Correction to: On subset sums of \mathbb{Z}_{n}^{\times}which are equally distributed modulo n

Gaitanas Konstantinos©

Correction to: Arch. Math.

https://doi.org/10.1007/s00013-023-01853-2
It has been brought to the author's attention that the statement of [1, Theorem $2.4]$ is incorrect. However, it is easily corrected by adding the following relation to its statement: The number r is the minimum number such that

$$
2^{r} \equiv 1 \quad(\bmod q) \quad \text { or } \quad 2^{r} \equiv-1 \quad(\bmod q)
$$

The reason is the following:
In the proof, we deduce that there is a permutation s of $\{1,2, \ldots, k\}$ such that $\left\langle 2 a_{i}\right\rangle=\left\langle a_{s(i)}\right\rangle$. We need to show that $\left\langle 2 a_{r}\right\rangle=\left\langle a_{1}\right\rangle$ in order to define $B_{1}=\left\{a_{1}, \ldots, a_{r}\right\}=\left\{b_{1} \cdot\left(\pm 2^{j-1}\right)\right\}$ with leader $b_{1}=a_{1}$.

But $\left\langle 2 a_{r}\right\rangle=\left\langle a_{1}\right\rangle$ holds if and only if $a_{1} \equiv \pm 2 a_{r}$, which is equivalent to $a_{1} \equiv \pm 2^{r} a_{1}(\bmod q)$. Since $\operatorname{gcd}\left(a_{1}, q\right)=1$, this is possible if $2^{r} \equiv \pm 1(\bmod q)$. The careful reader may observe that $2^{r} \equiv-1(\bmod q)$ is possible only if the order of 2 modulo q is even. This means that if the order of 2 modulo q is odd, the statement is valid without any corrections.

In addition, at the beginning of page 6, the phrase
"From this construction, it is also evident that $a_{1} \equiv \pm 2 a_{r}$ since $2^{r} \equiv 1$ $(\bmod q)$ " should be
"From this construction, it is also evident that $a_{1} \equiv \pm 2 a_{r}$ since $2^{r} \equiv \pm 1$ $(\bmod q) "$.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Konstantinos, G.: On subset sums of \mathbb{Z}_{n}^{\times}which are equally distributed modulo n. Arch. Math. (Basel) 121(1), 47-54 (2023)

Gaitanas Konstantinos
Department of Applied Mathematical and Physical Sciences
National Technical University of Athens
Heroon Polytechneiou Str., Zografou Campus
15780 Athens
Greece
e-mail: kostasgaitanas@gmail.com

Received: 19 April 2023
Accepted: 3 May 2023

