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Character table sudokus

Benjamin Sambale

Abstract. It is a fun game to complete a partial character table of a
finite group. We show that one can reconstruct a missing row or column
from a given table. The proof relies on deep properties of fully ramified
characters. Moreover, we extend a classification of groups with a “large”
character degree started by Snyder and continued by Durfee and Jensen.
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1. Introduction. Character tables of finite groups are complex square matrices
satisfying a large number of arithmetical properties, most prominently, the
orthogonality relations (see [6] for a compilation). Filling in missing values
of a partial character table can therefore be seen as a sudoku-like puzzle. A
particular challenge presents itself when an entire row or column of a given
table is vacant. We show that in both cases one can reconstruct uniquely the
missing row or column by using only the given part of the table (i. e., without
using other properties of the underlying group).

Theorem 1. There are no finite groups whose character tables differ by only
one row or only one column.

As usual, we consider character tables as identical if they only differ by
permuting rows and columns. It can happen that two rows (or columns) of
a character table differ by exactly one entry. The corresponding groups have
been investigated by Wang–Du [17] and Bianchi–Herzog [1] respectively.

Our proof of Theorem 1 provides an explicit algorithm and we challenge the
reader with some examples. Playing this game further will sooner or later lead
to so-called pseudo groups introduced by Brauer [3] and investigated further
by Harris [8] and Gagola [6] (a concrete example is given in the next section).
In his Problem 6, Brauer [2] has even asked to give necessary and sufficient
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conditions distinguishing character tables from arbitrary matrices. We put
forward the following open problem.

Problem 2. Do there exist distinct character tables which differ by at most one
entry in every row (or in every column)?

In the course of the paper, we need to revisit groups G with characters of
“large” degree (compared to |G|). Such groups were studied and classified by
Snyder [16] and Durfee–Jensen [4]. In the last section, we use the opportunity
to extend their classification.

2. Proof of Theorem 1. We split up Theorem 1 and start with the easier case
of a missing column.

Theorem 3. There are no finite groups whose character tables differ by only
one column.

Proof. Let C = (cij) ∈ C
k×(k−1) be the partial character table of a finite

group G, where the column d corresponding to g ∈ G is missing. We need to
show that d is uniquely determined by C. Since character tables are invertible,
the columns of C span a vector space of dimension k − 1. By the second
orthogonality relation, d spans the orthogonal complement of this space. In
particular, d is uniquely determined up to a scalar multiple. If C has only
one row of the form (1, . . . , 1), then this row must correspond to the trivial
character. In this case, d is uniquely determined.

Now assume that C has two rows (1, . . . , 1). Then there exists a non-trivial
character χ ∈ Irr(G) such that χ(h) = 1 for all h outside the conjugacy
class of g. Let K := Ker(χ) < G. Then G \ K is the conjugacy class of g.
It follows that |G : K| = 2 and |CG(g)| = 2. Moreover, χ(g) = −1. Since
χ(1)2 + χ(g)2 = 2 = |CG(g)|, the orthogonality relation implies that ψ(g) = 0
for all ψ ∈ Irr(G) \ {1G, χ}. Hence, d = (1,−1, 0, . . . , 0)t up to permutation of
rows. �

Before we embark with the corresponding theorem for rows, we illustrate
why it must lie deeper. The following matrices differ only by the their last
row: ⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 −1 −1 1
2 2 −2 0 0 0
8 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 −1 −1 1
2 2 −2 0 0 0
4 −2 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

The first matrix is the character table of the sharply 2-transitive Mathieu
group M9

∼= C2
3 �Q8. The second fulfills the orthogonality relations and looks

like the character table of a group of the form C3 � Q8 or C3 � D8 (cf. [6,
Definition 2.2, Theorem 2.3]). However such a group must have at least seven
conjugacy classes since CG(C3) is abelian of index 2. This gives rise to a pseudo
group mentioned in the introduction. We will see that larger examples of the
same kind can be constructed easily.
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Nevertheless, the proof of the following “row theorem” features some dual-
ity to Theorem 3.

Theorem 4. There are no finite groups whose character tables differ by only
one row.

