u0, u|∂Ω=0, (1.11)

admits for u0 in a suitable space of initial values I estimates of the type

‖∇2u‖Ls(0,T ;Lp(Ω)) + ‖∇π‖Ls(0,T ;Lp(Ω))

≤ c
(‖f‖Ls(0,T ;Lp(Ω)) + ‖u · ∇u‖Ls(0,T ;Lp(Ω)) + ‖u0‖I

)
. (1.12)

This so-called maximal regularity estimate in Ls(0, T ;Lp(Ω)) with s = p for
domains Ω ⊂ R

3 is due to V.A. Solonnikov [25]; his proof is based on an
explicit representation of solutions in the half space, potential estimates, and
a cut-off procedure for more general domains. As discussed above, s = p = 5

4

is admissible. Hence, ∇π ∈ L5/4((0, T ) × Ω) implies by a Sobolev embedding
that π ∈ L5/4(0, T ;L5/3(Ω)) and even π ∈ L5/4(0, T ;L15/7(Ω)). However, as
mentioned in [24], an improvement of the integration exponent in time from
5
4 to 5

3 is not possible. Locally in space, the same result was obtained in [4,
p. 782] by more potential theoretic arguments. Note that the local conditions
π ∈ L5/4(L5/3) and u ∈ L5(L5/2) are sufficient to guarantee that πu · ∇φ in
(1.8) is locally integrable.
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2. The article by H. Sohr and W. von Wahl. In the following, we describe the
main results and ideas of the proof of Sohr and von Wahl in [24]. For simplicity,
we focus on bounded domains in R

3 for which the Stokes operator Ap = −PpΔ,
1 < p < ∞, is boundedly invertible, in other words, 0 lies in the resolvent
set ρ(Ap) of Ap, and the analytic semigroup e−tAp is exponentially decaying
as t → ∞. For an exterior domain, the Stokes operator is not surjective from
D(Ap) to Lp

σ(Ω) and hence 0 lies in the continuous spectrum. Since the problem
is a local one in time, the authors replace for an exterior domain Ap by Ap + I
so that the instationary system is replaced by a related one with the additional
factor e−t multiplied to f and u. Recall that the Stokes operator Ap as well as
the Dirichlet Laplacian −Δp with domain D(−Δp) = W 2,p(Ω) ∩ W 1,p

0 (Ω) are
sectorial operators and admit fractional powers Aα

p and (−Δp)α, respectively,
for any α ∈ R; some important properties will be discussed below.

The first main results in [24, Theorems 2.2, 2.7, and 2.12] concern the
Ls(Lq)-estimate of regular solutions (u, π) to the linear instationary Stokes
problem. Note that the Lp-norm is denoted by ‖·‖p = ‖·‖Lp(Ω) for functions as
as well as for vector fields etc. and that Lp = Lp(Ω), Ls(Lp) = Ls(0, T ;Lp(Ω))
provided the domain Ω and the interval (0, T ) are known from the context.

For simplicity, the authors assume that the domain has a smooth boundary.
However, the sectoriality of Ap and the Lp(Lp)-estimates (2.2) proved in [25]
hold even when ∂Ω ∈ C2. In general, the assumption ∂Ω ∈ C2,ε, ε ∈ (0, 1),
is sufficient to get the main results of Theorems 2.1 and 2.2 as long as the
property BIP, see Remark 3.2, is not exploited.

Theorem 2.1. Let Ω ⊂ R
3 be a smooth bounded domain, let 1 < p, s < ∞,

f ∈ Ls(0, T ;Lp(Ω)), and u0 ∈ D(
A

1−1/s+ε
p

)
for some ε > 0 with 1− 1

s +ε < 1.

(i) The instationary Stokes equation

ut + Apu = Ppf, u(0) = u0, (2.1)

admits a unique solution u∈Ls(0, T ;D(Ap)) such that ut ∈Ls(0, T ;Lp
σ(Ω)).

