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The character table of the finite Chevalley group F4(q) for q a
power of 2

Meinolf Geck

Abstract. Let q be a prime power and F4(q) be the Chevalley group of
type F4 over a finite field with q elements. Marcelo and Shinoda (Tokyo J
Math 18:303–340, 1995) determined the values of the unipotent characters
of F4(q) on all unipotent elements, extending earlier work by Kawanaka
and Lusztig to small characteristics. Assuming that q is a power of 2, we
explain how to construct the complete character table of F4(q).
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1. Introduction. Let p be a prime and k = Fp be an algebraic closure of the
field with p elements. Let G be a connected reductive algebraic group over k
and assume that G is defined over the finite subfield Fq ⊆ k, where q is a power
of p. Let F : G → G be the corresponding Frobenius map. The finite group of
fixed points GF is called a “finite group of Lie type”. We are concerned with
the problem of computing the character table of GF . The work of Lusztig
[11,14] has led to a general program for solving this problem.

However, in concrete examples, there are still a certain number of technical—
and sometimes quite intricate—issues to be resolved. In this paper, we show
how this can be done for the groups GF = F4(q), where q is a power of 2. The
conjugacy classes have been classified by Shinoda [20]; the values of all unipo-
tent characters on unipotent elements were already determined by Marcelo–
Shinoda [17]. A further crucial ingredient is the fact that the characteristic
functions of the F -invariant cuspidal character sheaves of G (for the definition,
see [14] and the references therein) are explicitly known as linear combinations
of the irreducible characters of GF . Building on earlier work of Shoji [21,22],
this has been achieved in [5,17].
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In Section 2, we introduce basic notation and collect some general results
from Lusztig’s theory, where we use the books [2,6] as our references. In Sec-
tions 3 and 4, we focus on GF = F4(q). First we consider the unipotent char-
acters of GF . Then we address some issues concerning the two-variable Green
functions involved in Lusztig’s cohomological induction functor which allows
us, finally, to consider the non-unipotent characters.

The special feature of GF = F4(q) as above is that the possible root systems
of centralisers of semisimple elements are rather restricted. (See Remark 3.1
below.) There is a similar situation for G of adjoint type E6 and p = 2. This,
as well as the case of type E7 and p = 2, will be discussed in a sequel to this
paper. The values of the unipotent characters on unipotent elements have been
recently determined by Hetz [7] for these groups.

I understand that Frank Lübeck has already prepared an electronic “generic”
character table of F4(q), based on some assumptions concerning the values of
the characteristic functions of certain F -invariant character sheaves on G.
With the results of this paper, it should now be possible to verify those as-
sumptions (or adjust them appropriately).

1.1. Notation and conventions. The set of (complex) irreducible characters of a
finite group Γ is denoted by Irr(Γ). We work over a fixed subfield K ⊆ C, which
is algebraic over Q, invariant under complex conjugation, and “large enough”,
that is, K contains sufficiently many roots of unity and K is a splitting field for
Γ and all of its subgroups. In particular, χ(g) ∈ K for all χ ∈ Irr(Γ) and g ∈ Γ.
Let CF(Γ) be the space of K-valued class functions on Γ. There is a standard
inner product 〈 , 〉Γ on CF(Γ) given by 〈f, f ′〉Γ := |Γ|−1

∑
g∈Γ f(g)f ′(g) for

f, f ′ ∈ CF(Γ), where x �→ x denotes the automorphism of K given by complex
conjugation. We denote by Z Irr(Γ) ⊆ CF(Γ) the subset consisting of all inte-
gral linear combinations of Irr(Γ). Finally, if C ⊆ Γ is any (non-empty) subset
that is a union of conjugacy classes of Γ, then we denote by εC ∈ CF(Γ) the
(normalised) indicator function of C, that is, we have

εC(g) =
{ |Γ|/|C| if g ∈ C,

0 otherwise.