Proof. Let C = (cij) ∈ C
(k−1)×k be the partial character table of G, where

the row corresponding to χ ∈ Irr(G) is missing. It suffices to show that χ is
uniquely determined by C. We may assume that χ is real since otherwise χ
is complex conjugate to a given character. Moreover, we can assume that χ is
not the trivial character. In particular, G �= 1. We first identity which column
of C corresponds to the trivial element. This must be a column filled with
positive integers. Using that |ψ(g)| ≤ ψ(1) for every g ∈ G and ψ ∈ Irr(G),
the trivial element corresponds to an integral column with “maximal” entries.
If there are more than one such identical columns (see Case 2 below), we pick
one of them and assign it to the trivial element.

Let 1 = g1, . . . , gk ∈ G be representatives for the conjugacy classes of G.
Let d := χ(1) and

γst :=
k−1∑
i=1

ciscit (1 ≤ s, t ≤ k).

By the second orthogonality relation, χ(gs) = − 1
dγ1s for s = 2, . . . , k. Hence,

χ is uniquely determined by d.
Case 1: There exist 1 < s < t such that γst �= 0.
Since χ(gs)χ(gt) = −γst, we have χ(gs) �= 0 �= χ(gt). It follows that

d2 =
γ1sγ1t

χ(gs)χ(gt)
= −γ1sγ1t

γst
,

and d is uniquely determined by C (note that d > 0).
Case 2: γst = 0 for all 1 < s < t.
Since χ cannot vanish identically on G \ {1} (otherwise [χ, 1G] �= 0), there
exists r > 1 such that χ(1)χ(gr) = γ1r �= 0. Without loss of generality, let
r = 2. Then γ2s = 0 implies χ(gs) = 0 for s = 3, . . . , k. This situation was
studied by Gagola [5]. We repeat some of his arguments for the convenience
of the reader. For every ψ ∈ Irr(G) \ {χ}, we have

0 = [ψ(1)1G − ψ, χ] =
1

|G|
(
ψ(1) − ψ(g2)

)
χ(g2)

since χ is non-trivial. This yields ψ(g2) = ψ(1), i. e., the first two columns
of C are identical. Moreover, g := g2 is contained in the kernel of every ψ ∈
Irr(G)\{χ}. Since γ1s = 0 for s ≥ 3, none of the other columns of C is identical
to the first column. This shows that

N := gG ∪ {1} =
⋂

ψ∈Irr(G)\{χ}
Ker(ψ) � G

is a minimal normal subgroup of G. Since all non-trivial elements of N are
conjugate, N must be an elementary abelian p-group. By Clifford theory, χ
is the only irreducible character of G lying over some λ ∈ Irr(N) \ {1N} and
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λ is G-conjugate to all non-trivial characters of N . It follows that λ is fully
ramified in its stabilizer Gλ and

|G : Gλ| = | Irr(N)| − 1 = |N | − 1.

Moreover, χ = 1
eλG where e is the ramification index of λ (see [13, Lemma 8.2]).

Note that |G/N | =
∑

ψ �=χ ψ(1)2 = γ11 is determined by C. For a prime q �= p,
χ vanishes on the q-singular elements. This means that χ has q-defect 0 and

dp′ = |G|p′ = |G/N |p′

(see [13, Corollary 4.7]). From |G| = γ11 + d2 = |G/N | + d2, we also get
|N | = 1 + d2

|G/N | and

d2p = |G/N |p.
We have thus shown that χ is determined by p alone. Notice further that

|Gλ/N | = e2 =
(λG(1)

χ(1)

)2

=
|G/N |2

d2
= |G/N |p,

i. e., Gλ/N is a Sylow p-subgroup of G/N .
Removing the second column of C reveals the character table of G/N .

The following property can be read off from this character table (see [13,
Corollary 3.12]).
Case 2.1: G/N has a non-cyclic Sylow q-subgroup of some odd prime q.
Suppose that Gλ = N . Then

|G : N | = |G : Gλ| = |N | − 1 = |G : CG(g)|
yields N = CG(g). Consequently, G is a Frobenius group with kernel N and
complement isomorphic to G/N (see [11, Theorem 6.7]). However, it is well-
known that the Sylow subgroups of a Frobenius complement are cyclic or
quaternion groups (see [11, Theorem 6.11]). This contradiction shows that
N < Gλ and e > 1. A theorem attributed to Gagola and presented with an
elementary (but long) proof by Isaacs [12, Theorem 5.1] states that

|G/N |p′ < |N | < |Gλ : N | = |G/N |p.
For every prime q �= p, we have |G/N |q ≤ |G/N |p′ < |G/N |p ≤ |G/N |q′ .
Hence, p is uniquely determined by γ11 = |G/N |.