Moreover,

T∫

0

(‖ut‖s
p + ‖Apu‖s

p

)
dτ ≤ c

(
‖A1−1/s+ε

p u0‖s
p +

T∫

0

‖Ppf‖s
p dτ

)
(2.2)

with a constant c = c(s, p, T,Ω) > 0 independent of f, u0.
(ii) The instationary Stokes system

ut − Δu + ∇π = f, div u = 0, u(0) = u0, (2.3)

possesses a unique solution u ∈ Ls(0, T ;W 2,p(Ω) ∩ W 1,p
0 (Ω)) such that

ut ∈ Ls(0, T ;Lp(Ω)) and a pressure π such that ∇π ∈ Ls(0, T ;Lp(Ω)).
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Moreover,

T∫

0

‖ut‖s
p dτ +

T∫

0

‖u‖s
W 2,p dτ +

T∫

0

‖∇π‖s
p dτ

≤ c

⎛
⎝‖(−Δp)1−1/s+εu0‖s

p +

T∫

0

‖f‖s
p dτ

⎞
⎠ (2.4)

with a constant c = c(s, p, T,Ω) > 0 independent of f, u0.

Proof. (i) The authors refer to [25] in the case s = p. The crucial step is from
s = p to arbitrary exponents 1 < s, p < ∞. This step is based on the inter-
polation theorem of Marcinkiewicz, applied to abstract Banach space-valued
convolution operators and proven in a classical paper of Benedek, Calderón,
and Panzone [3] from 1962. The following estimates are adapted to the situ-
ation in [3, Theorem 1] and carried through in detail in [28, Theorem III.1]
where parabolic initial-boundary value problems and even t-dependent opera-
tors A(t) are discussed. Since the main part of the proof of [28, Theorem III.1]
works on an abstract operator level, the results can be applied to the Stokes
operator as well.

First we consider the case when u0 = 0, assume for simplicity that Ppf = f ,
and aim at an estimate of AU(t) where

U(t) =

t∫

0

e−(t−τ)Af(τ) dτ, 0 < t < T.

Extending f and e−(·)A by 0 to R, we get U(t) = e−(·)A ∗ f(t). To esti-
mate AU(t), note that the formal expression AU(t) = A

∫
R

e−(t−τ)Af(τ) dτ =∫
R

Ae−(t−τ)Af(τ) dτ is not well-defined since Ae−(t−τ)A yields a singular inte-
gral kernel. Therefore, AU(t) will be replaced by the term

AUε(t) = Ae−εA

∫

R

e−(t−τ)Af(τ) dτ = kε ∗ f(t), ε > 0,

with the approximate non-singular Banach space-valued integral kernel kε(t) =
Ae−εAe−tA for t ≥ 0 and kε(t) = 0 elsewhere.

The first assumption in [3, Theorem 1] is the weak-type (p, p) estimate of
the operator f �→ AUε, i.e., of the convolution operator with kernel kε on
Lp(R;Lp(Ω)), which follows from the strong Lp(Lp)-estimate in [25] as above.

As for the assumption (ii) in [3, Theorem 1] suppose that
∫
R

f dτ = 0 and
let t > 4T and 0 ≤ τ ≤ T . Then it holds that t − τ ≥ 3t

4 ≥ 3T and hence
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∫

t>4T

‖kε(t − τ) − kε(t)‖dt ≤
∫

t>4T

∥∥e−εAA(e−(t−τ)A − e−tA)
∥∥ dt

≤ c

∫

t>4T

∥∥∥
t∫

t−τ

A2e−rA dr
∥∥∥ dt

≤ c

∫

t>4T

τe−ct

9T 2
dt ≤ c

T
. (2.5)

Note that we exploited the exponential decay of e−rA and, in particular, that
0 ∈ ρ(A). Then (2.5) implies that∫

t>4T

‖AUε(t)‖dt ≤
∫

t>4T

∥∥∥
∫

R

(kε(t − τ) − kε(t))f(τ) ds
∥∥∥ dt ≤ c

T

∫

R

‖f(τ)‖dτ.