Note that, if C is a single conjugacy class of Γ and g ∈ C, then f(g) = 〈f, εC〉Γ
for any f ∈ CF(Γ). Thus, the problem of computing the values of ρ ∈ Irr(Γ) is
equivalent to working out the inner products of ρ with the indicator functions
of the various conjugacy classes of Γ.

2. Lusztig induction and uniform functions. Let G, F be as in the introduc-
tion. Given an F -stable maximal torus T of G and θ ∈ Irr(TF ), we have a
generalised character RG

T,θ ∈ Z Irr(GF ) as introduced by Deligne and Lusztig
[1] (see also [6, §2.2]). We shall also need the following generalisation of RG

T,θ.

2.1. An F -stable closed subgroup L ⊆ G is called a “regular subgroup” if L
is a Levi complement in some (not necessarily F -stable) parabolic subgroup
P ⊆ G. Given such a pair (L,P), we obtain an operator

RG
L⊆P : Z Irr(LF ) → Z Irr(GF ) (“Lusztig induction”; see [2,§9.1]).
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Denoting by GF
uni and LF

uni the sets of unipotent elements of GF and LF ,
respectively, there is a corresponding two-variable Green function

QG
L⊆P : GF

uni × LF
uni → Q (see [2,§10.1]).

If L = T is an F -stable maximal torus of G (and B ⊆ G is a Borel subgroup
containing T), then TF

uni = {1} and QG
T : GF

uni → Q, u �→ QG
T⊆B(u, 1), is the

“usual” Green function originally introduced in [1], that is, we have QG
T (u) =

RG
T,1(u) for all u ∈ GF

uni.

2.2. Let L ⊆ P be as above and ψ ∈ Irr(LF ). There is a character formula
which expresses the values of RG

L⊆P(ψ) in terms of the values of ψ and the
two-variable Green functions for G and for groups of the form C◦

G(s) where
s ∈ GF is semisimple; see [2, Prop. 10.1.2], [13, Prop. 6.2] for the precise
formulation. For later reference, we only state here the following special case:

RG
L⊆P(ψ)(u) =

∑

v∈LF
uni

QG
L⊆P(u, v−1)ψ(v) for allu ∈ GF

uni. (a)

We also state the following useful formula. Let g ∈ GF and write g = su = us
where s ∈ GF is semisimple and u ∈ GF is unipotent (Jordan decomposition).
By [2, Prop. 3.5.3], we have g ∈ C◦

G(s). If C◦
G(s) ⊆ L, then

ρ(g) =
∑

ψ∈Irr(LF )

〈
RG

L⊆P(ψ), ρ
〉
GF ψ(g) for all ρ ∈ Irr(GF ). (b)

This appeared in K.D. Schewe’s dissertation [19]; see the remark following [6,
Cor. 3.3.13] for a proof.

2.3. Let us denote by X(G, F ) the set of all pairs (T, θ) where T ⊆ G is an
F -stable maximal torus and θ ∈ Irr(TF ). Following [10, p. 16], a class function
f ∈ CF(GF ) is called “uniform” if f can be written as a K-linear combination
of the generalised characters RG

T,θ for various pairs (T, θ) ∈ X(G, F ). If f is
uniform, then we have (see [2, Prop. 10.2.4])

f = |GF |−1
∑

(T,θ)∈X(G,F )

|TF |〈f,RG
T,θ〉GF RG

T,θ.

For example, if C is a conjugacy class of semisimple elements of GF , then the
indicator function εC (as in 1.1) is uniform; see [2, Cor. 10.3.4].

Theorem 2.4. Let C be an arbitrary F -stable conjugacy class of G. Then the
indicator function εCF of the set CF is a uniform function.

(Note that, in general, CF is a union of conjugacy classes of GF .)