For the remainder of the proof, we assume that all Sylow subgroups of G/N
of odd order are cyclic. If |Gλ/N | = |G/N |p �= 1, then Gλ/N cannot be cyclic,
as otherwise λ would extend to Gλ. Hence, it suffices to distinguish p = 2
from |G/N |p = 1. In the latter, case d = |G/N | is independent of p. If a Sylow
2-subgroup P/N of G/N is cyclic, then clearly |G/N |p = 1. Thus, we assume
that P/N is not cyclic. The next case can also be read off from the character
table of G/N by [14, Theorem A].

Case 2.2: |P/N : (P/N)′| > 4.
Assuming Gλ = N , we end up with a Frobenius group as in Case 2.1. But then
P/N must be a quaternion group with |P/N : (P/N)′| = 4. This contradiction
shows that p = 2.
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Case 2.3: |P/N : (P/N)′| = 4.
Here, P/N has a cyclic subgroup Q/N of index 2. If |P/N | = 4, then again
G/N cannot be isomorphic to a Frobenius complement and we have p = 2.
Hence, let |P/N | ≥ 8. If p = 2, then we may assume that Gλ = P by Sylow’s
theorem. Now λ extends to Q. This implies e = 2 and |P/N |2 = e2 = 4,
against our assumption. Therefore, p �= 2, |G/N |p = 1, and d = |G/N |. This
completes the proof. �

The two abelian groups of order 4 show that character tables can differ by
only two columns, two rows, or by just k entries, where k is the total number
of characters. It might be possible to reconstruct a row and a column of a
partial character table simultaneously, but this seems to require an analysis
of characters vanishing on all but three conjugacy classes. For instance, the
reader may try to decide which of the following matrices are character tables
(here i =

√−1):⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 −1 −1 1 1
1 −1 i −i 1 1
1 −1 −i i 1 1
4 0 0 0 −2 0
2 0 0 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 −1 −1 1 1
1 −1 i −i 1 1
1 −1 −i i 1 1
4 0 0 0 −2 1
4 0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 −1 −1 1 1
1 −1 i −i 1 1
1 −1 −i i 1 1
4 0 0 0 −3 1
8 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

The proofs of our theorems in combination with [13, Corollary 3.12] and
[14, Theorem A] provide a practical algorithm to complete a partial character
table. We challenge the reader to add three rows and three columns to turn
the following matrix into a character table of size 11 × 11. There is only one
way to do this, but two non-isomorphic groups share this character table:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 i i
2 −2 −2 2 −1 1 0 0
2 2 2 2 −1 −1 0 0
3 3 −1 −1 0 0 −1 1
3 3 −1 −1 0 0 1 −1
3 −3 1 −1 0 0 i −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. Large character degrees. The reader might have noticed that the difficulties
in our proofs arise from groups with “large” character degrees. Gagola’s bound
|N | < |G/N |p, used in Theorem 4, has been improved in [10, Theorem 1.2] as
follows:

Theorem 5. Let G be a group of order d(d + e) where d is the degree of an
irreducible character and e > 1 is an integer. Then |G| ≤ e4 − e3.

While [10] depends on the classification of the finite simple groups, our
proof of Theorem 4 (relying on [14, Proposition 2.1]) is CFSG-free. Due to a
construction by Isaacs [12], the bound |G| ≤ e4 − e3 is best possible whenever
e is a power of a prime. The authors of [10] have asked to classify those groups.
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Building on work of Snyder [16] for e = 2, 3, Durfee–Jensen [4] have classified
the groups with 2 ≤ e ≤ 6 (there are infinitely many groups for e = 1).
For e = 7, they could not finish their classification since the groups of order
d(d+e) = 42 ·49 = 2958 are not available in the small groups library. However,
these groups can be constructed using the GrpConst package in GAP [7] (see
also [9]). There are just four of them with an irreducible character of degree
d = 42. We extend the classification to e ≤ 11. Most group orders can be
handled with GAP. The difficult cases, which require special attention, are
settled in the following lemmas.

Lemma 6. Let G be a group of order d(d+e) with χ ∈ Irr(G) of degree d. Then
(d, e) is not one of the following pairs:

(i) (32, 8).
(ii) (48, 8).
(iii) (54, 9).
(iv) (55, 9).
(v) (54, 10).
(vi) (80, 10).
(vii) (64, 11).