Since AUε(t) = 0 for t < 0, the same estimate holds for t < −4T , and hence
we justified assumption (ii) in [3, Theorem 1]. Now that theorem yields the
estimate

T∫

0

‖AUε‖s
p dτ ≤

T∫

0

‖f‖s
p dτ (2.6)

for functions with vanishing integral mean on (0, T ) and for 1 < s < p.
To get (2.6) also for functions f with integral f̄ =

∫ T

0
f ds, note that

AUε(t) =

t∫

0

Ae−εAe−(t−τ)A(f(τ) − f̄) dτ + e−εA(f̄ − e−tAf̄).

From this decomposition, (2.6) can be deduced easily for any function f ∈
Ls(0, T ;Lp(Ω)). Then the passage ε → 0 will yield the corresponding result
for AU rather than AUε. Moreover, since U ′(t) = f(t) − ∫ t

0
Ae−(t−τ)Af(τ) dτ ,

we proved (2.2) in case that u0 = 0 and 1 < s < p. Finally, a duality argument
and complex interpolation yield the result for all 1 < s < ∞.

If u0 �= 0, the term v(t) = e−tApu0 must be analyzed as well. By elementary
estimates, we get that

T∫

0

‖Apv‖s
p dt ≤

T∫

0

∥∥(
A1/s−ε

p e−tAp
)
A1−1/s+ε

p u0

∥∥s

p
dt

≤ c

T∫

0

(t−1/s+ε)s dt
∥∥A1−1/s+ε

p u0

∥∥s

p

≤ c
∥∥A1−1/s+ε

p u0

∥∥s

p
. (2.7)

Now the proof of (i) is complete.
(ii) By classical regularity estimates of the stationary Stokes system in a
smooth bounded domain, it holds that ‖u‖p‖ + ‖∇u‖p ≤ c‖Apu‖p. Hence
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the term ‖Apu‖p in (2.2) may be replaced by ‖u‖W 2,p , see (2.4). Moreover, by
results of Y. Giga [11],

D(Aα
p ) = D((−Δp)α) ∩ Lp

σ(Ω)

so that ‖Aα
p u0‖p ∼ ‖(−Δp)αu0‖p for 0 < α < 1, see also Remark 3.2. Finally,

applying the Helmholtz projection Pp in (2.3) to get (2.1), we obtain the
pressure gradient as

∇π = (I − Pp)(f − ut + Δpu)

and hence the a priori estimate (2.4). �

The second main step is to prove new integrability results of both ∇π
and π for weak solutions of the Navier–Stokes system. This will include the
proof of the conjecture in [4]. Again we focus on bounded domains and the
three-dimensional case.

Theorem 2.2. Let Ω ⊂ R
3 be a smooth bounded domain, let 1 < p, s < ∞

satisfy 2
s + 3

p ≥ 3, p > 3
2 , and 1

q = 1
p + 1

3 . Moreover, assume that f ∈
Ls(0, T ;Lq(Ω)) for some T > 0 and u0 ∈ D(

A
1−1/s+ε
q

) ∩ L2
σ(Ω) for some

ε > 0 with 1− 1
s + ε ≤ 1. Let u be a weak solution of the Navier–Stokes system

(1.1) with data u0 and f . Then

u ∈ Ls(0, T ;W 2,q(Ω)), ut, u · ∇u ∈ Ls(0, T ;Lq(Ω)), (2.8)

and there exists a pressure

π ∈ Ls(0, T ;Lp(Ω)) with ∇π ∈ Ls(0, T ;Lq(Ω)) (2.9)

such that (1.1) is satisfied in Ls(0, T ;Lq(Ω)).

Note that 2
s + 3

q ≥ 4 which includes the case s = q = 5
4 used in Sect. 1 for

the term u · ∇u; in other words, the assumption 2
s + 3

q ≥ 4 is adapted to the
theory of weak solutions. Moreover, the assumptions imply that 1 < q < 3

2 .