Proof. See the appendix of [4]; this was conjectured by Lusztig [10, 2.16]. See
also [2, Cor. 13.3.5] and [6, Theorem 2.7.11]. �

Example 2.5. Let g ∈ GF and assume that CG(g) is connected. Let C be
the G-conjugacy class of g. Since CG(g) is connected, C := CF is a sin-
gle conjugacy class of GF ; see [6, Example 1.4.10]. Now εC is uniform by
Theorem 2.4. Let ρ ∈ Irr(GF ). Recall from 1.1 that ρ(g) = 〈ρ, εC〉GF and
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〈εC , RG
T,θ〉GF = RG

T,θ−1(g) for any (T, θ) ∈ X(G, F ). Hence, using 2.3, we
obtain the formula

ρ(g) = |GF |−1
∑

(T,θ)∈X(G,F )

|TF | 〈RG
T,θ, ρ〉GF RG

T,θ−1(g).

This shows that the value ρ(g) is determined by the multiplicities 〈RG
T,θ, ρ〉GF

and the values RG
T,θ(g), where (T, θ) runs over all pairs in X(G, F ).

2.6. We say that ρ ∈ Irr(GF ) is “unipotent” if 〈RG
T,1, ρ〉GF �= 0 for some F -

stable maximal torus T ⊆ G. We denote by Uch(GF ) the set of unipotent
characters of GF . As shown in Lusztig’s book [11], these characters play a
special role in the character theory of GF ; many questions about arbitrary
characters of GF can be reduced to unipotent characters.

3. The unipotent characters for F4 in characteristic 2. We assume from now
on that p = 2 and G is simple of type F4. Let F : G → G be a Frobenius
map such that GF = F4(q) where q is a power of 2. In order to compute the
characters of GF , we shall assume that the following information is known and
available in the form of tables:
(A1) Parametrisations of X(G, F ) and of all the conjugacy classes of GF .
(A2) The multiplicities 〈RG

T,θ, ρ〉 for all ρ ∈ Irr(GF ) and (T, θ) ∈ X(G, F ).
(A3) The values RG

T,θ(g) for all g ∈ GF and all (T, θ) ∈ X(G, F ).
(A4) For every regular L � G, the values ψ(u) for ψ ∈ Irr(LF ), u ∈ LF

uni.
It will be convenient to also introduce the set Y(G, s) of all pairs (T, s) where
T ⊆ G is an F -stable maximal torus and s ∈ TF . There are natural actions of
GF on X(G, F ) and on Y(G, F ); see [6, 2.3.20 and 2.5.12]. Since G ∼= G∗ is
“self-dual” (in the sense of [6, Def. 1.5.17]), there is a bijective correspondence

X(G, F ) modGF ↔ Y(G, F ) modGF (see [6, Cor. 2.5.14]).

Remark 3.1. The conjugacy classes of GF are determined by Shinoda [20]. The
tables in [20] provide the required classifications and parametrisations in (A1),
where we use the above-mentioned bijection to pass from Y(G, F ) to X(G, F ).
Since the center of G is trivial, the information in (A2) is available via Lusztig’s
“Main Theorem 4.23” in [11]; see also [6, §2.4, §4.2]. In order to obtain (A3),
one uses the character formula in [1, §4] (see also [6, Theorem 2.2.16]) for the
evaluation of RG

T,θ(g). This involves the Green functions for G and for groups
of the form Hs = CG(s) where s ∈ GF is semisimple; note that, for our G,
the centraliser of any semisimple element is connected. By inspection of [20,
Table III], we see that Hs is either a maximal torus, or a regular subgroup
(with a root system of type F4, B3, C3, A1×A2, B2, A2, A1×A1, or A1) or Hs

has a root system of type A2 × A2. The Green functions for GF itself have
been determined by Malle [15]; for the other cases, see Lübeck [9, Tabelle 16].
The further technical issues in the evaluation of RG

T,θ(su) are discussed in [5,
§3] and [9, §2] (for example, one has to deal with a sum over all x ∈ GF

such that x−1sx ∈ T); in [9, §6], this is explained in detail for the groups
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GF = CSp6(q). Finally, the required values in (A4) can be extracted from
Enomoto [3] (type B2), Looker [8], Lübeck [9, Tabelle 27] (type B3, C3), and
Steinberg [23] (type A1, A2).