Proof. First we recall some general facts from Clifford theory. Let N � G. Let
θ ∈ Irr(N) be a constituent of χN with ramification index e and k := |G : Gθ|,
where Gθ is the stabilizer of θ. Then χ(1) = keθ(1) such that e | |Gθ : N | and
e2 ≤ |Gθ : N | (see [13, Theorem 5.12 and the subsequent remark]). Moreover,
kθ(1)2 < |N | and

χ(1)2 ≤ |G : N | |N | − 1
θ(1)2

unless N = 1. If N is abelian, then χ(1) = ke | |G : N | and if N ≤ Z(G), then
χ(1) = e.

(i) Here |G| = 28 · 5. Recall that N := O2(G) is the kernel of the transitive
action of G on the cosets of a Sylow 2-subgroup. In particular, G/N is
isomorphic to a subgroup of S5. It follows that |N | ≥ 26. But this leads
to the contradiction

25 = χ(1) = keθ(1) < |G : N |2
√

|N | =
28√|N | ≤ 25.

(ii) Here |G| = 27 · 3 · 7. By the classification of the transitive groups of
degree 21 in GAP, we obtain O2(G) �= 1. Hence, there exists a minimal
normal subgroup N ≤ O2(G). Since N is (elementary) abelian and 48 =
χ(1) | |G : N |, it follows that |N | ≤ 8. On the other hand, we have
χ(1)2 ≤ |G| − |G : N |, which forces |N | = 8. Since k divides χ(1) = 48
and k < |N |, we get k ≤ 6. But now

28 · 32 = χ(1)2 ≤ |G : N |k = 25 · 32 · 7,

a contradiction.
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(iii) Here |G| = 2 · 35 · 7. There exists a normal subgroup of order 35 · 7,
and by Sylow’s theorem, G has a normal Sylow 7-subgroup N . Then
χ(1)2 = 22 · 36 = |G| − |G : N | and therefore k = 6 and e = 9. This is
impossible since θ extends to Gθ by [13, Corollary 6.2].

(iv) Here |G| = 55 · 64 = 26 · 5 · 11. Then χ has 11-defect 0 and therefore
O11(G) = 1. By Sylow’s theorem, G has 26 ·5 Sylow 11-subgroups. Hence,
G is a Frobenius group with kernel K of order 26 · 5. By Thompson’s
theorem on Frobenius kernels, K is nilpotent. Therefore, K and G have
a normal Sylow 5-subgroup. But this contradicts the fact that χ has
5-defect 0.

(v) Here |G| = 27 · 33. Then χ has 3-defect 0 and therefore O3(G) = 1.
Let N := O2(G). By the Hall–Higman lemma, CG(N) ≤ N (see [11,
Theorem 3.21]). Let P be a Sylow 3-subgroup of G. Since P acts faithfully
on N/Φ(N), we obtain |N | ≥ |N/Φ(N)| ≥ 26. Suppose that |N | = 26.
Then N is elementary abelian and Gθ = N . In particular, P has a regular
orbit on Irr(N). By [13, Corollary 2.12], P also has a regular orbit on N .
Using the local structure of GL(6, 2), one can show with GAP that this is
impossible. Therefore, |N | = 27 and G = N � P . We can now determine
the candidates for N with the small groups library (there are four such
groups with an automorphism group of order divisible by 27). For each
candidate, we construct G and check that χ does not exist.

(vi) Here |G| = 25 · 32 · 52. Since χ has 2-defect 1, it must lie in a 2-block of
defect 1. In particular, N := O2(G) has order at most 1. If N �= 1, then
we derive the contradiction

28 · 52 = χ(1)2 ≤ |G : N |(|N | − 1) = 24 · 32 · 52.

Hence, N = 1. In the same way, we can show that O5(G) = 1. If G is
solvable, we must have N := O3(G) �= 1 and CG(N) ≤ N by the Hall–
Higman lemma. This cannot happen since G/CG(N) ≤ GL(3, 2) is too
small. Thus, G is non-solvable. Let N be a minimal normal subgroup
of G. If N ∼= A6, then CG(N) �= 1 is a solvable normal subgroup of G
since N ∩ CG(N) = Z(N) = 1 and G/NCG(N) ≤ Out(A6) ∼= C2

2 . This
contradicts O5(G) = 1. If N ∼= A2

5, then N must contain an irreducible
character of degree 80 or 40 because |G : N | = 2. This is not the case since
A5 has character degrees 1, 3, 4, 5. Finally, let N ∼= A5. If M := CG(N)
is solvable, we get the contradiction CM (O3(M)) ≤ M as above. If M is
non-solvable, then we find another normal subgroup M � G isomorphic
to A2

5. This is impossible as we have just seen.
(vii) Here |G| = 26 ·3 ·52. Since χ has 2-defect 0, we have O2(G) = 1. As in the

previous case, we can show that G has to be non-solvable. Let N be a non-
abelian minimal normal subgroup. Then N ∼= A5 and CG(N) contains
an abelian minimal normal subgroup of G. This leads to a contradiction
as before.