Proof. It is easily seen that for a weak solution u, the non-linear term u · ∇u
is contained in Ls(0, T ;Lq(Ω)). Indeed, by the Sobolev embedding estimate
‖u‖q ≤ c‖∇u‖2 for u ∈ H1,2

0 (Ω) and Hölder’s and Young’s inequalities,

‖u · ∇u‖q ≤ ‖u‖( 1
q − 1

2 )−1 ‖∇u‖2 ≤ c‖u‖3(1− 1
q )

6 ‖u‖1−3(1− 1
q )

2 ‖∇u‖2

≤ c‖∇u‖1+3(1− 1
q )

2 ‖u‖1−3(1− 1
q )

2 (2.10)

so that

‖u · ∇u‖s
Ls(Lq) =

T∫

0

‖u · ∇u‖s
q dτ ≤ c‖u‖s(1−3(1− 1

q ))

L∞(L2)

T∫

0

‖∇u‖s(1+3(1− 1
q ))

2 dτ

≤ cT ‖u‖s(1−3(1− 1
q ))

L∞(L2)

( T∫

0

‖∇u‖2
2 dτ

)s(1+3(1− 1
q ))/2

. (2.11)
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Since both terms on the most right-hand side are finite by the energy inequality
(1.7), the claim u · ∇u ∈ Ls(Lq) is proved.

However, (2.11) does not help directly to get a priori estimates of weak
solutions in Ls(Lq) since technical approximation arguments are needed to re-
turn from the variational formulation in Definition 1.1 (i) to the classical PDE
(1.1). To this aim, the authors also introduce the Yosida approximation oper-
ators Jk = (1 + 1

kA2)−3/4 : L2
σ(Ω) → D(A3/4

2 ) which are uniformly bounded
on L2

σ(Ω) and admit the pointwise convergence Jkv → v as k → ∞. Similar
properties hold on each Lr

σ(Ω), 1 < r < ∞. Let us apply JkP to (1.1) to get
that

(Jku)t − JkP2Δu + JkPru · ∇u = JkPqf,

where in a weak sense −JkP2Δu = JkA2u = −P2ΔJku. Hence, for any weak
solution u, (1.1) is rewritten in the strong form

(Jku)t − PqΔ(Jku) = JkPqf − JkPqu · ∇u.

Now the Ls(Lq) estimate (2.2) yields
T∫

0

‖(Jku)t‖s
q dτ +

T∫

0

‖Jku‖s
W 2,q dτ

≤ c
(
‖A1−1/s+ε

q u0‖s
q +

T∫

0

(‖f‖s
q + ‖u · ∇u‖s

q

)
dτ

)
.

Since the right-hand side does not depend on k, a limit procedure implies
that ut ∈ Ls(Lq), u ∈ Ls(W 2,q). Moreover, ut − PqΔu + Pqu · ∇u = Pqf in
Ls(Lq). As in the proof of Theorem 2.1 (ii), we conclude that there exists a
unique gradient field ∇π ∈ Ls(Lq) such that ut − Δu + u · ∇u + ∇π = f .
Finally, a Sobolev embedding theorem yields a unique π ∈ Ls(Lp), normalized
by

∫
Ω

π(t) dx = 0, such that ‖π(t)‖p ≤ c‖∇π(t)‖q for a.a. t and ‖π‖Ls(Lp) ≤
c‖∇π‖Ls(Lq). �

Remark 2.3. (i) The procedure for an exterior domain is very similar when
replacing Ap by Ap + I. However, the condition ∇2u ∈ Ls(Lq) and a
Sobolev embedding imply only that ∇u ∈ Ls(Lp) and not ∇u ∈ Ls(Lq).
Therefore, a localization procedure, i.e., multiplication of u by a cut-off
function, will be used. This procedure leads to the divergence problem
div v = g in W 1,p

0 (Ω′) for g ∈ Lp(Ω′) with
∫
Ω′ g dx = 0 on a bounded

subdomain Ω′ and is solved by the so-called Bogovskĭi operator. Finally,
the assumptions on s, p, q, and u0, f are slightly more restrictive, but
nevertheless allowing for s = p = 5

3 .
(ii) For dimension n > 3, there are similar results, but the assumptions on

s, p, q change due to Sobolev embeddings.