Representatives for the GF -conjugacy classes of semisimple elements are
denoted by h0, h1, . . . , h76 in [20, Table II], where h0 = 1; note that some
of the hi only occur according to whether 3 | q − 1 or 3 | q + 1, or when q is
sufficiently large. We now go through the list of these elements and explain how
to determine the values of any unipotent character ρ ∈ Uch(GF ) on elements
of the form hiu where u ∈ CG(hi)F is unipotent.

In our group G, there are 37 unipotent characters, where we use the nota-
tion in Lusztig’s book [11, pp. 371/372]).

3.2. If s = h0 = 1, then the values ρ(u) for ρ ∈ Uch(GF ) and u ∈ GF
uni

have been explicitly determined by Marcelo–Shinoda; see [17, Table 6.A]. This
relies on the Green functions of GF (available from [15]) and also on the
knowledge of the “generalised Green functions” arising from Lusztig’s theory
of character sheaves. An algorithm for the computation of those functions is
described in [12, §24]; it involves the delicate matter of normalising certain
“Yι-functions” (defined in [12, (24.2.3)]). Marcelo–Shinoda [17] do not explain
in detail how they found those normalisations. But using the argument of
Hetz [7, §4.1.4] (where the analogous problem is solved for groups of type E6

in characteristic 2), one obtains an independent verification that the values in
[17, Table 5] are correct.

3.3. Let s = h3 (if 3 | q − 1) or s = h15 (if 3 | q + 1). Then Hs = CG(s)
has a root system of type A2 × A2. Let u ∈ HF

s be unipotent and C be the
G-conjugacy class of su.

(a) Assume first that u is not regular unipotent. By inspection of [20,
Table IV], we see that CG(su) is connected. So we can apply Example 2.5,
together with (A2), (A3), to determine ρ(su) even for all ρ ∈ Irr(GF ).

(b) Now assume that u is regular unipotent. We recall some facts from [5,
§7.6]. (Note that, in [5, §7.6], it is assumed that p �= 2, 3 but the discussion
works verbatim also for p = 2.) The set CF splits into 3 classes in GF , which we
simply denote by C1, C2, C3. We can choose the notation such that C1 = C−1

1

and C−1
2 = C3. Explicit representatives are described in [20, Table IV]; we have

|CG(gi)F | = 3q4 for gi ∈ Ci and i = 1, 2, 3. Let χ0 := εCF be the indicator
function on the set CF (as in 1.1). Let 1 �= θ ∈ K be a fixed third root of unity.
Then we consider the following linear combinations of unipotent characters of
GF :

χ1 := 1
3q2

(
[121] + F II

4 [1] − [61] − [62] + 2F4[θ] − F4[θ2]
)
,

χ2 := 1
3q2

(
[121] + F II

4 [1] − [61] − [62] − F4[θ] + 2F4[θ2]
)
.

As discussed in [5, §7.6], the class functions χ1, χ2 are (scalar multiples of)
characteristic functions of F -invariant cuspidal character sheaves on G; fur-
thermore, the values of χ0, χ1, χ2 are given as follows:
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C1 C2 C3 g ∈ GF \CF
s

χ0 q4 q4 q4 0
χ1 q4 q4θ q4θ2 0
χ2 q4 q4θ2 q4θ 0

Hence, εC1 = χ0 + χ1 + χ2, εC2 = χ0 + θ2χ1 + θχ2, εC3 = χ0 + θχ1 + θ2χ2.
Now let ρ ∈ Irr(GF ) be arbitrary and gi ∈ Ci for i = 1, 2, 3. Since χ0 is

uniform by Theorem 2.4, we can determine 〈ρ, χ0〉GF using (A2), (A3), and
the formula in 2.3. The inner products of ρ with χ1, χ2 are known by the
definition of χ1, χ2. Hence, we can explicitly work out ρ(gi) = 〈ρ, εCi

〉GF .