�

Lemma 7. There are exactly 12 groups of order 3584 with an irreducible char-
acter of degree 56.
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Proof. Let G be a group of order 3584 = 29 · 7 with χ ∈ Irr(G) of degree 56.
Let N := O2(G). By the classification of transitive subgroups of S7, we have
|N | ≥ 28. Suppose first that |N | = 28. Let M/N = O7(G/N). Then |M | = 28 ·7
and χ lies over some θ ∈ Irr(M) of degree 28. A GAP computation shows
that there are 11 possible isomorphism types for N . However, in each case,
G/N ∼= D14 is not isomorphic to a subgroup of Out(N). This contradiction
shows that |N | = 29 and G ∼= N � C7.

Now let θ ∈ Irr(N) and λ ∈ Irr(Z(N)) be constituents of χN and χZ(N)

respectively. If G/N acts trivially on Z(N), then λ is G-invariant and we derive
the contradiction

562 ≤ |G : Z(N)| ≤ |G|/2 = 56 · 32.

Hence, G/N acts faithfully on Z(N) and it follows that |Z(N)| ≥ 8. On the
other hand, 64 = θ(1)2 ≤ |N : Z(N)| ≤ 26 implies |Z(N)| = 8. Since G/N acts
irreducibly on Z(N), Z(N) is a minimal normal subgroup of G. In particular,
Z(N) is elementary abelian and Z(N) ⊆ N ′. We use GAP to enumerate the
groups of order 26 with an automorphism of order 7. In this way, we find just
7 possibilities for N/Z(N). With the notation of [15, Definition 2.1], N is an
immediate descendant of N/Z(N) and those can be computed with the AnuPQ
package in GAP. It turns out that N/Z(N) must be elementary abelian. Hence,
Z(N) = N ′ = Φ(N). In particular, N has rank 6 and p-class 2. According to
the small groups library, those groups have the form N = SmallGroup(29, a)
with 7,532,393 ≤ a ≤ 10,481,221. Running through these groups with GAP
yields the following values for a:

10475413, 10476872, 10477010, 10477017, 10481182, 10481184,

10481185, 10481201, 10481221

(we made use of the AutPGrp package to compute Aut(N)). If a �= 10481201,
then |Aut(N)|7 = 7 and there is a unique group G. If a = 10481201, then
|Aut(N)|7 = 72 and there are just four non-isomorphic groups G. �

The final theorem summarizes our findings.

Theorem 8. Let k be the number of non-isomorphic groups G of order n =
d(d + e) where 2 ≤ e ≤ 11 and G has an irreducible character of degree d.
Then (d, n)k is given in the table below:
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e (d, n)k Σ

2 (1, 3), (2, 8)2 3
3 (1, 4)2, (2, 10), (6, 54)2 5
4 (1, 5), (2, 12)2, (3, 21), (4, 32)7, (12, 192)6 17
5 (1, 6)2, (2, 14), (3, 24)3, (4, 36)2, (20, 500)3 11
6 (1, 7), (2, 16)9, (3, 27)2, (4, 40)2, (5, 55), (6, 72)3 18
7 (1, 8)5, (2, 18)3, (5, 60), (6, 78), (8, 120),

(9, 144), (42, 2058)4
16

8 (1, 9)2, (2, 20)2, (4, 48)10, (6, 84)2, (8, 128)75, (12, 240)2,
(24, 768)11, (56, 3584)12

116

9 (1, 10)2, (2, 22), (3, 36)2, (4, 52), (7, 112), (8, 136),
(12, 252), (16, 400)2, (18, 486)13, (72, 5832)18

42

10 (1, 11), (2, 24)11, (3, 39), (6, 96)12, (8, 144)5, (9, 171),
(14, 336), (18, 504)2

34

11 (1, 12)5, (2, 26), (3, 42), (4, 60)4, (5, 80), (16, 432)5,
(21, 672)2, (24, 840), (110, 13310)6

26
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