3. Remarks and perspectives. Let us describe several important topics related
to the Stokes operator, the pressure, initial values, and partial regularity in
more details and highlight several more recent results.
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Remark 3.1 (The pressure function). Generally, an associated pressure to a
weak solution u of (1.1) is found only in the sense of a distribution as a time
derivative of a locally integrable pressure function, i.e., π = ∂tπ̃ with π̃ ∈
L1

loc((0, T ) × Ω). If the boundary is smooth, then π ∈ L2
loc([0, T ) × Ω). For

further details, see [22, Theorems V.1.7.1 and V.1.8.1]. From the numerous
contributions to the decomposition of the pressure into different terms, we
mention the result by J. Wolf [30]: To a weak solution u of (1.1), there exist
pressure terms π1, π2, π3, each of them found as a pressure of an auxiliary
stationary Stokes problem −Δvj + ∇πj = Fj where F1 = −u, F2 = Δu, and
F3 = −div (u ⊗ u). Then π = ∂tπ1 + π2 + π3, π1 and π2 are harmonic, and
each πj can be estimated by the corresponding Fj in suitable norms. This
decomposition can help to manage estimates involving the pressure. Similar
results ([18]) were obtained by J. Neustupa et al. for the Navier–Stokes system
with Navier’s slip boundary condition u · N = 0, [T (u, p) · N ]τ + γu = 0 on
∂Ω; here T (u, p) = (∇u + (∇u)� − πI denotes Cauchy’s stress tensor and the
vector [ · ]τ equals the tangential component of [ · ].
Remark 3.2 (The Stokes operator and complex interpolation). The authors
use several estimates for fractional powers of the Stokes operator, e.g., also to
prove (2.10). The definition of Aθ

q , 0 < θ < 1, is a consequence of the resolvent
estimate of Aq, whereas the crucial properties

D(Aθ
q) = [Lq

σ(Ω),D(Aq)]θ, (3.1)

D(Aθ
q) = D((−Δ)θ)) ∩ Lq

σ(Ω), (3.2)

D(Aθ
q) = H

2θ,q(Ω), (3.3)

are more involved. Here H
2θ,q(Ω) is a subspace of solenoidal vector fields in

the Bessel potential space H2θ,q(Ω) such that

H
2θ,q(Ω) =

{
{u ∈ H2θ,q(Ω) ∩ Lq

σ(Ω) : u|∂Ω = 0} if 1
q < 2θ ≤ 2,

H2θ,q(Ω) ∩ Lq
σ(Ω) if 0 ≤ 2θ < 1

q .

Property (3.1) is a classical result of complex interpolation applied to the
Stokes operator enjoying the property BIP of bounded purely imaginary pow-
ers Ais

q ∈ L(Lq
σ(Ω)), s ∈ R. This property for bounded domains, based on the

theory of pseudodifferential operators, was proved in [11, Theorem 1] and pub-
lished after the submission of [24]. An extension to exterior domains is found
in [12]. Moreover, BIP can be deduced from the property that Aq possesses
a bounded H∞ calculus which in 2003 was proved for bounded, exterior do-
mains and (perturbed) half spaces in [19]. Property (3.2) for bounded domains
was proved by Y. Giga, see [11, Theorem 3]. A characterization of D((−Δ)θ))
as in (3.3) is more classical; as for D(Aθ

q) and an approach in the framework
of interpolation-extrapolation spaces, we refer to H. Amann [1,2]. We note
that the property BIP and the even more advanced concept of a bounded
H∞-calculus requires that ∂Ω is of class C3, see [9], [19].