3.4. Let s = hi where i �∈ {0, 3, 15}. In these cases, L = CG(s) either is a
maximal torus, or a proper regular subgroup with a root system of type B3,
C3, A1 × A2, B2, A2, A1 × A1, or A1. Let u ∈ LF be unipotent and C be
the G-conjugacy class of su. Let ρ ∈ Uch(GF ). In order to compute ρ(su),
we use Schewe’s formula in 2.2. First note that, if ψ ∈ Irr(LF ) is such that〈
RG

L⊆P(ψ), ρ
〉
GF �= 0, then we must have ψ ∈ Uch(LF ); see [6, Prop. 3.3.21].

Furthermore, since s is in the centre of LF , we have ψ(su) = ψ(u). (This
is a general property of unipotent characters; see [6, Prop. 2.2.20].) Hence,
Schewe’s formula reads:

ρ(su) =
∑

ψ∈Uch(LF )

〈
RG

L⊆P(ψ), ρ
〉
GF ψ(u).

By (A4), the values ψ(u) for ψ ∈ Uch(LF ) and u ∈ LF
uni are explicitly known.

The multiplicities 〈RG
L⊆P(ψ), ρ〉GF (for ρ ∈ Uch(GF ) and ψ ∈ Uch(LF ))

can also be determined explicitly; see [6, §4.6], especially [6, Prop. 4.6.18].
In Michel’s version of CHEVIE [18], this is available through the function
LusztigInductionTable. Let us illustrate this with an example.

Example 3.5. Let ρ = F II
4 [1] ∈ Uch(GF ) (a cuspidal unipotent character). Let

s = h53; then L = CG(s) is a regular subgroup of type B2, where |LF | =
q4(q2 + 1)(q2 − 1)(q4 − 1); see [20, Table III]. We would like to determine
the values ρ(h53u) where u ∈ LF is unipotent. The values of the unipotent
characters of LF on unipotent elements are given by Table 1. Using Michel’s
LusztigInductionTable, we find that

〈RG
L⊆P(ψ10), ρ〉GF = 1 and 〈RG

L⊆P(ψi), ρ〉GF = 0 for i �= 10.

Hence, by Schewe’s formula, we have ρ(h53u) = ψ10(u). — A completely anal-
ogous procedure works for any s = hi as in 3.4.

4. Non-unipotent characters for F4 in characteristic 2. We keep the nota-
tion of the previous section, where G is simple of type F4 in characteristic
2. We now explain how to determine the values of the non-unipotent charac-
ters of GF . First we recall some facts from Lusztig’s classification of Irr(GF ).
Let s ∈ GF be semisimple. Then we define E (GF , s) to be the set of all
ρ ∈ Irr(GF ) such that 〈RG

T,θ, ρ〉 �= 0 for some pair (T, θ) ∈ X(G, F ) in
correspondence with (T, s) ∈ Y(G, F ). It is known that every ρ ∈ Irr(GF )
belongs to E (GF , s) for some s; furthermore, E (GF , s) only depends on the
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Table 1. Unipotent characters for type B2 in characteristic 2

A1 A2 A31 A32 A41 A42

|CG(u)F | : q4(q2−1)(q4−1) q4(q2−1) q4(q2−1) q4 2q2 2q2

ψ0 1 1 1 1 1 1

ψ9
1
2q(q + 1)2 1

2q(q + 1) 1
2q(q + 1) q

2
q
2 − q

2

ψ10
1
2q(q − 1)2 − 1

2q(q − 1) − 1
2q(q − 1) q

2
q
2 − q

2

ψ11
1
2q(q2 + 1) − 1

2q(q − 1) 1
2q(q + 1) q

2 − q
2

q
2

ψ12
1
2q(q2 + 1) 1

2q(q + 1) − 1
2q(q − 1) q

2 − q
2

q
2

ψ13 q4 . . . . .

(See Enomoto [3]; notation as in [6, Examples 3.3.30 and 2.7.22].)

GF -conjugacy class of s. If s, s′ ∈ GF are such that E (GF , s)∩E (GF , s′) �= ∅,
then s, s′ are GF -conjugate. (For all this, see, for example, [6, §2.6]; also re-
call that G ∼= G∗.) Finally, by the “Main Theorem 4.23” of [11], there is a
bijection E (GF , s) ↔ Uch(HF

s ), where Hs = CG(s); this is called the “Jordan
decomposition” of characters. We now proceed in 4 steps, where we determine
the following information:

Step 1: The values of all the two-variable Green functions QG
L⊆P.

Step 2: The values ρ(u) for all ρ ∈ Irr(GF ) and u ∈ GF
uni.

Step 3: The decomposition of RG
L⊆P(ψ) for any ψ ∈ Irr(LF ).

Step 4: The values ρ(g) for any ρ ∈ Irr(GF ) and any g ∈ GF .

4.1. We show how Step 1 can be resolved. Assume that L � G and let
Uch(LF ) = {ψ1, . . . , ψn}. The information in (A4) (see Section 3) shows, in
particular, that n is also the number of conjugacy classes of unipotent el-
ements of LF . Let v1, . . . , vn be representatives of these classes. Then, again
using (A4), we can also check that the matrix (ψi(vj))1�i,j�n is invertible. (For
an example, see Table 1.) Let u1, . . . , uN be representatives of the conjugacy
classes of unipotent elements of GF ; we have N = 35 by [20, Theorem 2.1].
Then we write the character formula 2.2(a) as a system of equations:

RG
L⊆P(ψi)(uk) =

n∑

j=1

cj QG
L⊆P(uk, v−1

j )ψi(vj) for 1�i�n, 1�k�N, (♠)

where cj := [LF : CL(vj)F ] for all j. On the other hand, as explained in
3.4, we can determine the multiplicities m(ψi, ρ) := 〈RG

L⊆P(ψi), ρ〉GF for any
ρ ∈ Uch(GF ). Hence, we obtain equations

RG
L⊆P(ψi)(uk) =

∑

ρ∈Uch(GF )

m(ψi, ρ)ρ(uk) for 1 � i � n, 1 � k � N.

Consequently, since the values ρ(uk) for ρ ∈ Uch(GF ) are known by 3.2, the
values RG

L⊆P(ψi)(uk) can be computed explicitly. We can now invert (♠) and
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obtain all the values QG
L⊆P(uk, v−1

j ) for 1 � j � n, 1 � k � N . (A similar
argument appears in Malle–Rotilio [16, §2.2].)

4.2. We show how Step 2 can be resolved. As in the previous section, we
consider the list of semisimple elements h0, h1, . . . , h76 ∈ GF . Let ρ ∈ Irr(GF ).
There is some s ∈ {h0, h1, . . . , h76} such that ρ ∈ E (GF , s). If s = h0 (the
identity element), then ρ is unipotent and the required values are known by
3.2. Now assume that s ∈ {h3, h15} where CG(s) has a root system of type
A2 × A2. Then, by the discussion in [6, Lemma 2.4.18] (which is drawn from
Lusztig’s book [11]), we know that ρ is a uniform class function. (The group
Wλ,n occurring in that discussion is isomorphic to the Weyl group of CG(s);
see [6, (2.5.10)] and note again that G ∼= G∗.) Hence, the values ρ(u) for
u ∈ GF

uni are known by (A2), (A3) in Section 3. Finally, let s = hi where
i �∈ {0, 3, 15}. Then, as in 3.4, L := CG(s) � G is a regular subgroup. In
that case, Lusztig has shown that ρ = ±RG

L⊆P(ψ) for some ψ ∈ E (LF , s); see
[6, Theorem 3.3.22]. So, in order to determine ρ(u) for u ∈ GF

uni, we can use
again the character formula 2.2(a), combined with the knowledge of QG

L⊆P (see
Step 1) and the values ψ(v) for v ∈ LF

uni (see (A4)).