Remark 3.3 (The Stokes operator and real interpolation). The assumption on
the initial value, u0 ∈ D(

A
1−1/s+ε
p

)
, see Theorems 2.1 and 2.2, can be relaxed.
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For an optimal condition, it suffices to know that
( ∫ T

0
‖Ae−tAu0‖s

p dt
)1/s is

finite. This term defines an equivalent norm of the real interpolation space
(Lp

σ(Ω),D(Ap))1−1/s,s which can be identified with a subspace B
2−2/s
p,s (Ω)

of solenoidal vector fields of the Besov space B
2−2/s
p,s (Ω), see [1,2]. To be more

precise,

B
2θ
q,s(Ω) =

{{
u ∈ B2θ

q,s(Ω) ∩ Lq
σ(Ω) : u|∂Ω = 0

}
, 1

q < 2θ ≤ 2,

B2θ
q,s(Ω) ∩ Lq

σ(Ω), 0 < 2θ < 1
q .

(3.4)

Remark 3.4 (General unbounded domains). For general unbounded domains
Ω ⊂ R

3 with uniform C2-boundary, there exists under adequate assumptions
on u0, f a suitable weak solution (u, π), i.e., satisfying the localized energy
inequality (1.8), such that with q = 5

4

ut, u,∇u,∇2u,∇π ∈ Lq(0, T ;L2(Ω) + Lq(Ω)).

The space L2(Ω)+Lq(Ω) is used to combine a local Lq theory with the global L2

theory of weak solutions to estimate perturbation terms in a cut-off procedure.
To be more precise, there exists pressure functions π1, π2 such that π = π1+π2

and π1 ∈ Lq(L2), π2 ∈ Lq(Lq). For details, we refer to [7].

Remark 3.5 (Partial regularity). In 1998, F. Lin [17] presented a simplified
proof of the results of Caffarelli-Kohn-Nirenberg [4]. A key point was the con-
dition π ∈ L5/3(L5/3) from [24]; however, he even gave a shorter proof of that
result by referring to local elliptic regularity estimates of g = Δu − ut which
satisfies curl g = curl(u · ∇u) and div g = 0. A completely different proof is
due to A. Vasseur [26]. The main idea to exclude a space-time singularity for
a suitable weak solution is based on De Giorgi’s technique to show regularity
of solutions to elliptic equations with rough diffusion coefficients. The local
assumption on the pressure is merely π ∈ Lp(L1) for any p > 1.

Remark 3.6 (Maximal regularity of the Stokes operator). The maximal regu-
larity estimate (2.2) with optimal initial values in the real interpolation space
(Lp

σ(Ω),D(Ap))1−1/s,s, initiated by Solonnikov (1973) for s = p and extended
by the authors in 1986 to arbitrary 1 < p, s < ∞ for bounded domains, was
generalized by Giga and Sohr [13] to exterior domains and half spaces. Their
new argument was the theory of Dore and Venni [5] exploiting the property
BIP of both the Stokes operator and the time derivative ∂t and their commuta-
tivity; moreover, they extended the technique of [5] to the case when 0 /∈ ρ(A).
The more modern notion of R-boundedness of the resolvent, the so-called R-
sectoriality, and operator-valued Fourier multipliers (see L. Weis [29]), were
used by M. Geissert et al. [9] in 2010 to get maximal regularity of the Stokes
equation for bounded and exterior domains. In another approach based on
R-boundedness and Lp spaces with Muckenhoupt weights, A. Fröhlich [8] got
similar results.
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tions. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 153-

231 (1973) (Russian). J. Soviet Math. 8, 467–529 (1977) (English)

[26] Vasseur, A.F.: A new proof of partial regularity of solutions to Navier–Stokes

equations. NoDEA Nonlinear Differ. Equ. Appl. 14, 753–785 (2007)
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