4.3. We show how Step 3 can be resolved. Assume that L � G and let ψ ∈
Irr(LF ) be arbitrary. There is some semisimple s ∈ LF such that ψ ∈ E (LF , s).
Let E (GF , s) = {ρ1, . . . , ρr}. Then, by [6, Prop. 3.3.20], we have

RG
L⊆P(ψ) =

r∑

i=1

m(ψ, ρi)ρi where m(ψ, ρi) ∈ Z for 1 � i � r. (∗)

If s = 1 and ψ ∈ Uch(LF ), we can use Michel’s LusztigInductionTable,
as in 3.4. Now assume that s �= 1. Then one could use the fact that RG

L⊆P

commutes with the Jordan decomposition of characters; see [6, Theorem 4.7.2].
But having the results of Steps 1 and 2 at our disposal, we can also argue as
follows. Let again u1, . . . , uN be representatives of the conjugacy classes of
unipotent elements of GF . Using 2.2(a), (A4), and Step 1, we can compute
the values:

RG
L⊆P(ψ)(uk) =

∑

v∈LF
uni

QG
L⊆P(uk, v−1)ψ(v) for 1 � k � N.

Comparing with (∗), we obtain equations
r∑

i=1

m(ψ, ρi)ρi(uk) = RG
L⊆P(ψ)(uk) = known value for 1 � k � N.

Using Step 2, we can check that the matrix (ρi(uk))1�i�r,1�k�N has rank r,
where r � N . (This would not be true for s = 1.) Hence, the above equations
uniquely determine the numbers m(ψ, ρi) for 1 � i � r.

4.4. We show how Step 4 can be resolved. Let ρ ∈ Irr(GF ) and g ∈ GF be
arbitrary. Let i ∈ {0, 1, . . . , 76} be such that ρ ∈ E (GF , hi). If i = 0, then
h0 = 1, ρ is unipotent, and we know the values of ρ by Section 3. Next, let
i ∈ {3, 15}. Then, as already mentioned in 4.2, ρ is uniform and so the values of
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ρ are computable via (A2), (A3). Finally, let i �∈ {0, 3, 15}. Write g = su = us
where s ∈ GF is semisimple and u ∈ GF is unipotent. If s = 1, then the
values ρ(u) for u ∈ GF

uni are known by Step 2. Now let s �= 1. If CG(s) has
type A2 × A2, then ρ(su) is already known by 3.3. Otherwise, we are in the
situation of 3.4 where L := CG(s) � G is a regular subgroup. Let ψ ∈ Irr(LF )
and (T, θ) ∈ X(L, F ) be such that 〈RL

T,θ, ψ〉LF �= 0; then, by [6, Prop. 2.2.20],
we have ψ(su) = θ(s)ψ(u). So Schewe’s formula, together with (A4) and the
result of Step 3, yields the value ρ(su).

Acknowledgements. I thank Jonas Hetz and Gunter Malle for comments on
an earlier version. This article is a contribution to SFB-TRR 195 by the DFG
(Deutsche Forschungsgemeinschaft), Project-ID 286237555.

Funding Information Open Access funding enabled and organized by Projekt
DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields.

Ann. of Math. (2) 103, 103–161 (1976)

[2] Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. London

Mathematical Society Student Texts, vol. 21, 2nd edn. Cambridge University

Press, Cambridge (2020)

[3] Enomoto, H.: The characters of the finite symplectic group Sp(4, q), q = 2f .

Osaka J. Math. 9, 75–94 (1972)

[4] Geck, M.: A first guide to the character theory of finite groups of Lie type. In:

Kessar, R., Malle, G., Testerman, D. (eds.) Local Representation Theory and

Simple Groups. EMS Lecture Notes Series, pp. 63–106. Eur. Math. Soc., Zürich
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